Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Neuropharmacology ; 257: 110057, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38964596

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by alterations and imbalances in multiple brain neurochemical systems, particularly the serotonergic neurotransmission. This includes changes in serotonin (5-HT) levels, aberrations in 5-HT transporter activity, and decreased synthesis and expression of 5-HT receptors (5-HT7Rs). The exact role of the brain 5-HT system in the development of ASD remains unclear, with conflicting evidence on its involvement. Recently, we have reported research has shown a significant decrease in serotonergic neurons originating from the raphe nuclei and projecting to the CA1 region of the dorsal hippocampus in autistic-like rats. Additionally, we have shown that chronic activation of 5-HT7Rs reverses the effects of autism induction on synaptic plasticity. However, the functional significance of 5-HT7Rs at the cellular level is still not fully understood. This study presents new evidence indicating an upregulation of 5-HT7R in the CA1 subregion of the hippocampus following the induction of autism. The present account also demonstrates that activation of 5-HT7R with its agonist LP-211 can reverse electrophysiological abnormalities in hippocampal pyramidal neurons in a rat model of autism induced by prenatal exposure to VPA. Additionally, in vivo administration of LP-211 resulted in improvements in motor coordination, novel object recognition, and a reduction in stereotypic behaviors in autistic-like offspring. The findings suggest that dysregulated expression of 5-HT7Rs may play a role in the pathophysiology of ASD, and that agonists like LP-211 could potentially be explored as a pharmacological treatment for autism spectrum disorder.


Assuntos
Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal , Receptores de Serotonina , Regulação para Cima , Ácido Valproico , Animais , Receptores de Serotonina/metabolismo , Ácido Valproico/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Feminino , Regulação para Cima/efeitos dos fármacos , Masculino , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Ratos , Piperazinas/farmacologia , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/tratamento farmacológico , Ratos Wistar , Transtorno Autístico/metabolismo , Transtorno Autístico/tratamento farmacológico
2.
Math Biosci ; 372: 109192, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640998

RESUMO

Computational models of brain regions are crucial for understanding neuronal network dynamics and the emergence of cognitive functions. However, current supercomputing limitations hinder the implementation of large networks with millions of morphological and biophysical accurate neurons. Consequently, research has focused on simplified spiking neuron models, ranging from the computationally fast Leaky Integrate and Fire (LIF) linear models to more sophisticated non-linear implementations like Adaptive Exponential (AdEX) and Izhikevic models, through Generalized Leaky Integrate and Fire (GLIF) approaches. However, in almost all cases, these models are tuned (and can be validated) only under constant current injections and they may not, in general, also reproduce experimental findings under variable currents. This study introduces an Adaptive GLIF (A-GLIF) approach that addresses this limitation by incorporating a new set of update rules. The extended A-GLIF model successfully reproduces both constant and variable current inputs, and it was validated against the results obtained using a biophysical accurate model neuron. This enhancement provides researchers with a tool to optimize spiking neuron models using classic experimental traces under constant current injections, reliably predicting responses to synaptic inputs, which can be confidently used for large-scale network implementations.


Assuntos
Região CA1 Hipocampal , Interneurônios , Modelos Neurológicos , Células Piramidais , Células Piramidais/fisiologia , Interneurônios/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Animais , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Simulação por Computador
3.
Math Biosci ; 371: 109179, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521453

RESUMO

Efficient and accurate large-scale networks are a fundamental tool in modeling brain areas, to advance our understanding of neuronal dynamics. However, their implementation faces two key issues: computational efficiency and heterogeneity. Computational efficiency is achieved using simplified neurons, whereas there are no practical solutions available to solve the problem of reproducing in a large-scale network the experimentally observed heterogeneity of the intrinsic properties of neurons. This is important, because the use of identical nodes in a network can generate artifacts which can hinder an adequate representation of the properties of a real network. To this aim, we introduce a mathematical procedure to generate an arbitrary large number of copies of simplified hippocampal CA1 pyramidal neurons and interneurons models, which exhibit the full range of firing dynamics observed in these cells - including adapting, non-adapting and bursting. For this purpose, we rely on a recently published adaptive generalized leaky integrate-and-fire (A-GLIF) modeling approach, leveraging on its ability to reproduce the rich set of electrophysiological behaviors of these types of neurons under a variety of different stimulation currents. The generation procedure is based on a perturbation of model's parameters related to the initial data, firing block, and internal dynamics, and suitably validated against experimental data to ensure that the firing dynamics of any given cell copy remains within the experimental range. A classification procedure confirmed that the firing behavior of most of the pyramidal/interneuron copies was consistent with the experimental data. This approach allows to obtain heterogeneous copies with mathematically controlled firing properties. A full set of heterogeneous neurons composing the CA1 region of a rat hippocampus (approximately 1.2 million neurons), are provided in a database freely available in the live paper section of the EBRAINS platform. By adapting the underlying A-GLIF framework, it will be possible to extend the numerical approach presented here to create, in a mathematically controlled manner, an arbitrarily large number of non-identical copies of cell populations with firing properties related to other brain areas.


Assuntos
Região CA1 Hipocampal , Interneurônios , Modelos Neurológicos , Células Piramidais , Interneurônios/fisiologia , Células Piramidais/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Animais , Ratos , Potenciais de Ação/fisiologia , Rede Nervosa/fisiologia , Simulação por Computador
4.
Neurosci Bull ; 40(7): 887-904, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38321347

RESUMO

Synapse organizers are essential for the development, transmission, and plasticity of synapses. Acting as rare synapse suppressors, the MAM domain containing glycosylphosphatidylinositol anchor (MDGA) proteins contributes to synapse organization by inhibiting the formation of the synaptogenic neuroligin-neurexin complex. A previous analysis of MDGA2 mice lacking a single copy of Mdga2 revealed upregulated glutamatergic synapses and behaviors consistent with autism. However, MDGA2 is expressed in diverse cell types and is localized to both excitatory and inhibitory synapses. Differentiating the network versus cell-specific effects of MDGA2 loss-of-function requires a cell-type and brain region-selective strategy. To address this, we generated mice harboring a conditional knockout of Mdga2 restricted to CA1 pyramidal neurons. Here we report that MDGA2 suppresses the density and function of excitatory synapses selectively on pyramidal neurons in the mature hippocampus. Conditional deletion of Mdga2 in CA1 pyramidal neurons of adult mice upregulated miniature and spontaneous excitatory postsynaptic potentials, vesicular glutamate transporter 1 intensity, and neuronal excitability. These effects were limited to glutamatergic synapses as no changes were detected in miniature and spontaneous inhibitory postsynaptic potential properties or vesicular GABA transporter intensity. Functionally, evoked basal synaptic transmission and AMPAR receptor currents were enhanced at glutamatergic inputs. At a behavioral level, memory appeared to be compromised in Mdga2 cKO mice as both novel object recognition and contextual fear conditioning performance were impaired, consistent with deficits in long-term potentiation in the CA3-CA1 pathway. Social affiliation, a behavioral analog of social deficits in autism, was similarly compromised. These results demonstrate that MDGA2 confines the properties of excitatory synapses to CA1 neurons in mature hippocampal circuits, thereby optimizing this network for plasticity, cognition, and social behaviors.


Assuntos
Região CA1 Hipocampal , Plasticidade Neuronal , Células Piramidais , Comportamento Social , Sinapses , Animais , Masculino , Camundongos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Memória/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Células Piramidais/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
5.
Bull Math Biol ; 85(11): 109, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37792146

RESUMO

Full-scale morphologically and biophysically realistic model networks, aiming at modeling multiple brain areas, provide an invaluable tool to make significant scientific advances from in-silico experiments on cognitive functions to digital twin implementations. Due to the current technical limitations of supercomputer systems in terms of computational power and memory requirements, these networks must be implemented using (at least) simplified neurons. A class of models which achieve a reasonable compromise between accuracy and computational efficiency is given by generalized leaky integrate-and fire models complemented by suitable initial and update conditions. However, we found that these models cannot reproduce the complex and highly variable firing dynamics exhibited by neurons in several brain regions, such as the hippocampus. In this work, we propose an adaptive generalized leaky integrate-and-fire model for hippocampal CA1 neurons and interneurons, in which the nonlinear nature of the firing dynamics is successfully reproduced by linear ordinary differential equations equipped with nonlinear and more realistic initial and update conditions after each spike event, which strictly depends on the external stimulation current. A mathematical analysis of the equilibria stability as well as the monotonicity properties of the analytical solution for the membrane potential allowed (i) to determine general constraints on model parameters, reducing the computational cost of an optimization procedure based on spike times in response to a set of constant currents injections; (ii) to identify additional constraints to quantitatively reproduce and predict the experimental traces from 85 neurons and interneurons in response to any stimulation protocol using constant and piecewise constant current injections. Finally, this approach allows to easily implement a procedure to create infinite copies of neurons with mathematically controlled firing properties, statistically indistinguishable from experiments, to better reproduce the full range and variability of the firing scenarios observed in a real network.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Interneurônios , Células Piramidais , Hipocampo
6.
Front Mol Neurosci ; 16: 1198299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900942

RESUMO

Amyloid-ß (Aß) and hyperphosphorylated tau (P-tau) are Alzheimer's disease (AD) biomarkers that interact in a complex manner to induce most of the cognitive and brain alterations observed in this disease. Since the neuronal cytoskeleton is a common downstream pathological target of tau and Aß, which mostly lead to augmented microtubule instability, the administration of microtubule stabilizing agents (MSAs) can protect against their pathological actions. However, the effectiveness of MSAs is still uncertain due to their state-dependent negative effects; thus, evaluating their specific actions in different pathological or physiological conditions is required. We evaluated whether epothilone-D (Epo-D), a clinically used MSA, rescues from the functional and behavioral alterations produced by intracerebroventricular injection of Aß, the presence of P-tau, or their combination in rTg4510 mice. We also explored the side effects of Epo-D. To do so, we evaluated hippocampal-dependent spatial memory with the Hebb-Williams maze, hippocampal CA1 integrity and the intrinsic and synaptic properties of CA1 pyramidal neurons with the patch-clamp technique. Aß and P-tau mildly impaired memory retrieval, but produced contrasting effects on intrinsic excitability. When Aß and P-tau were combined, the alterations in excitability and spatial reversal learning (i.e., cognitive flexibility) were exacerbated. Interestingly, Epo-D prevented most of the impairments induced Aß and P-tau alone and combined. However, Epo-D also exhibited some side effects depending on the prevailing pathological or physiological condition, which should be considered in future preclinical and translational studies. Although we did not perform extensive histopathological evaluations or measured microtubule stability, our findings show that MSAs can rescue the consequences of AD-like conditions but otherwise be harmful if administered at a prodromal stage of the disease.

7.
Cell Rep ; 42(3): 112152, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36821438

RESUMO

Hyperactivity of pyramidal neurons (PNs) in CA1 is an early event in Alzheimer's disease. However, factors accounting for the hyperactivity of CA1 PNs remain to be completely investigated. In the present study, we report that the serotonergic signaling is abnormal in the hippocampus of hAPP-J20 mice. Interestingly, chemogenetic activation of serotonin (5-hydroxytryptamine; 5-HT) neurons in the median raphe nucleus (MRN) attenuates the activity of CA1 PNs in hAPP-J20 mice by regulating the intrinsic properties or inhibitory synaptic transmission of CA1 PNs through 5-HT3aR and/or 5-HT1aR. Furthermore, activating MRN 5-HT neurons improves memory in hAPP-J20 mice, and this effect is mediated by 5-HT3aR and 5-HT1aR. Direct activation of 5-HT3aR and 5-HT1aR with their selective agonists also improves the memory of hAPP-J20 mice. Together, we identify the impaired 5-HT/5-HT3aR and/or 5-HT/5-HT1aR signaling as pathways contributing to the hyperexcitability of CA1 PNs and the impaired cognition in hAPP-J20 mice.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Serotonina/metabolismo , Células Piramidais/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Camundongos Transgênicos
8.
Purinergic Signal ; 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36074226

RESUMO

Adenosine A1 receptors (A1R) are widely expressed in hippocampal pyramidal neurons and their presynaptic terminals. It is well known that endogenous adenosine regulates hippocampal function through the activation of A1R in hippocampal pyramidal neurons and has been reported that blockade of A1R induces stronger potentiation of excitatory synaptic transmission in CA2 pyramidal neurons than in CA1 pyramidal neurons. This strong potentiation of CA2 neurons is thought to be caused by the specific modulation of excitatory synaptic transmission through postsynaptic A1R. However, the direct effects of A1R on postsynaptic AMPA channels remain unknown because of the technical difficulties of patch-clamp recording from mature hippocampal CA2 neurons. We recorded synaptic currents from pyramidal neurons in CA1 and CA2 and analyzed the effects of an A1R antagonist on stimulation-evoked synaptic transmission and local application-induced postsynaptic AMPA currents. The antagonist increased the amplitude of evoked synaptic transmission in neurons in both CA1 and CA2. This facilitation was larger in pyramidal neurons in CA2 than in CA1. The antagonist also increased postsynaptic AMPA currents in neurons in CA2 but not in CA1. This facilitation of CA2 AMPA currents was occluded by the intracellular application of a G-protein blocker. Even with the blockade of postsynaptic G-protein signaling, the A1R antagonist increased evoked synaptic transmission in neurons in CA2. These results suggest that synaptic transmission in pyramidal neurons in CA2 is regulated by both presynaptic and postsynaptic A1R. Moreover, A1R regulate excitatory synaptic transmission in pyramidal neurons in CA2 through the characteristic postsynaptic modulation of AMPA currents.

9.
Brain Res ; 1792: 148013, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841982

RESUMO

Autism spectrum disorder is a neurodevelopmental disorder characterized by sensory abnormalities, social skills impairment and cognitive deficits. Although recent evidence indicated that induction of autism-like behavior in animal models causes abnormal neuronal excitability, the impact of autism on neuronal properties is still an important issue. Thus, new findings at the cellular level may shed light on the pathophysiology of autism and may help to find effective treatment strategies. Here, we investigated the behavioral, electrophysiological and histochemical impacts of prenatal exposure to valproic acid (VPA) in rats. Findings revealed that VPA exposure caused a significant increase in the hot plate response latency. The novel object recognition ability was also impaired in VPA-exposed rats. Along with these behavioral alterations, neurons from VPA-exposed animals exhibited altered excitability features in response to depolarizing current injections relative to control neurons. In the VPA-exposed group, these changes consisted of a significant increase in the amplitude, evoked firing frequency and the steady-state standard deviation of spike timing of action potentials (APs). Moreover, the half-width, the AHP amplitude and the decay time constant of APs were significantly decreased in this group. These changes in the evoked electrophysiological properties were accompanied by intrinsic hyperexcitability and lower spike-frequency adaptation and also a significant increase in the number of NADPH-diaphorase stained neurons in the hippocampal CA1 area of the VPA-exposed rats. Taken together, findings demonstrate that abnormal nociception and recognition memory is associated with alterations in the neuronal responsiveness and nitrergic system in a rat model of autism-like.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Animais , Transtorno Autístico/induzido quimicamente , Modelos Animais de Doenças , Feminino , NADPH Desidrogenase , Alta do Paciente , Gravidez , Células Piramidais , Ratos , Comportamento Social , Ácido Valproico
10.
Front Cell Neurosci ; 16: 821088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431809

RESUMO

Prolonged changes in neural activity trigger homeostatic synaptic plasticity (HSP) allowing neuronal networks to operate within functional ranges. Cell-wide or input-specific adaptations can be induced by pharmacological or genetic manipulations of activity, and by sensory deprivation. Reactive functional changes caused by deafferentation may partially share mechanisms with HSP. Acute hippocampal slices are a suitable model to investigate relatively rapid (hours) modifications occurring after denervation and explore the underlying mechanisms. As during slicing many afferents are cut, we conducted whole-cell recordings of miniature excitatory postsynaptic currents (mEPSCs) in CA1 pyramidal neurons to evaluate changes over the following 12 h. As Schaffer collaterals constitute a major glutamatergic input to these neurons, we also dissected CA3. We observed an average increment in mEPSCs amplitude and a decrease in decay time, suggesting synaptic AMPA receptor upregulation and subunit content modifications. Sorting mEPSC by rise time, a correlate of synapse location along dendrites, revealed amplitude raises at two separate domains. A specific frequency increase was observed in the same domains and was accompanied by a global, unspecific raise. Amplitude and frequency increments were lower at sites initially more active, consistent with local compensatory processes. Transient preincubation with a specific Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor either blocked or occluded amplitude and frequency upregulation in different synapse populations. Results are consistent with the concurrent development of different known CaMKII-dependent HSP processes. Our observations support that deafferentation causes rapid and diverse compensations resembling classical slow forms of adaptation to inactivity. These results may contribute to understand fast-developing homeostatic or pathological events after brain injury.

11.
Epilepsy Res ; 178: 106821, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34839145

RESUMO

Low-frequency deep brain stimulation (LFS) inhibits neuronal hyperexcitability during epilepsy. Accordingly, the use of LFS as a treatment method for patients with drug-resistant epilepsy has been proposed. However, the LFS antiepileptic mechanisms are not fully understood. Here, the role of metabotropic glutamate receptors group I (mGluR I) in LFS inhibitory action on epileptiform activity (EA) was investigated. EA was induced by increasing the K+ concentration in artificial cerebrospinal fluid (ACSF) up to 12 mM in hippocampal slices of male Wistar rats. LFS (1 Hz, 900 pulses) was delivered to the bundles of Schaffer collaterals at the beginning of EA. The excitability of CA1 pyramidal neurons was assayed by intracellular whole-cell recording. Applying LFS reduced the firing frequency during EA and substantially moved the membrane potential toward repolarization after a high-K+ ACSF washout. In addition, LFS attenuated the EA-generated neuronal hyperexcitability. A blockade of both mGluR 1 and mGluR 5 prevented the inhibitory action of LFS on EA-generated neuronal hyperexcitability. Activation of mGluR I mimicked the LFS effects and had similar inhibitory action on excitability of CA1 pyramidal neurons following EA. However, mGluR I agonist's antiepileptic action was not as strong as LFS. The observed LFS effects were significantly attenuated in the presence of a PKC inhibitor. Altogether, the LFS' inhibitory action on neuronal hyperexcitability following EA relies, in part, on the activity of mGluR I and a PKC-related signaling pathway.


Assuntos
Anticonvulsivantes , Receptores de Glutamato Metabotrópico , Animais , Anticonvulsivantes/metabolismo , Anticonvulsivantes/farmacologia , Estimulação Elétrica/métodos , Hipocampo , Humanos , Masculino , Células Piramidais/metabolismo , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/metabolismo
12.
eNeuro ; 8(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782102

RESUMO

About half the people infected with human immunodeficiency virus (HIV) have neurocognitive deficits that often include memory impairment and hippocampal deficits, which can be exacerbated by opioid abuse. To explore the effects of opioids and HIV on hippocampal CA1 pyramidal neuron structure and function, we induced HIV-1 transactivator of transcription (Tat) expression in transgenic mice for 14 d and co-administered time-release morphine or vehicle subcutaneous implants during the final 5 d (days 9-14) to establish steady-state morphine levels. Morphine was withheld from some ex vivo slices during recordings to begin to assess the initial pharmacokinetic consequences of opioid withdrawal. Tat expression reduced hippocampal CA1 pyramidal neuronal excitability at lower stimulating currents. Pyramidal cell firing rates were unaffected by continuous morphine exposure. Behaviorally, exposure to Tat or high dosages of morphine impaired spatial memory Exposure to Tat and steady-state levels of morphine appeared to have largely independent effects on pyramidal neuron structure and function, a response that is distinct from other vulnerable brain regions such as the striatum. By contrast, acutely withholding morphine (from morphine-tolerant ex vivo slices) revealed unique and selective neuroadaptive shifts in CA1 pyramidal neuronal excitability and dendritic plasticity, including some interactions with Tat. Collectively, the results show that opioid-HIV interactions in hippocampal area CA1 are more nuanced than previously assumed, and appear to vary depending on the outcome assessed and on the pharmacokinetics of morphine exposure.


Assuntos
HIV-1 , Região CA1 Hipocampal/metabolismo , HIV-1/metabolismo , Hipocampo/metabolismo , Morfina/farmacologia , Células Piramidais/metabolismo , Aprendizagem Espacial , Transativadores , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
13.
J Physiol ; 599(2): 493-505, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32017127

RESUMO

Adult neural plasticity engages mechanisms that change synapse structure and function, yet many of the underlying events bear a striking similarity to processes that occur during the initial establishment of neural circuits during development. It is a long-standing hypothesis that the molecular mechanisms critical for neural development may also regulate synaptic plasticity related to learning and memory in adults. Netrins were initially described as chemoattractant guidance cues that direct cell and axon migration during embryonic development, yet they continue to be expressed by neurons in the adult brain. Recent findings have identified roles for netrin-1 in synaptogenesis during postnatal maturation, and in synaptic plasticity in the adult mammalian brain, regulating AMPA glutamate receptor trafficking at excitatory synapses. These findings provide an example of a conserved developmental guidance cue that is expressed by neurons in the adult brain and functions as a key regulator of activity-dependent synaptic plasticity. Notably, in humans, genetic polymorphisms in netrin-1 and its receptors have been linked to neurodevelopmental and neurodegenerative disorders. The molecular mechanisms associated with the synaptic function of netrin-1 therefore present new therapeutic targets for neuropathologies associated with memory dysfunction. Here, we summarize recent findings that link netrin-1 signalling to synaptic plasticity, and discuss the implications of these discoveries for the neurobiological basis of memory consolidation.


Assuntos
Hipocampo , Plasticidade Neuronal , Animais , Encéfalo/metabolismo , Hipocampo/metabolismo , Humanos , Netrina-1/metabolismo , Sinapses/metabolismo
14.
Hippocampus ; 31(2): 156-169, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33107111

RESUMO

Traumatic brain injury (TBI) is associated with epileptiform activity in the hippocampus; however, the underlying mechanisms have not been fully determined. The goal was to understand what changes take place in intrinsic neuronal physiology in the hippocampus after blunt force trauma to the cortex. In this context, hyperpolarization-activated cation current (Ih ) currents may have a critical role in modulating the neuronal intrinsic membrane excitability; therefore, its contribution to the TBI-induced hyperexcitability was assessed. In a model of TBI caused by controlled cortical impact (CCI), the intrinsic electrophysiological properties of pyramidal neurons were examined 1 week after TBI induction in rats. Whole-cell patch-clamp recordings were performed under current- and voltage-clamp conditions following ionotropic receptors blockade. Induction of TBI caused changes in the intrinsic excitability of pyramidal neurons, as shown by a significant increase and decrease in firing frequency and in the rheobase current, respectively (p < .05). The evoked firing rate and the action potential time to peak were also significantly increased and decreased, respectively (p < .05). In the TBI group, the amplitude of instantaneous and steady-state Ih currents was both significantly smaller than those in the control group (p < .05). The Ih current density was also significantly decreased (p < .001). Findings indicated that TBI led to an increase in the intrinsic excitability in CA1 pyramidal neurons and changes in Ih current could be, in part, one of the underlying mechanisms involved in this hyperexcitability.


Assuntos
Lesões Encefálicas Traumáticas , Hipocampo , Potenciais de Ação/fisiologia , Animais , Cátions , Neurônios/fisiologia , Células Piramidais/fisiologia , Ratos
15.
Neurobiol Dis ; 148: 105209, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271326

RESUMO

Dravet syndrome (Dravet) is a rare, severe childhood-onset epilepsy, caused by heterozygous de novo mutations in the SCN1A gene, encoding for the alpha subunit of the voltage-gated sodium channel, NaV1.1. The neuronal basis of Dravet is debated, with evidence favoring reduced function of inhibitory neurons, that might be transient, or enhanced activity of excitatory cells. Here, we utilized Dravet mice to trace developmental changes in the hippocampal CA1 circuit, examining the properties of CA1 horizontal stratum-oriens (SO) interneurons and pyramidal neurons, through the pre-epileptic, severe and stabilization stages of Dravet. Our data indicate that reduced function of SO interneurons persists from the pre-epileptic through the stabilization stages, with the greatest functional impairment observed during the severe stage. In contrast, opposing changes were detected in CA1 excitatory neurons, with a transient increase in their excitability during the pre-epileptic stage, followed by reduced excitability at the severe stage. Interestingly, alterations in the function of both inhibitory and excitatory neurons were more pronounced when the firing was evoked by synaptic stimulation, implying that loss of function of NaV1.1 may also affect somatodendritic functions. These results suggest a complex pathophysiological mechanism and indicate that the developmental trajectory of this disease is governed by reciprocal functional changes in both excitatory and inhibitory neurons.


Assuntos
Potenciais de Ação/fisiologia , Região CA1 Hipocampal/metabolismo , Epilepsias Mioclônicas/metabolismo , Interneurônios/metabolismo , Células Piramidais/metabolismo , Animais , Região CA1 Hipocampal/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/fisiopatologia , Interneurônios/fisiologia , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Neurônios , Células Piramidais/fisiologia , Convulsões/genética , Convulsões/metabolismo , Convulsões/fisiopatologia
16.
Cell Rep ; 32(12): 108169, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32966798

RESUMO

Neuronal hyperactivity is an early primary dysfunction in Alzheimer's disease (AD) in humans and animal models, but effective neuronal hyperactivity-directed anti-AD therapeutic agents are lacking. Here we define a previously unknown mode of ryanodine receptor 2 (RyR2) control of neuronal hyperactivity and AD progression. We show that a single RyR2 point mutation, E4872Q, which reduces RyR2 open time, prevents hyperexcitability, hyperactivity, memory impairment, neuronal cell death, and dendritic spine loss in a severe early-onset AD mouse model (5xFAD). The RyR2-E4872Q mutation upregulates hippocampal CA1-pyramidal cell A-type K+ current, a well-known neuronal excitability control that is downregulated in AD. Pharmacologically limiting RyR2 open time with the R-carvedilol enantiomer (but not racemic carvedilol) prevents and rescues neuronal hyperactivity, memory impairment, and neuron loss even in late stages of AD. These AD-related deficits are prevented even with continued ß-amyloid accumulation. Thus, limiting RyR2 open time may be a hyperactivity-directed, non-ß-amyloid-targeted anti-AD strategy.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Transtornos da Memória/complicações , Transtornos da Memória/patologia , Neurônios/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Região CA1 Hipocampal/patologia , Carvedilol/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Ativação do Canal Iônico , Potenciação de Longa Duração , Transtornos da Memória/fisiopatologia , Camundongos Transgênicos , Mutação/genética , Neuroproteção/efeitos dos fármacos , Canais de Potássio/metabolismo , Células Piramidais/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Fatores de Tempo , Regulação para Cima
17.
Neuroscience ; 442: 151-167, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32634531

RESUMO

CA1 pyramidal neurons undergo intense morphological and electrophysiological changes from the second to third postnatal weeks in rats throughout a critical period associated with the emergence of exploratory behavior. Using whole cell current-clamp recordings in vitro and neurochemical methods, we studied the development of the somatic action potential (AP) waveform and some of the underlying channels in this critical period. At the third postnatal week, APs showed a more hyperpolarized threshold, higher duration and amplitude. Subthreshold depolarization broadened APs and depolarized their peak overshoots more pronouncedly in immature neurons (2 weeks old). These features were mimicked by pharmacologically blocking the fast-inactivating A-type potassium current (IA) and matched well with the higher concentrations of Kv4.2 and Kv4.3 and the lower concentrations of BK and Kv1.2 channels detected by Western blotting. Repetitive stimulation with high frequency trains (50 Hz) reproduced AP broadening associated to inactivation of the A-type current in immature cells. Moreover, repetitive firing showed changes in AP amplitude consistent with the inactivation of both sodium and potassium subthreshold currents, which resulted in higher AP amplitudes in the more immature neurons. We propose that maturation of AP waveform and excitability in this critical developmental period could be related to the onset of exploratory behaviors.


Assuntos
Hipocampo , Células Piramidais , Potenciais de Ação , Animais , Técnicas de Patch-Clamp , Ratos
18.
Mol Brain ; 13(1): 56, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264905

RESUMO

The receptor deleted in colorectal cancer (DCC) and its ligand netrin-1 are essential for axon guidance during development and are expressed by neurons in the mature brain. Netrin-1 recruits GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and is critical for long-term potentiation (LTP) at CA3-CA1 hippocampal Schaffer collateral synapses, while conditional DCC deletion from glutamatergic neurons impairs hippocampal-dependent spatial memory and severely disrupts LTP induction. DCC co-fractionates with the detergent-resistant component of postsynaptic density, yet is enriched in axonal growth cones that differentiate into presynaptic terminals during development. Specific presynaptic and postsynaptic contributions of DCC to the function of mature neural circuits have yet to be identified. Employing hippocampal subregion-specific conditional deletion of DCC, we show that DCC loss from CA1 hippocampal pyramidal neurons resulted in deficits in spatial memory, increased resting membrane potential, abnormal dendritic spine morphology, weaker spontaneous excitatory postsynaptic activity, and reduced levels of postsynaptic adaptor and signaling proteins; however, the capacity to induce LTP remained intact. In contrast, deletion of DCC from CA3 neurons did not induce detectable changes in the intrinsic electrophysiological properties of CA1 pyramidal neurons, but impaired performance on the novel object place recognition task as well as compromised excitatory synaptic transmission and LTP at Schaffer collateral synapses. Together, these findings reveal specific pre- and post-synaptic contributions of DCC to hippocampal synaptic plasticity underlying spatial memory.


Assuntos
Envelhecimento/metabolismo , Receptor DCC/metabolismo , Hipocampo/metabolismo , Consolidação da Memória , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Espinhas Dendríticas/metabolismo , Deleção de Genes , Ácido Glutâmico , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Células Piramidais/metabolismo , Memória Espacial
19.
J Neurochem ; 154(2): 144-157, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31758799

RESUMO

Local anesthetics can cause severe toxicity when absorbed systemically. Rapid intravenous administration of lipid emulsion (LE) is the standard of care for severe local anesthetic systemic toxicity which can cause cardiovascular and central nervous system (CNS) injury. The biological mechanism by which LE alleviates CNS toxicity remains unknown and understudied. Previous research has suggested that local anesthetics cause an imbalance of excitatory and inhibitory transmission in the brain. Therefore, this study aimed to observe the effect of LE on glutamate- and GABA-induced currents in CA1 pyramidal neurons after bupivacaine-induced CNS toxicity. We further characterized post-synaptic modifications in these cells to try to elucidate the mechanism by which LE mediates bupivacaine-induced CNS toxicity. Sprague-Dawley rats received intravenous bupivacaine (1 mg kg-1  min-1 ) in either normal saline or LE (or LE without bupivacaine) for 5 min. An acute brain slice preparation and a combination of whole-cell patch clamp techniques and whole-cell recordings were used to characterize action potential properties, miniature excitatory, and inhibitory post-synaptic currents, and post-synaptic modifications of excitatory and inhibitory transmission in CA1 hippocampal pyramidal neurons. The expression level of GABAA receptors were assessed with western blotting, whereas H&E and TUNEL staining were used to assess cytoarchitecture and apoptosis levels respectively. Bupivacaine treatment significantly increased the number of observed action potentials, whereas significantly decreasing rheobase, the first interspike interval (ISI), and hyperpolarization-activated cation currents (Ih) in CA1 pyramidal neurons. LE treatment significantly reduced the frequency of miniature inhibitory post-synaptic currents and enhanced GABA-induced paired pulse ratio with 50 ms interval stimulation in bupivacaine-treated rats. Regulation of GABAA levels is a promising mechanism by which LE may ameliorate CNS toxicity after systemic absorption of bupivacaine.


Assuntos
Anestésicos Locais/toxicidade , Bupivacaína/toxicidade , Emulsões Gordurosas Intravenosas/farmacologia , Células Piramidais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Masculino , Síndromes Neurotóxicas , Células Piramidais/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
20.
Eur J Neurosci ; 51(1): 34-46, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30614107

RESUMO

Behaviors, such as sleeping, foraging, and learning, are controlled by different regions of the rat brain, yet they occur rhythmically over the course of day and night. They are aligned adaptively with the day-night cycle by an endogenous circadian clock in the suprachiasmatic nucleus (SCN), but local mechanisms of rhythmic control are not established. The SCN expresses a ~24-hr oscillation in reduction-oxidation that modulates its own neuronal excitability. Could circadian redox oscillations control neuronal excitability elsewhere in the brain? We focused on the CA1 region of the rat hippocampus, which is known for integrating information as memories and where clock gene expression undergoes a circadian oscillation that is in anti-phase to the SCN. Evaluating long-term imaging of endogenous redox couples and biochemical determination of glutathiolation levels, we observed oscillations with a ~24 hr period that is 180° out-of-phase to the SCN. Excitability of CA1 pyramidal neurons, primary hippocampal projection neurons, also exhibits a rhythm in resting membrane potential that is circadian time-dependent and opposite from that of the SCN. The reducing reagent glutathione rapidly and reversibly depolarized the resting membrane potential of CA1 neurons; the magnitude is time-of-day-dependent and, again, opposite from the SCN. These findings extend circadian redox regulation of neuronal excitability from the SCN to the hippocampus. Insights into this system contribute to understanding hippocampal circadian processes, such as learning and memory, seizure susceptibility, and memory loss with aging.


Assuntos
Ritmo Circadiano , Núcleo Supraquiasmático , Animais , Hipocampo , Neurônios , Oxirredução , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA