RESUMO
BACKGROUND: Hand, foot and mouth disease (HFMD) is a common infectious disease caused by viral infection by a variety of enteroviruses, with coxsackievirus A 10 (CA10) having become more prevalent in recent years. METHODS: In this study, models of CA10 infection were established in 7-day-old Institute of Cancer Research (ICR) mice by intraperitoneal injection to analyze the pathogenicity of the virus. RNA sequencing analysis was used to screen the differentially expressed genes (DEGs) after CA10 infection. Coxsackievirus A 16 (CA16) and enterovirus 71 (EV71) infections were also compared with CA10. RESULTS: After CA10 virus infection, the mice showed paralysis of the hind limbs at 3 days post infection and weight loss at 5 days post infection. We observed viral replication in various tissues and severe inflammatory cell infiltration in skeletal muscle. The RNA-sequencing analysis showed that the DEGs in blood, muscle, thymus and spleen showed heterogeneity after CA10 infection and the most up-regulated DEGs in muscle were enriched in immune-related pathways. Compared with CA16 and EV71 infection, CA10 may have an inhibitory effect on T helper (Th) cell differentiation and cell growth. Additionally, the common DEGs in the three viruses were most enriched in the immune system response, including the Toll-like receptor pathway and the nucleotide-binding and oligomerization domain (NOD)-like pathway. CONCLUSIONS: Our findings revealed a group of genes that coordinate in response to CA10 infection, which increases our understanding of the pathological mechanism of HFMD.
RESUMO
Transformation of phosphorus (P) species during pyrolytic production of biochar from P-rich biowastes with a subsequent soil amendment is important to P reclamation. Aiming at increasing the content of plant-available P and restraining the formation of easily mobile P in pyrolysis product, this study used exogenous calcium ions (20 wt% CaCl2) addition prior to pyrolysis to regulate the pyrolytic transformation of P chemical fractions from sewage sludge and bone dreg. Results showed that active Ca catalyzed the decomposition of organic P to transform into inorganic orthophosphate. Based on Hedley's sequential extraction method, this study found that addition of Ca ions remarkably reduced the content of soluble P, exchange P, Fe/Al bound P, and occluded P in biochar, while increased Ca bound P from 78 to 85% to 85-96%. Liquid 31P NMR indicated that exogenous Ca induced the crack of the P-O-P bond in pyrophosphate to become orthophosphates. It also explained why new orthophosphates including chlorapatite (Ca5(PO4)3Cl) and calcium hydroxyapatite (Ca10(PO4)6(OH)2) appeared in the Ca-composite biochar compared to pristine biochar. Combined with rapid P-release test in paddy soil (pH 6.27) and 30-days rice seedling growth test under flooded condition (10 wt% biochar addition ratio), it was confirmed that compared to pristine biochar, Ca-composite biochar released more P in paddy soil, but also promoted more P to be taken in by rice root and stalk. These results suggested that pretreating biowaste with Ca ion was a friendly approach to enhance P reclamation during biochar formation, making it a promising P fertilizer.
Assuntos
Oryza , Poluentes do Solo , Fósforo , Cálcio , Fertilizantes , Solo/química , Poluentes do Solo/análise , Fosfatos , Carvão Vegetal/química , EsgotosRESUMO
Synapses are the minimal information processing units of the brain and come in many flavors across distinct circuits. The shape and properties of a synapse depend on its molecular organisation, which is thought to largely depend on interactions between cell adhesion molecules across the synaptic cleft. An established example is that of presynaptic neurexins and their interactions with structurally diverse postsynaptic ligands: the diversity of neurexin isoforms that arise from alternative promoters and alternative splicing specify synaptic properties by dictating ligand preference. The recent finding that a majority of neurexin isoforms exist as proteoglycans with a single heparan sulfate (HS) polysaccharide adds to this complexity. Sequence motifs within the HS polysaccharide may differ between neuronal cell types to contribute specificity to its interactions, thereby expanding the coding capacity of neurexin diversity. However, an expanding number of HS-binding proteins have been found capable to recruit neurexins via the HS chain, challenging the concept of a code provided by neurexin splice isoforms. Here we discuss the possible roles of the neurexin HS in light of what is known from other HS-protein interactions, and propose a model for how the neurexin HS polysaccharide may contribute to synaptic assembly. We also discuss how the neurexin HS may be regulated by co-secreted carbonic anhydrase-related and FAM19A proteins, and highlight some key issues that should be resolved to advance the field.
Assuntos
Proteínas do Tecido Nervoso , Moléculas de Adesão de Célula Nervosa , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/química , Moléculas de Adesão de Célula Nervosa/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Heparitina Sulfato/metabolismoRESUMO
Hepatocellular carcinoma (HCC) is the main threat for the patients infected with hepatitis B virus (HBV), but the oncogenic mechanism of HBV-related HCC is still controversial. Previously, we have found that several HBV surface gene (HBS) non-sense mutations are oncogenic. Among these mutations, sW182* was found to have the most potent oncogenicity. In this study, we found that Carbonic Anhydrase X (CA10) level was specifically increased in sW182* mutant-expressing cells. CA10 overexpression was also associated with HBS nonsense mutation in HBV-related HCC tumor tissues. Transformation and tumorigenesis assays revealed that CA10 had significant oncogenic activity. In addition, CA10 overexpression resulted in dysregulation of apoptosis-related proteins, including Mcl-1, Bcl-2, Bcl-xL and Bad. While searching for the regulatory mechanism of CA10, miR-27b was found to downregulate CA10 expression by regulating its mRNA degradation and its expression was decreased in sW182* mutant cells. Moreover, CA10 overexpression was associated with down-regulation of miR-27b in human HBV-related HCC tumor tissues with sW182* mutation. Therefore, induction of the expression of CA10 through repression of miR-27b by sW182* might be one mechanism involved in HBS mutation-related hepatocarcinogenesis.
RESUMO
BACKROUND: Identification of driver mutations and rapid detection of genetic changes in lung cancer are critical in the management of the disease. Genetic structures of tumor tissues tend to change constantly and the possibility of emergence of new pathogenic variants that will create resistance to treatment. Liquid biopsy analysis has been one of the most effective approaches used to monitor and identify individual genetic changes. METHODS: In this study, TP53, EGFR, MET, ALK, PIK3CA, MAP2K, ERBB2 and ROS genes in cf DNA samples of 324 patients with lung adenocarcinoma were screened for genetic variations by NGS method. Analysis of the data showed that there were a total of 755 variations in 324 patients. RESULTS: Pathogenic and possibly pathogenic variations were identified in 178 patients (54.9%) on TP53, 118 (36.4%) on EGFR, 55 (17.0%) on MET, 46 (14.2%) on ALK, 39 (12.0%) on MAP2K, 6 (1.9%) on ERBB2 and in 2 (0,6%) patients ROS genes. The detailed variant data of the genes included in the study were compared with the patients' stage status, metastasis status, smoking, age distribution and life span data, and the presence of possible significant relationships and candidate biomarkers for the molecular pathogenesis of the disease were investigated. CONCLUSION: As a result of data analysis, genetic changes associated with metastasis and adenocarcinoma formation were identified. It has been shown that variations identified in TP53, PIK3CA, MAP2K1 and EGFR genes can play critical roles in the pathogenesis and development of the disease.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação/genética , Espécies Reativas de OxigênioRESUMO
Neurexins are presynaptic adhesion molecules that shape the molecular composition of synapses. Diversification of neurexins in numerous isoforms is believed to confer synapse-specific properties by engaging with distinct ligands. For example, a subset of neurexin molecules carry a heparan sulfate (HS) glycosaminoglycan that controls ligand binding, but how this post-translational modification is controlled is not known. Here, we observe that CA10, a ligand to neurexin in the secretory pathway, regulates neurexin-HS formation. CA10 is exclusively found on non-HS neurexin and CA10 expressed in neurons is sufficient to suppress HS addition and attenuate ligand binding and synapse formation induced by ligands known to recruit HS. This effect is mediated by a direct interaction in the secretory pathway that blocks the primary step of HS biosynthesis: xylosylation of the serine residue. NMR reveals that CA10 engages residues on either side of the serine that can be HS-modified, suggesting that CA10 sterically blocks xylosyltransferase access in Golgi. These results suggest a mechanism for the regulation of HS on neurexins and exemplify a new mechanism to regulate site-specific glycosylations.
Assuntos
Proteínas do Tecido Nervoso , Moléculas de Adesão de Célula Nervosa , Proteínas de Ligação ao Cálcio/metabolismo , Heparitina Sulfato/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Via Secretória , Sinapses/metabolismoRESUMO
BACKGROUND: Studies have shown that abnormal changes of specific-gene DNA methylation in leukocytes may be associated with an elevated risk of cancer. However, associations between the methylation of the zinc-related genes, WT1 and CA10, and breast cancer risk remain unknown. METHODS: The methylation of WT1 and CA10 was analyzed by methylation-sensitive high-resolution-melting (MS-HRM) in a case-control study with female subjects (N = 959). Logistic regression was used to analyze the associations, and propensity score (PS) method was used to adjust confounders. RESULTS: The results showed that WT1 hypermethylation was associated with an increased risk of breast cancer, with an odds ratio (OR) of 3.07 [95% confidence interval (CI): 1.67-5.64, P < 0.01]. Subgroup analyses showed that WT1 hypermethylation was specifically associated with an elevated risk of luminal A subtype (OR = 2.62, 95% CI: 1.11-6.20, P = 0.03) and luminal B subtype (OR = 3.23, 95% CI: 1.34-7.80, P = 0.01). CA10 hypermethylation was associated with an increased risk of luminal B subtype (OR = 1.80, 95% CI: 1.09-2.98, P = 0.02). CONCLUSION: The results of the present study suggest that the hypermethylation of WT1 methylation in leukocytes is significantly associated with an increased risk of breast cancer. The hypermethylation of WT1 is associated with an increased risk of luminal subtypes of breast cancer, and the hypermethylation of CA10 is associated with an increased risk of luminal B subtype of breast cancer.
Assuntos
Neoplasias da Mama/etiologia , Carcinoma Intraductal não Infiltrante/etiologia , Metilação de DNA , Genes do Tumor de Wilms , Leucócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Adulto , Idoso , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-IdadeRESUMO
Ca10(PO4)6(OH)2 doped with GdPO4 (HA-GP) was synthesized by a sol-gel technique, and its phase composition depended on the GdPO4 content. At low doping levels, the phase structure was composed of hydroxyapatite and some Ca3(PO4)2, and the content of the latter decreased with the doping content; when the doping content reached to 15 mol%, however, the Ca3(PO4)2 amount revealed a significant increase, and GdPO4 turned to be precipitated. With the addition of GdPO4, the microstructure of HA-GP pellets became dense, and the grain size decreased. GdPO4 doping enhanced the hardness of HA-GP due to a grain size effect. With increasing the doping content, the toughness increased initially followed by a decrease, and 7.5 mol% doping (HA-GP7.5) led to the highest toughness. Magnetization tests revealed that GdPO4 had paramagnetic behavior, which made it suitable for magnetic resonance imaging (MRI) contrast agent. The MRI contrast behavior of HA-GP7.5 was investigated. With the increase of the concentration, the T1 weighted MR image revealed enhanced brightness, while the brightness of T2 weighted MR images reduced gradually. Considering the phase structure, mechanical properties, and MRI contrast behavior, HA-GP7.5 might have a potential to be used in clinical medicine.
Assuntos
Meios de Contraste/química , Odontologia , Durapatita/química , Gadolínio/química , Imageamento por Ressonância Magnética , Fosfatos de Cálcio/química , Análise Espectral Raman , Propriedades de Superfície , Difração de Raios XRESUMO
A Gram-stain-negative bacterial strain, designated CA10T, was isolated from bovine raw milk sampled in Anseong, Republic of Korea. Cells were yellow-pigmented, aerobic, non-motile bacilli and grew optimally at 30 °C and pH 7.0 on tryptic soy agar without supplementation of NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain CA10T belonged to the genus Chryseobacterium, family Flavobacteriaceae, and was most closely related to Chryseobacterium indoltheticum ATCC 27950T (98.75â% similarity). The average nucleotide identity and digital DNA-DNA hybridization values of strain CA10T were 94.4 and 56.9â%, respectively, relative to Chryseobacterium scophthalmum DSM 16779T, being lower than the cut-off values of 95-96 and 70â%, respectively. The predominant respiratory quinone was menaquinone-6; major polar lipid, phosphatidylethanolamine; major fatty acids, iso-C15â:â0, summed feature 9 (iso-C17â:â1ω9c and/or C16â:â0 10-methyl), summed feature 3 (iso-C15â:â0 2-OH and/or C16â:â1ω7c) and iso-C17â:â0 3-OH. The results of physiological, chemotaxonomic and biochemical analyses suggested that strain CA10T is a novel species of genus Chryseobacterium, for which the name Chryseobacterium mulctrae sp. nov. is proposed. The type strain is CA10T (=KACC 21234T=JCM 33443T).
Assuntos
Chryseobacterium/classificação , Leite/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Bovinos , Chryseobacterium/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Feminino , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
Recent studies have revealed that neurons can promote glioma growth through activity-dependent secretion of neurotrophins, especially neuroligin-3. It has therefore been suggested that blocking neuron-derived neurotrophins may serve as a therapeutic intervention for gliomas. Carbonic anhydrase-related proteins 11 and 10 (CA11 and CA10) are secreted synaptic proteins which function as neurexin ligands, and the gene-encoding CA11 is part of a gene signature associated with radiotherapy and prognosis in gliomas. We therefore hypothesized that CA11/CA10 might participate in the neuronal activity-dependent regulation of glioma growth. In this study, we report that CA11 secreted by depolarized cultured neurons within conditioned medium (CM) inhibited the growth of glioma cell lines. CM from depolarized neurons inhibited CA11 expression in glioma cell lines via the Akt signaling pathway. Consistently, CA11 expression was also reduced in clinical glioma samples and negatively associated with high histological grade. Low CA11 expression of gliomas was associated with short survival in four independent datasets [repository of brain neoplasia data (REMBRANDT), The Cancer Genome Atlas (TCGA) lower grade glioma (LGG), GSE4271, and GSE42669]. CA11 knockdown promoted cell growth, clone formation, and migration; inhibited apoptosis; and increased tumor size in xenografted nude mice. Similarly, CA10 and CA10 secreted by depolarized cultured neurons also inhibited the growth of glioma cell lines. Low CA10 expression was associated with short survival in REMBRANDT, TCGA LGG, and GEO GSE4271 datasets. Our results suggest that CA11 and CA10 negatively regulate neuronal activity-dependent glioma growth and inhibit glioma aggression. Thus, CA11/CA10 may represent a potential therapeutic target for the treatment of gliomas.
Assuntos
Neoplasias Encefálicas/enzimologia , Glioma/enzimologia , Proteínas de Neoplasias/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Neurônios/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Humanos , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Neurônios/patologiaRESUMO
The demands for applicable tissue-engineered scaffolds that can be used to repair load-bearing segmental bone defects (SBDs) is vital and in increasing demand. In this study, seven different combinations of 3 dimensional (3D) novel nanocomposite porous structured scaffolds were fabricated to rebuild SBDs using an extraordinary blend of cockle shells (CaCo3) nanoparticles (CCN), gelatin, dextran and dextrin to structure an ideal bone scaffold with adequate degradation rate using the Freeze Drying Method (FDM) and labeled as 5211, 5400, 6211, 6300, 7101, 7200 and 8100. The micron sized cockle shells powder obtained (75 µm) was made into nanoparticles using mechano-chemical, top-down method of nanoparticles synthesis with the presence of the surfactant BS-12 (dodecyl dimethyl bataine). The phase purity and crystallographic structures, the chemical functionality and the thermal characterization of the scaffolds' powder were recognized using X-Ray Diffractometer (XRD), Fourier transform infrared (FTIR) spectrophotometer and Differential Scanning Calorimetry (DSC) respectively. Characterizations of the scaffolds were assessed by Scanning Electron Microscopy (SEM), Degradation Manner, Water Absorption Test, Swelling Test, Mechanical Test and Porosity Test. Top-down method produced cockle shell nanoparticles having averagely range 37.8±3-55.2±9 nm in size, which were determined using Transmission Electron Microscope (TEM). A mainly aragonite form of calcium carbonate was identified in both XRD and FTIR for all scaffolds, while the melting (Tm) and transition (Tg) temperatures were identified using DSC with the range of Tm 62.4-75.5 °C and of Tg 230.6-232.5 °C. The newly prepared scaffolds were with the following characteristics: (i) good biocompatibility and biodegradability, (ii) appropriate surface chemistry and (iii) highly porous, with interconnected pore network. Engineering analyses showed that scaffold 5211 possessed 3D interconnected homogenous porous structure with a porosity of about 49%, pore sizes ranging from 8.97 to 337 µm, mechanical strength 20.3 MPa, Young's Modulus 271±63 MPa and enzymatic degradation rate 22.7 within 14 days.
RESUMO
Hand, foot and mouth disease (HFMD) is a serious public health problem that has emerged over the past several decades. Pathogen detection by the Chinese national HFMD surveillance system has focused mainly on enterovirus 71 (EV71) and coxsackievirus A16 (CA16). Therefore, epidemiological information regarding the other causative enteroviruses is limited. To identify the pandemic enterovirus in Suzhou, Jiangsu province, China, clinical samples from patients with HFMD were collected from 2012 to 2013 and analyzed. The results revealed that CA16 was the most dominant HFMD pathogen in 2012, whereas CA6 and CA10 were the dominant pathogens in 2013. Phylogenetic analysis revealed that the C4a sub-genogroup of EV71 and the B1a and B1b sub-genogroups of CA16 continued to evolve and circulate in Suzhou. The CA6 strains were assigned to six genotypes (A-F) and the CA10 strains were assigned to seven genotypes (A-G), with clear geographical and temporal distributions. All of the CA6 strains in Suzhou belonged to genogroup F, and there were several lineages circulating in Suzhou. All of the CA10 strains in Suzhou belonged to genogroup G, and they had the same genetic origin. Co-infections of EV71/CA16 and CA6/CA10 were found in the samples, and bootscan analysis of 5'-untranslated regions (UTRs) revealed that some CA16 strains in Suzhou had genetic recombination with EV71. This property might allow CA16 to alter its evolvability and circulating ability. This study underscores the need for surveillance of CA6 and CA10 in the Yangtze River Delta and East China.