Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 977
Filtrar
1.
Neuron ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39321791

RESUMO

There has been a recent renewal of interest in the therapeutic potential of serotonergic psychedelics. Here, we uncover the essential role of ventral hippocampus (vHpc) GABAergic interneurons in the anxiolytic effect evoked by the serotonergic psychedelic 2,5-dimethoxy-4-iodoamphetamine (DOI). Integrating anatomical, pharmacological, and genetic approaches, we show that 5-HT2A receptors in the CA1/subiculum (CA1/sub) region of the vHpc are required for the anxiolytic action of DOI. In vivo electrophysiology and opto-tagging experiments indicate that DOI enhances the firing rate of hippocampal fast-spiking parvalbumin (PV)-positive interneurons, most of which express the 5-HT2A receptors. Restoration of 5-HT2A receptors in PV-positive interneurons in a loss-of-function background reinstated the anxiolytic responses evoked by DOI in the vHpc CA1/sub region. Collectively, our results localize the acute anxiolytic action of a serotonergic psychedelic to 5-HT2A receptors in the ventral hippocampus and specifically identify PV-positive fast-spiking cells as a cellular trigger for the psychedelic-induced relief of anxiety-like behavior.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39329500

RESUMO

INTRODUCTION: Transient global ischaemia in rodents causes selective loss of hippocampal CA1 neurons, but the potential involvement of endocytic pathways has not been fully explored. The aim of this study was to investigate the changes in early endosomes in the CA1 subfield after ischaemia and reperfusion. MATERIALS AND METHODS: A four-vessel occlusion (4-VO) model was established in Wistar rats to induce 13 minutes of global cerebral ischaemia. Neuronal death was detected by Fluoro-Jade B (FJ-B) staining at various intervals after reperfusion, and intracellular membrane changes in ischaemic neurons were revealed using DiOC6(3), a lipophilic fluorescent probe. Ras-related protein Rab5 (Rab5) immunostaining was performed to detect changes in early endosomes in ischaemic neurons. Western blot analysis was used to confirm the morphological observations on Rab5 in the CA1 hippocampal subfield. RESULTS: FJ-B staining confirmed progressive neuronal death in the CA1 subfield in ischaemic rats after reperfusion. DiOC6(3) staining revealed abnormally increased membranous components in ischaemic CA1 neurons. Specifically, early endosomes, as labelled by Rab5 immunostaining, significantly increased in number and size in CA1 neurons at 1.5 and 2 days post-reperfusion, followed by rupture at day 3 and a decrease in staining intensity at day 7 post-reperfusion. Western blot analysis confirmed a significant upregulation of Rab5 protein levels at day 2, which returned to near control levels by day 7. CONCLUSIONS: Our study revealed significant changes in the dynamics of early endosomes in CA1 neurons after ischaemia-reperfusion injury. The initial increase in the area fraction of early endosomes in CA1 neurons may reflect an upregulation of endocytic activity, whereas the fragmentation and reduction of early endosomes at the later stage may indicate a failure of adaptive mechanisms of ischaemic neurons against ischaemia-induced death. Understanding the temporal dynamics of early endosomes provides critical insights into the cellular mechanisms that govern fate of CA1 hippocampal neuronsl after ischaemia/reperfusion.

3.
Curr Biol ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39305898

RESUMO

Hippocampal-dependent memory is known to emerge late in ontogeny, and its full development is protracted. Yet the changes in hippocampal neuronal function that underlie this delayed and gradual maturation remain relatively unexplored. To address this gap, we recorded ensembles of CA1 neurons while charting the development of hippocampal-dependent spatial working memory (WM) in rat pups (∼2-4 weeks of age). We found a sharp transition in WM development, with age of inflection varying considerably between individual animals. In parallel with the sudden emergence of WM, hippocampal spatial representations became abruptly task specific, remapping between encoding and retrieval phases of the task. Further, we show how the development of task-phase remapping could partly be explained by changes in place-field size during this developmental period as well as the onset of precise temporal coordination of CA1 excitatory input. Together, these results suggest that a hallmark of hippocampal memory development may be the emergence of contextually specific CA1 representations driven by the maturation of CA1 micro-circuits.

4.
Brain Behav Immun ; 123: 211-228, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293693

RESUMO

Infection during pregnancy represents a risk factor for neuropsychiatric disorders associated with neurodevelopmental alterations. A growing body of evidence from rodents and non-human primates shows that maternal inflammation induced by viral or bacterial infections results in several neurobiological alterations in the offspring. These changes may play an important role in the pathophysiology of psychiatric disorders like schizophrenia and autism spectrum disorders, whose clinical features include impairments in cognitive processing and social performance. Such alterations are causally associated with the maternal inflammatory response to infection rather than with the infection itself. Previously, we reported that CA1 pyramidal neurons of mice exposed to MIA exhibit increased excitability accompanied by a reduction in dendritic complexity. However, potential alterations in cellular and synaptic rules that shape the neuronal computational properties of the offspring remain to be determined. In this study, using mice as subjects, we identified a series of cellular and synaptic alterations endured by CA1 pyramidal neurons of the dorsal hippocampus in a lipopolysaccharide-induced maternal immune activation (MIA) model. Our data indicate that MIA reshapes the excitation-inhibition balance by decreasing the perisomatic GABAergic inhibition predominantly mediated by cholecystokinin-expressing Interneurons but not parvalbumin-expressing interneurons impinging on CA1 pyramidal neurons. These alterations yield a dysregulated amplification of the temporal and spatial synaptic integration. In addition, MIA-exposed offspring displayed social and anxiety-like abnormalities. These findings collectively contribute to understanding the cellular and synaptic alterations underlying the behavioral symptoms present in neurodevelopmental disorders associated with MIA.

5.
Wellcome Open Res ; 9: 300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221440

RESUMO

Background: Early life stress (ELS) is an important risk factor in the aetiology of depression. Developmental glucocorticoid exposure impacts multiple brain regions with the hippocampus being particularly vulnerable. Hippocampal mediated behaviours are dependent upon the ability of neurones to undergo long-term potentiation (LTP), an N-methyl-D-aspartate receptor (NMDAR) mediated process. In this study we investigated the effect of ELS upon hippocampal NMDAR function. Methods: Hooded Long-Evans rat pups (n=82) were either undisturbed or maternally separated for 180 minutes per day (MS180) between post-natal day (PND) 1 and PND14. Model validation consisted of sucrose preference (n=18) and novelty supressed feeding (NSFT, n=34) tests alongside assessment of corticosterone (CORT) and paraventricular nucleus (PVN) cFos reactivity to stress and hippocampal neurogenesis (all n=18). AMPA/NMDA ratios (n=19), miniEPSC currents (n=19) and LTP (n=15) were assessed in whole-cell patch clamp experiments in CA1 pyramidal neurones. Results: MS180 animals showed increased feeding latency in the NSFT alongside increased overall CORT in the restraint stress experiment and increased PVN cFos expression in males but no changes in neurogenesis or sucrose preference. MS180 was associated with a lower AMPA/NMDA ratio with no change in miniEPSC amplitude or area. There was no difference in short- or long-term potentiation between MS180 and control animals nor were there any changes during the induction protocol. Conclusions: The MS180 model showed a behavioural phenotype consistent with previous work. MS180 animals showed increased NMDAR function with preliminary evidence suggesting that this was not concurrent with an increase in LTP.


Highly stressful early life events are the biggest risk factor for developing depression in adulthood. The hippocampus is a brain region that is highly susceptible to this stress and is crucial for coordinating learning and memory which underpins many aspects of cognitive function. Our study investigated if changes in the way that the neurons in the hippocampus communicate could provide explanations as to why early life stress predisposes to depression. We used an animal model of early life stress where rat pups are separated from their mother for three hours per day during their early life. Upon adulthood this resulted in the rats being slower to eat food in a new environment, a standard test of anxiety behaviour. We then used a technique called ex-vivo patch clamp electrophysiology to study how the individual neurons in their hippocampi and their connections functioned after early life stress. We measured the relative power of the signals from two key synaptic receptors essential for communication between neurons: AMPA and NMDA receptors. AMPA receptors are the key receptors enabling communication between neurons at synapses whereas NMDA receptors allow a neuron to become more sensitive to input signals and adapt synaptic strength. Animals with early life stress had more NMDA receptor function relative to AMPA function compared to control animals. We used a technique called miniEPSC recordings to rule out any change in AMPA receptor function in ELS animals meaning an effect specific to NMDA receptors. However, we found no changes to the ability for synapses to adapt their strength between groups. This work presents evidence for changes in hippocampal neurons and synapses caused by early life stress but further work is needed to understand how this relates to depression.

6.
Korean J Physiol Pharmacol ; 28(5): 413-422, 2024 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-39198222

RESUMO

Group I metabotropic glutamate receptors (mGluRs) modulate postsynaptic neuronal excitability and epileptogenesis. We investigated roles of group I mGluRs on low extracellular Mg2+ concentration ([Mg2+]o)-induced epileptiform activity and neuronal cell death in the CA1 regions of isolated rat hippocampal slices without the entorhinal cortex using extracellular recording and propidium iodide staining. Exposure to Mg2+-free artificial cerebrospinal fluid can induce interictal epileptiform activity in the CA1 regions of rat hippocampal slices. MPEP, a mGluR 5 antagonist, significantly inhibited the spike firing of the low [Mg2+]o-induced epileptiform activity, whereas LY367385, a mGluR1 antagonist, did not. DHPG, a group 1 mGluR agonist, significantly increased the spike firing of the epileptiform activity. U73122, a PLC inhibitor, inhibited the spike firing. Thapsigargin, an ER Ca2+-ATPase antagonist, significantly inhibited the spike firing and amplitude of the epileptiform activity. Both the IP3 receptor antagonist 2-APB and the ryanodine receptor antagonist dantrolene significantly inhibited the spike firing. The PKC inhibitors such as chelerythrine and GF109203X, significantly increased the spike firing. Flufenamic acid, a relatively specific TRPC 1, 4, 5 channel antagonist, significantly inhibited the spike firing, whereas SKF96365, a relatively non-specific TRPC channel antagonist, did not. MPEP significantly decreased low [Mg2+]o DMEM-induced neuronal cell death in the CA1 regions, but LY367385 did not. We suggest that mGluR 5 is involved in low [Mg2+]oinduced interictal epileptiform activity in the CA1 regions of rat hippocampal slices through PLC, release of Ca2+ from intracellular stores and PKC and TRPC channels, which could be involved in neuronal cell death.

7.
Mol Cell Neurosci ; 130: 103960, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39179163

RESUMO

Neurodegeneration associated with ageing is closely linked to oxidative stress (OS) and disrupted calcium homeostasis. Some areas of the brain, like the hippocampus - particularly the CA1 region - have shown a high susceptibility to age-related changes, displaying early signs of pathology and neuronal loss. Antioxidants such as α-tocopherol (αT) have been effective in mitigating the impact of OS during ageing. αT homeostasis is primarily regulated by the α-tocopherol transfer protein (αTTP), which is widely distributed throughout the brain - where it plays a crucial role in maintaining αT levels within neuronal cells. This study investigates the distribution of αTTP in the hippocampus of 4- and 24-month-old Pol µ knockout mice (Pol µ-/-), a delayed-ageing model, and the wild type (Pol µ+/+). We also examine the colocalisation in the stratum oriens (st.or) of CA1 region with the primary interneuron populations expressing calcium-binding proteins (CBPs) (calbindin (CB), parvalbumin (PV), and calretinin (CR)). Our findings reveal that αTTP immunoreactivity (-IR) in the st.or of Pol µ mice is significantly reduced. The density of PV-expressing interneurons (INs) increased in aged mice in both Pol µ genotypes (Pol µ-/- and Pol µ+/+), although the density of PV-positive INs was lower in the aged Pol µ-/- mice compared to wild-type mice. By contrast, CR- and CB-positive INs in Pol µ mice remained unchanged during ageing. Furthermore, double immunohistochemistry reveals the colocalisation of αTTP with CBPs in INs of the CA1 st.or. Our study also shows that the PV/αTTP-positive IN population remains unchanged in all groups. A significant decrease of CB/αTTP-positive INs in young Pol µ-/- mice has been detected, as well as a significant increase in CR/αTTP-IR in older Pol µ-/- animals. These results suggest that the differential expression of αTTP and CBPs could have a crucial effect in aiding the survival and maintenance of the different IN populations in the CA1 st.or, and their coexpression could contribute to the enhancement of their resistance to OS-related damage and neurodegeneration associated with ageing.


Assuntos
Envelhecimento , Região CA1 Hipocampal , Proteínas de Transporte , Interneurônios , Parvalbuminas , Animais , Masculino , Camundongos , Envelhecimento/metabolismo , Região CA1 Hipocampal/metabolismo , Calbindinas/metabolismo , Calbindinas/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Interneurônios/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parvalbuminas/metabolismo
8.
Front Cell Neurosci ; 18: 1392498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104439

RESUMO

General anesthesia can impact a patient's memory and cognition by influencing hippocampal function. The CA1 and dentate gyrus (DG), serving as the primary efferent and gateway of the hippocampal trisynaptic circuit facilitating cognitive learning and memory functions, exhibit significant differences in cellular composition, molecular makeup, and responses to various stimuli. However, the effects of isoflurane-induced general anesthesia on CA1 and DG neuronal activity in mice are not well understood. In this study, utilizing electrophysiological recordings, we examined neuronal population dynamics and single-unit activity (SUA) of CA1 and DG in freely behaving mice during natural sleep and general anesthesia. Our findings reveal that isoflurane anesthesia shifts local field potential (LFP) to delta frequency and reduces the firing rate of SUA in both CA1 and DG, compared to wakefulness. Additionally, the firing rates of DG neurons are significantly lower than CA1 neurons during isoflurane anesthesia, and the recovery of theta power is slower in DG than in CA1 during the transition from anesthesia to wakefulness, indicating a stronger and more prolonged impact of isoflurane anesthesia on DG. This work presents a suitable approach for studying brain activities during general anesthesia and provides evidence for distinct effects of isoflurane anesthesia on hippocampal subregions.

9.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125647

RESUMO

This pre-clinical study was designed to demonstrate how vascular disrupting agents (VDAs) should be administered, either alone or when combined with radiation in clinically relevant fractionated radiation schedules, for the optimal anti-tumor effect. CDF1 mice, implanted in the right rear foot with a 200 mm3 murine C3H mammary carcinoma, were injected with various doses of the most potent VDA drug, combretastatin A-1 phosphate (CA1P), under different schedules. Tumors were also locally irradiated with single-dose, or stereotactic (3 × 5-20 Gy) or conventional (30 × 2 Gy) fractionation schedules. Tumor growth and control were the endpoints used. Untreated tumors had a tumor growth time (TGT5; time to grow to 5 times the original treatment volume) of around 6 days. This increased with increasing drug doses (5-100 mg/kg). However, with single-drug treatments, the maximum TGT5 was only 10 days, yet this increased to 19 days when injecting the drug on a weekly basis or as three treatments in one week. CA1P enhanced radiation response regardless of the schedule or interval between the VDA and radiation. There was a dose-dependent increase in radiation response when the combined with a single, stereotactic, or conventional fractionated irradiation, but these enhancements plateaued at around a drug dose of 25 mg/kg. This pre-clinical study demonstrated how VDAs should be combined with clinically applicable fractionated radiation schedules for the optimal anti-tumor effect, thus suggesting the necessary pre-clinical testing required to ultimately establish VDAs in clinical practice.


Assuntos
Fracionamento da Dose de Radiação , Animais , Camundongos , Feminino , Estilbenos/farmacologia , Estilbenos/administração & dosagem , Camundongos Endogâmicos C3H , Neovascularização Patológica/radioterapia , Neovascularização Patológica/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias Mamárias Experimentais/radioterapia , Neoplasias Mamárias Experimentais/irrigação sanguínea , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia
10.
Epilepsy Res ; 206: 107440, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39213710

RESUMO

Seizures induce hippocampal subregion dependent enhancements in microglia/macrophage phagocytosis and cytokine release that may contribute to the development of epilepsy. As a model of hyperactive mTOR induced epilepsy, neuronal subset specific phosphatase and tensin homolog (NS-Pten) knockout (KO) mice exhibit hyperactive mTOR signaling in the hippocampus, seizures that progress with age, and enhanced hippocampal microglia/macrophage activation. However, it is unknown where microglia/macrophages are most active within the hippocampus of NS-Pten KO mice. We quantified the density of IBA1 positive microglia/macrophages in the CA1, CA2/3, and dentate gyrus of NS-Pten KO and wildtype (WT) male and female mice at 4, 10, and 15 weeks of age. NS-Pten KO mice exhibited an overall increase in the number of IBA1 positive microglia/macrophages in each subregion and in the entire hippocampus. After accounting for differences in size, the whole hippocampus of NS-Pten KO mice still exhibited an increased density of IBA1 positive microglia/macrophages. Subregion analyses showed that this increase was restricted to the dentate gyrus of both male and female NS-Pten KO mice and to the CA1 of male NS-Pten KO mice. These data suggest enhanced microglia/macrophage activity may occur in the NS-Pten KO mice in a hippocampal subregion and sex-dependent manner. Future work should seek to determine whether these region-specific increases in microgliosis play a role in the progression of epilepsy in this model.


Assuntos
Hipocampo , Macrófagos , Microglia , PTEN Fosfo-Hidrolase , Caracteres Sexuais , Animais , Feminino , Masculino , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Contagem de Células , Hipocampo/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/metabolismo
11.
Front Pharmacol ; 15: 1451114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39166107

RESUMO

Introduction: The gut microbiota (MB), although one of the main producers of Aß in the body, in physiological conditions contributes to the maintainance of a healthy brain. Dysbiosis, the dysbalance between Gram-negative and Gram-positive bacteria in the MB increases Aß production, contributing to the accumulation of Aß plaques in the brain, the main histopathological hallmark of Alzheimer's disease (AD). Administration of prebiotics and probiotics, maintaining or recovering gut-MB composition, could represent a nutraceutical strategy to prevent or reduce AD sympthomathology. Aim of this research was to evaluate whether treatment with pre- and probiotics could modify the histopathological signs of neurodegeneration in hippocampal CA1 and CA3 areas of a transgenic mouse model of AD (APP/PS1 mice). The hippocampus is one of the brain regions involved in AD. Methods: Tg mice and Wt littermates (Wt-T and Tg-T) were fed daily for 6 months from 2 months of age with a diet supplemented with prebiotics (a multi-extract of fibers and plant complexes, containing inulin/fruit-oligosaccharides) and probiotics (a 50%-50% mixture of Lactobacillus rhamnosus and Lactobacillus paracasei). Controls were Wt and Tg mice fed with a standard diet. Brain sections were immunostained for Aß plaques, neurons, astrocytes, microglia, and inflammatory proteins that were evaluated qualitatively and quantitatively by immunofluorescence, confocal microscopy and digital imaging with ImageJ software. Results: Quantitative analyses demonstrated that: 1) The treatment with pre- and probiotics significantly decreased Aß plaques in CA3, while in CA1 the reduction was not significant; 2) Neuronal damage in CA1 Stratum Pyramidalis was significantly prevented in Tg-T mice; no damage was found in CA3; 3) In both CA1 and CA3 the treatment significantly increased astrocytes density, and GFAP and IBA1 expression, especially around plaques; 4) Microglia reacted differently in CA1 and CA3: in CA3 of Tg-T mice there was a significant increase of CD68+ phagocytic microglia (ball-and-chain phenomic) and of CX3CR1 compared with CA1. Discussion: The higher microglia reactivity could be responsible for their more efficient scavenging activity towards Aß plaques in CA3 in comparison to CA1. Treatment with pre- and probiotics, modifying many of the physiopathological hallmarks of AD, could be considered an effective nutraceutical strategy against AD symptomatology.

12.
Zhongguo Zhen Jiu ; 44(8): 905-9, 2024 Aug 12.
Artigo em Chinês | MEDLINE | ID: mdl-39111789

RESUMO

OBJECTIVE: To observe the clinical efficacy of Fu's subcutaneous needling combined with monkshood cake-separated moxibustion for primary dysmenorrhea with cold congealing and blood stasis. METHODS: Sixty patients with primary dysmenorrhea of cold congealing and blood stasis were randomly divided into an observation group (30 cases, 1 case dropped out) and a control group (30 cases, 2 cases dropped out). The control group received monkshood cake-separated moxibustion at Shenque (CV 8) and bilateral Zigong (EX-CA 1), while the observation group received Fu's subcutaneous needling based on the control group. The muscles were palpated and the affected muscles were determined. Needles were inserted 5-10 cm away from the affected muscles and reperfusion activity was performed simultaneously. All the treatment started on the first day of menstrual cycle pain, once a day, for 3 days, totaling for 3 menstrual cycles. The visual analogue scale (VAS) score, Cox menstrual symptom scale (CMSS) score, and traditional Chinese medicine (TCM) syndrome score in the two groups were observed before treatment, after 2 treatment courses and after 3 treatment courses. The serum prostaglandin F2α(PGF2α) levels before and after 3 treatment courses were measured, and the clinical efficacy of the two groups was evaluated. RESULTS: After 2 and 3 treatment courses, the VAS scores, CMSS scores, and TCM syndrome scores in the two groups were lower than those before treatment (P<0.05), and the scores in the observation group were lower than those in the control group (P<0.05). After 3 treatment courses, the PGF2α level in the observation group was decreased (P<0.05), and were lower than that in the control group (P<0.05). The total effective rate was 96.6% (28/29) in the observation group, which was higher than 64.3% (18/28) in the control group (P<0.05). CONCLUSION: Fu's subcutaneous needling combined with monkshood cake-separated moxibustion could effectively reduce the pain intensity, improve clinical symptoms of dysmenorrhea, and lower PGF2α level in patients with primary dysmenorrhea of cold congealing and blood stasis.


Assuntos
Pontos de Acupuntura , Terapia por Acupuntura , Dismenorreia , Moxibustão , Humanos , Feminino , Moxibustão/métodos , Dismenorreia/terapia , Dismenorreia/fisiopatologia , Adulto , Adulto Jovem , Resultado do Tratamento , Adolescente , Terapia Combinada
13.
Front Neurosci ; 18: 1428901, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211437

RESUMO

Background: The mechanisms underlying central fatigue (CF) induced by high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) are still not fully understood. Methods: In order to explore the effects of these exercises on the functioning of cortical and subcortical neural networks, this study investigated the effects of HIIT and MICT on local field potential (LFP) and neuronal firing in the mouse primary motor cortex (M1) and hippocampal CA1 areas. HIIT and MICT were performed on C57BL/6 mice, and simultaneous multichannel recordings were conducted in the M1 motor cortex and CA1 hippocampal region. Results: A range of responses were elicited, including a decrease in coherence values of LFP rhythms in both areas, and an increase in slow and a decrease in fast power spectral density (PSD, n = 7-9) respectively. HIIT/MICT also decreased the gravity frequency (GF, n = 7-9) in M1 and CA1. Both exercises decreased overall firing rates, increased time lag of firing, declined burst firing rates and the number of spikes in burst, and reduced burst duration (BD) in M1 and CA1 (n = 7-9). While several neuronal firing properties showed a recovery tendency, the alterations of LFP parameters were more sustained during the 10-min post-HIIT/MICT period. MICT appeared to be more effective than HIIT in affecting LFP parameters, neuronal firing rate, and burst firing properties, particularly in CA1. Both exercises significantly affected neural network activities and local neuronal firing in M1 and CA1, with MICT associated with a more substantial and consistent suppression of functional integration between M1 and CA1. Conclusion: Our study provides valuable insights into the neural mechanisms involved in exercise-induced central fatigue by examining the changes in functional connectivity and coordination between the M1 and CA1 regions. These findings may assist individuals engaged in exercise in optimizing their exercise intensity and timing to enhance performance and prevent excessive fatigue. Additionally, the findings may have clinical implications for the development of interventions aimed at managing conditions related to exercise-induced fatigue.

14.
Neuroscience ; 556: 86-95, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39047971

RESUMO

As a new means of brain neuroregulation and research, transcranial magneto-acoustic stimulation (TMAS) uses the coupling effect of ultrasound and a static magnetic field to regulate neural activity in the corresponding brain areas. Calcium ions can promote the secretion of neurotransmitters and play a key role in the transmission of neural signals in brain cognition. In this study, to explore the effects of TMAS on cognitive function and neural signaling in the CA1 region of the hippocampus, TMAS was applied to male 2-month-old C57 mice with a magnetic field strength of 0.3 T and ultrasound intensity of 2.6 W/cm2. First, the efficiency of neural signaling in the CA1 region of the mouse hippocampus was detected by fiber photometry. Second, the effects of TMAS on cognitive function in mice were investigated through multiple behavioral experiments, including spatial learning and memory ability, anxiety and desire for novelty. The experimental results showed that TMAS could improve cognitive function in mice, and the efficiency of neural signaling in the CA1 area of the hippocampus was significantly increased during stimulation and maintained for one week after stimulation. In addition, the neural signaling efficiency in the CA1 area of the hippocampus increased in the open field (OF) experiment and recovered after one week, the neural signaling efficiency in the new object exploration (NOE) experiment was significantly enhanced, and the intensity slowed after one week. In conclusion, TMAS enhances cognitive performance and promotes neural signaling in the CA1 region of the mouse hippocampus.


Assuntos
Estimulação Acústica , Região CA1 Hipocampal , Cognição , Camundongos Endogâmicos C57BL , Animais , Região CA1 Hipocampal/fisiologia , Cognição/fisiologia , Masculino , Camundongos , Estimulação Magnética Transcraniana/métodos , Aprendizagem Espacial/fisiologia , Memória/fisiologia
15.
Neurosci Bull ; 40(9): 1215-1229, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39078595

RESUMO

Sevoflurane induces developmental neurotoxicity in mice; however, the underlying mechanisms remain unclear. Triggering receptor expressed on myeloid cells 2 (TREM2) is essential for microglia-mediated synaptic refinement during the early stages of brain development. We explored the effects of TREM2 on dendritic spine pruning during sevoflurane-induced developmental neurotoxicity in mice. Mice were anaesthetized with sevoflurane on postnatal days 6, 8, and 10. Behavioral performance was assessed using the open field test and Morris water maze test. Genetic knockdown of TREM2 and overexpression of TREM2 by stereotaxic injection were used for mechanistic experiments. Western blotting, immunofluorescence, electron microscopy, three-dimensional reconstruction, Golgi staining, and whole-cell patch-clamp recordings were performed. Sevoflurane exposures upregulated the protein expression of TREM2, increased microglia-mediated pruning of dendritic spines, and reduced synaptic multiplicity and excitability of CA1 neurons. TREM2 genetic knockdown significantly decreased dendritic spine pruning, and partially aggravated neuronal morphological abnormalities and cognitive impairments in sevoflurane-treated mice. In contrast, TREM2 overexpression enhanced microglia-mediated pruning of dendritic spines and rescued neuronal morphological abnormalities and cognitive dysfunction. TREM2 exerts a protective role against neurocognitive impairments in mice after neonatal exposures to sevoflurane by enhancing microglia-mediated pruning of dendritic spines in CA1 neurons. This provides a potential therapeutic target in the prevention of sevoflurane-induced developmental neurotoxicity.


Assuntos
Região CA1 Hipocampal , Espinhas Dendríticas , Glicoproteínas de Membrana , Microglia , Receptores Imunológicos , Sevoflurano , Animais , Sevoflurano/toxicidade , Microglia/efeitos dos fármacos , Microglia/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Camundongos , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Anestésicos Inalatórios/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Síndromes Neurotóxicas/patologia
16.
Transl Neurodegener ; 13(1): 34, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044270

RESUMO

BACKGROUND: Depressive symptoms often occur in patients with Alzheimer's disease (AD) and exacerbate the pathogenesis of AD. However, the neural circuit mechanisms underlying the AD-associated depression remain unclear. The serotonergic system plays crucial roles in both AD and depression. METHODS: We used a combination of in vivo trans-synaptic circuit-dissecting anatomical approaches, chemogenetic manipulations, optogenetic manipulations, pharmacological methods, behavioral testing, and electrophysiological recording to investigate dorsal raphe nucleus serotonergic circuit in AD-associated depression in AD mouse model. RESULTS: We found that the activity of dorsal raphe nucleus serotonin neurons (DRN5-HT) and their projections to the dorsal hippocampal CA1 (dCA1) terminals (DRN5-HT-dCA1CaMKII) both decreased in brains of early 5×FAD mice. Chemogenetic or optogenetic activation of the DRN5-HT-dCA1CaMKII neural circuit attenuated the depressive symptoms and cognitive impairments in 5×FAD mice through serotonin receptor 1B (5-HT1BR) and 4 (5-HT4R). Pharmacological activation of 5-HT1BR or 5-HT4R attenuated the depressive symptoms and cognitive impairments in 5×FAD mice by regulating the DRN5-HT-dCA1CaMKII neural circuit to improve synaptic plasticity. CONCLUSIONS: These findings provide a new mechanistic connection between depression and AD and provide potential pharmaceutical prevention targets for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Depressão , Modelos Animais de Doenças , Núcleo Dorsal da Rafe , Camundongos Transgênicos , Neurônios Serotoninérgicos , Animais , Núcleo Dorsal da Rafe/metabolismo , Masculino , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/psicologia , Disfunção Cognitiva/fisiopatologia , Camundongos , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/fisiologia , Depressão/metabolismo , Depressão/genética , Depressão/psicologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Hipocampo/metabolismo , Serotonina/metabolismo , Optogenética , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia
17.
Neuron ; 112(15): 2600-2613.e5, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38955183

RESUMO

Brain oscillations are crucial for perception, memory, and behavior. Parvalbumin-expressing (PV) interneurons are critical for these oscillations, but their population dynamics remain unclear. Using voltage imaging, we simultaneously recorded membrane potentials in up to 26 PV interneurons in vivo during hippocampal ripple oscillations in mice. We found that PV cells generate ripple-frequency rhythms by forming highly dynamic cell assemblies. These assemblies exhibit rapid and significant changes from cycle to cycle, varying greatly in both size and membership. Importantly, this variability is not just random spiking failures of individual neurons. Rather, the activities of other PV cells contain significant information about whether a PV cell spikes or not in a given cycle. This coordination persists without network oscillations, and it exists in subthreshold potentials even when the cells are not spiking. Dynamic assemblies of interneurons may provide a new mechanism to modulate postsynaptic dynamics and impact cognitive functions flexibly and rapidly.


Assuntos
Interneurônios , Parvalbuminas , Animais , Parvalbuminas/metabolismo , Interneurônios/fisiologia , Camundongos , Hipocampo/fisiologia , Hipocampo/citologia , Potenciais de Ação/fisiologia , Encéfalo/fisiologia , Encéfalo/citologia , Camundongos Transgênicos , Ondas Encefálicas/fisiologia , Masculino
18.
Neuropharmacology ; 257: 110057, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38964596

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by alterations and imbalances in multiple brain neurochemical systems, particularly the serotonergic neurotransmission. This includes changes in serotonin (5-HT) levels, aberrations in 5-HT transporter activity, and decreased synthesis and expression of 5-HT receptors (5-HT7Rs). The exact role of the brain 5-HT system in the development of ASD remains unclear, with conflicting evidence on its involvement. Recently, we have reported research has shown a significant decrease in serotonergic neurons originating from the raphe nuclei and projecting to the CA1 region of the dorsal hippocampus in autistic-like rats. Additionally, we have shown that chronic activation of 5-HT7Rs reverses the effects of autism induction on synaptic plasticity. However, the functional significance of 5-HT7Rs at the cellular level is still not fully understood. This study presents new evidence indicating an upregulation of 5-HT7R in the CA1 subregion of the hippocampus following the induction of autism. The present account also demonstrates that activation of 5-HT7R with its agonist LP-211 can reverse electrophysiological abnormalities in hippocampal pyramidal neurons in a rat model of autism induced by prenatal exposure to VPA. Additionally, in vivo administration of LP-211 resulted in improvements in motor coordination, novel object recognition, and a reduction in stereotypic behaviors in autistic-like offspring. The findings suggest that dysregulated expression of 5-HT7Rs may play a role in the pathophysiology of ASD, and that agonists like LP-211 could potentially be explored as a pharmacological treatment for autism spectrum disorder.


Assuntos
Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal , Receptores de Serotonina , Regulação para Cima , Ácido Valproico , Animais , Receptores de Serotonina/metabolismo , Ácido Valproico/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Feminino , Regulação para Cima/efeitos dos fármacos , Masculino , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Ratos , Piperazinas/farmacologia , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/tratamento farmacológico , Ratos Wistar , Transtorno Autístico/metabolismo , Transtorno Autístico/tratamento farmacológico
19.
J Alzheimers Dis ; 100(s1): S341-S362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39031371

RESUMO

Background: Individuals with Down syndrome (DS) have intellectual disability and develop Alzheimer's disease (AD) pathology during midlife, particularly in the hippocampal component of the medial temporal lobe memory circuit. However, molecular and cellular mechanisms underlying selective vulnerability of hippocampal CA1 neurons remains a major knowledge gap during DS/AD onset. This is compounded by evidence showing spatial (e.g., deep versus superficial) localization of pyramidal neurons (PNs) has profound effects on activity and innervation within the CA1 region. Objective: We investigated whether there is a spatial profiling difference in CA1 PNs in an aged female DS/AD mouse model. We posit dysfunction may be dependent on spatial localization and innervation patterns within discrete CA1 subfields. Methods: Laser capture microdissection was performed on trisomic CA1 PNs in an established mouse model of DS/AD compared to disomic controls, isolating the entire CA1 pyramidal neuron layer and sublayer microisolations of deep and superficial PNs from the distal CA1 (CA1a) region. Results: RNA sequencing and bioinformatic inquiry revealed dysregulation of CA1 PNs based on spatial location and innervation patterns. The entire CA1 region displayed the most differentially expressed genes (DEGs) in trisomic mice reflecting innate DS vulnerability, while trisomic CA1a deep PNs exhibited fewer but more physiologically relevant DEGs, as evidenced by bioinformatic inquiry. Conclusions: CA1a deep neurons displayed numerous DEGs linked to cognitive functions whereas CA1a superficial neurons, with approximately equal numbers of DEGs, were not linked to pathways of dysregulation, suggesting the spatial location of vulnerable CA1 PNs plays an important role in circuit dissolution.


Assuntos
Região CA1 Hipocampal , Síndrome de Down , Células Piramidais , Animais , Síndrome de Down/genética , Síndrome de Down/patologia , Síndrome de Down/metabolismo , Células Piramidais/metabolismo , Feminino , Região CA1 Hipocampal/metabolismo , Camundongos , Modelos Animais de Doenças , Envelhecimento , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos Transgênicos
20.
J Affect Disord ; 362: 595-605, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39019229

RESUMO

AIM: To study the role of the P2X4 receptor (P2X4R) in regulating hippocampal synaptic impairment in lipopolysaccharide (LPS)-induced depression. METHODS: A rat model of depression was established by LPS injection. P2X4R expression was inhibited by 5-(3-bromophenyl)-1, 3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD). Depressive symptoms were identified through behavioral tests. P2X4R and cytokine mRNA levels were measured by qRT-PCR, while synaptic protein levels were measured by Western blotting. Synaptic ultrastructure was assessed by transmission electron microscopy, and the colocalization of brain-derived neurotrophic factor (BDNF) with microglia, astrocytes, and neurons was determined by double immunofluorescence staining. RESULTS: Injection of 5-BDBD alleviated LPS-induced depressive symptoms. LPS injection significantly increased the mRNA levels of P2X4R and proinflammatory cytokines in the hippocampus, especially in the CA1 region. The levels of synaptic proteins (BDNF, PSD95, and synapsin I) in the CA1 region were significantly lower than those in the other two regions of the hippocampus, and the synaptic ultrastructure in the hippocampal CA1 region was significantly altered. As expected, the Pearson's correlation R and the overlap coefficient R for the hippocampal colocalization of IBA-1 with BDNF were decreased, and 5-BDBD injection reversed these trends. Injection of 5-BDBD increased hippocampal BDNF mRNA expression. CONCLUSIONS: P2X4R may induce synaptic impairment in the hippocampal CA1 region by influencing microglial BDNF expression in the context of LPS-induced depression in rats.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão , Modelos Animais de Doenças , Lipopolissacarídeos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X4 , Sinapses , Animais , Masculino , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Região CA1 Hipocampal/metabolismo , Citocinas/metabolismo , Depressão/induzido quimicamente , Depressão/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores Purinérgicos P2X4/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapsinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA