RESUMO
Diffuse intrinsic pontine glioma (DIPG) remains a significant therapeutic challenge due to the lack of effective and safe treatment options. This study explores the potential of combining histone deacetylase (HDAC) and carbonic anhydrase 9 (CA9) inhibitors in treating DIPG. Analysis of RNA sequencing data and tumor tissue from patient samples for the expression of the carbonic anhydrase family and hypoxia signaling pathway activity revealed clinical relevance for targeting CA9 in DIPG. A synergy screen was conducted using CA9 inhibitor SLC-0111 and HDAC inhibitors panobinostat, vorinostat, entinostat, and pyroxamide. The combination of SLC-0111 and pyroxamide demonstrated the highest synergy and was selected for further analysis. Combining SLC-0111 and pyroxamide effectively inhibited DIPG cell proliferation, reduced cell migration and invasion potential, and enhanced histone acetylation, leading to decreased cell population in S Phase. Additionally, the combination therapy induced a greater reduction in intracellular pH than either agent alone. Data from this study suggest that the combination of SLC-0111 and pyroxamide holds promise for treating experimental DIPG, and further investigation of this combination therapy in preclinical models is warranted to evaluate its potential as a viable treatment for DIPG.
Assuntos
Neoplasias do Tronco Encefálico , Proliferação de Células , Glioma Pontino Intrínseco Difuso , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/genética , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/patologia , Proliferação de Células/efeitos dos fármacos , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/genética , Sinergismo Farmacológico , Animais , Sulfonamidas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Compostos de FenilureiaRESUMO
BACKGROUND: Lung cancer is the leading cause of cancer-related mortality. Cancer poses a significant challenge to human health and remains a persistent and pressing issue. Schisandrin C is one of the active ingredients of Schisandra chinensis and has various biological and pharmacological activities. This study aimed to investigate the effects of Schisandrin C on lung cancer and the underlying mechanism involved. METHODS: A network pharmacology strategy was used to screen the target genes and pathways involved in the relationship between Schisandrin and lung cancer. Next, a single-cell RNA sequencing (scRNA-seq) assay revealed the expression of genes specifically expressed in lung cancer epithelial cells. A549 cells were subsequently treated with Schisandrin C for 24 h or 48 h, cell viability was assessed via MTT and EdU staining experiments, and target gene expression was measured via RT-qPCR and immunofluorescence assays. Moreover, lung cancer patient tissues were observed via multiplex immunofluroscence staining. RESULTS: AKT1, CA9, BRAF, EGFR, ERBB2 and PIK3CA were overlapping target genes for network pharmacology and the scRNA-seq strategy. In vitro, the RT-qPCR results indicated that Schisandrin C inhibited the mRNA expression of the AKT1, CA9, FASN, MMP1, EGFR and BRAF genes. In clinical samples from patients with lung cancer, the expression levels of CA9 and AKT1 were found to be significantly higher in lung tumor tissues than in the adjacent normal (TAN) tissues. Moreover, the administration of an AKT kinase inhibitor reversed the inhibitory effect of Schisandrin C on A549 cells proliferation, whereas the administration of a CA9 inhibitor failed to have a similar effect. CONCLUSIONS: Schisandrin C effectively suppressed the proliferation and viability of A549 cells. Its mechanism was related to the inhibition of the AKT1 signaling pathway.
Assuntos
Proliferação de Células , Ciclo-Octanos , Lignanas , Neoplasias Pulmonares , Compostos Policíclicos , Humanos , Células A549 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Octanos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lignanas/farmacologia , Lignanas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Compostos Policíclicos/farmacologia , Compostos Policíclicos/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
The passion fruit, Passiflora edulis, recognized for its rich nutritional properties, has long been used for its varied ethnobotanical applications. This study investigates the therapeutic potential of P. edulis var. Tainung No. 1 rind extracts by examining their polyphenolic content (TPC), total flavonoid content (TFC), anti-skin aging activities against key enzymes such as elastase, tyrosinase, and hyaluronidase, and their ability to inhibit bacterial growth, single-stranded DNA-binding protein (SSB), and their cytotoxic effects on oral carcinoma cells. The acetone extract from the rind exhibited the highest levels of TPC, TFC, anti-SSB, and antibacterial activities. The antibacterial effectiveness of the acetone-extracted rind was ranked as follows: Escherichia coli > Pseudomonas aeruginosa > Staphylococcus aureus. A titration curve for SSB inhibition showed an IC50 value of 313.2 µg/mL, indicating the potency of the acetone extract in inhibiting SSB. It also significantly reduced the activity of enzymes associated with skin aging, particularly tyrosinase, with a 54.5% inhibition at a concentration of 100 µg/mL. Gas chromatography-mass spectrometry (GC-MS) analysis tentatively identified several major bioactive compounds in the acetone extract, including stigmast-5-en-3-ol, vitamin E, palmitic acid, stigmasterol, linoleic acid, campesterol, and octadecanoic acid. Molecular docking studies suggested some of these compounds as potential inhibitors of tyrosinase and SSB. Furthermore, the extract demonstrated anticancer potential against Ca9-22 oral carcinoma cells by inhibiting cell survival, migration, and proliferation and inducing apoptosis. These results underscore the potential of P. edulis (Tainung No. 1) rind as a promising candidate for anti-skin aging, antibacterial, and anticancer applications, meriting further therapeutic investigation.
RESUMO
The tamarillo, or Solanum betaceum, recognized for its comprehensive nutritional profile, has long been valued for its diverse ethnobotanical uses. This study delves into the potential therapeutic applications of S. betaceum by analyzing its polyphenolic content (TPC), total flavonoid content (TFC), anti-skin aging activities against key enzymes like elastase, tyrosinase, and hyaluronidase, and its cytotoxic effects on oral carcinoma cells. Extracts from the seeds, pulp, and peel of red and yellow fruits were prepared using methanol, ethanol, and acetone. The highest TPC was found in the methanol extract from red fruit seeds (9.89 mg GAE/g), and the highest TFC was found in the methanol extract of yellow fruit peel (3.02 mg QUE/g). Some of these extracts significantly inhibited skin aging-associated enzymes with the red fruit seed extract (100 µg/mL) showing up to 50.4% inhibition of tyrosinase. Additionally, the red fruit seed extract obtained using methanol demonstrated potential anticancer effects against Ca9-22 oral carcinoma cells by inhibiting cell survival, migration, and proliferation as well as inducing apoptosis. These results underscore the potential of S. betaceum fruit extracts, especially from red fruit seeds, as promising agents for anti-skin aging and anticancer applications, meriting further exploration for therapeutic uses.
RESUMO
KIAA1429 has been reported as a cancer regulator, but its role and mechanism in the progression of oral squamous cell carcinoma (OSCC) remain elusive. The objective of the present research was to figure out the effect of KIAA1429 regulated CA9 on the progression of OSCC. Using qRT-PCR and bioinformatics analysis, we studied the expression levels of KIAA1429 and CA9 in OSCC tissue samples. The functional roles of KIAA1429 and CA9 were assessed using transwell and CCK-8 assays. The regulation among KIAA1429 and CA9 was investigated using MeRIP and western blotting assays. In addition, the m6A level in OSCC was measured utilizing RNA m6A quantification. In OSCC, KIAA1429 and m6A levels were upregulated. We observed that KIAA1429 inhibition declined proliferation, migration, and invasion of OSCC cells and decreased cell growth in vivo. Furthermore, KIAA1429 serves as a crucial upstream regulator of CA9 in OSCC and upregulates CA9 expression through an m6A-dependent mechanism. We observed that CA9 was upregulated in OSCC samples and that low expression of KIAA1429 partially restored the enhanced malignant phenotype caused by CA9 overexpression. Overall, our findings suggest that KIAA1429 and CA9 act as pro-oncogenic factors in OSCC, with KIAA1429 promoting OSCC malignancy through m6A modification-dependent stabilization of CA9 transcripts, which represents a novel regulatory mechanism in OSCC. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-024-00640-3.
RESUMO
The quest for artificial light sources mimicking sunlight has been a long-standing endeavor, particularly for applications in anticounterfeiting, agriculture, and color hue detection. Conventional sunlight simulators are often cost-prohibitive and bulky. Therefore, the development of a series of single-phase phosphors Ca9LiMg1-xAl2x/3(PO4)7:0.1Eu2+ (x = 0-0.75) with sunlight-like emission represents a welcome step towards compact and economical light source alternatives. The phosphors are obtained by an original heterovalent substitution method and emit a broad spectrum spanning from violet to deep red. Notably, the phosphor with x = 0.5 exhibits an impressive full width at half-maximum of 330 nm. A synergistic interplay of experimental investigations and theory unveils the mechanism behind sunlight-like emission due to the local structural perturbations introduced by the heterovalent substitution of Al3+ for Mg2+, leading to a varied distribution of Eu2+ within the lattice. Subsequent characterization of a series of organic dyes combining absorption spectroscopy with convolutional neural network analysis convincingly demonstrates the potential of this phosphor in portable photodetection devices. Broad-spectrum light source testing empowers the model to precisely differentiate dye patterns. This points to the phosphor being ideal for mimicking sunlight. Beyond this demonstrated application, the phosphor's utility is envisioned in other relevant domains, including visible light communication and smart agriculture.
RESUMO
Recent studies indicate that human spleen contains over 95% of the total parasite biomass during chronic asymptomatic infections caused by Plasmodium vivax. Previous studies have demonstrated that extracellular vesicles (EVs) secreted from infected reticulocytes facilitate binding to human spleen fibroblasts (hSFs) and identified parasite genes whose expression was dependent on an intact spleen. Here, we characterize the P. vivax spleen-dependent hypothetical gene (PVX_114580). Using CRISPR/Cas9, PVX_114580 was integrated into P. falciparum 3D7 genome and expressed during asexual stages. Immunofluorescence analysis demonstrated that the protein, which we named P. vivax Spleen-Dependent Protein 1 (PvSDP1), was located at the surface of infected red blood cells in the transgenic line and this localization was later confirmed in natural infections. Plasma-derived EVs from P. vivax-infected individuals (PvEVs) significantly increased cytoadherence of 3D7_PvSDP1 transgenic line to hSFs and this binding was inhibited by anti-PvSDP1 antibodies. Single-cell RNAseq of PvEVs-treated hSFs revealed increased expression of adhesion-related genes. These findings demonstrate the importance of parasite spleen-dependent genes and EVs from natural infections in the formation of intrasplenic niches in P. vivax, a major challenge for malaria elimination.
Assuntos
Vesículas Extracelulares , Malária Vivax , Plasmodium vivax , Proteínas de Protozoários , Baço , Vesículas Extracelulares/metabolismo , Plasmodium vivax/genética , Plasmodium vivax/metabolismo , Humanos , Baço/metabolismo , Baço/parasitologia , Malária Vivax/parasitologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Fibroblastos/parasitologia , Fibroblastos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiologia , Adesão Celular , Interações Hospedeiro-ParasitaRESUMO
Microtubule-associated serine-threonine kinase-like (MASTL) has recently been identified as an oncogenic kinase given its overexpression in numerous cancers. Our group has shown that MASTL expression is upregulated in mouse models of sporadic colorectal cancer and colitis-associated cancer (CAC). CAC is one of the most severe complications of chronic inflammatory bowel disease (IBD), but a limited understanding of the mechanisms governing the switch from normal healing to neoplasia in IBD underscores the need for increased research in this area. However, MASTL levels in patients with IBD and its molecular regulation in IBD and CAC have not been studied. This study reveals that MASTL is upregulated by the cytokine interleukin (IL)-22, which promotes proliferation and has important functions in colitis recovery; however, IL-22 can also promote tumorigenesis when chronically elevated. Upon reviewing the publicly available data, we found significantly elevated MASTL and IL-22 levels in the biopsies from patients with late-stage ulcerative colitis compared with controls, and that MASTL upregulation was associated with high IL-22 expression. Our subsequent in vitro studies found that IL-22 increases MASTL expression in intestinal epithelial cell lines, which facilitates IL-22-mediated cell proliferation and downstream survival signaling. Inhibition of AKT activation abrogated IL-22-induced MASTL upregulation. We further found an increased association of carbonic anhydrase IX (CAIX) with MASTL in IL-22-treated cells, which stabilized MASTL expression. Inhibition of CAIX prevented IL-22-induced MASTL expression and cell survival. Overall, we show that IL-22/AKT signaling increases MASTL expression to promote cell survival and proliferation. Furthermore, CAIX associates with and stabilizes MASTL in response to IL-22 stimulation.NEW & NOTEWORTHY MASTL is upregulated in colorectal cancer; however, its role in colitis and colitis-associated cancer is poorly understood. This study is the first to draw a link between MASTL and IL-22, a proinflammatory/intestinal epithelial recovery-promoting cytokine that is also implicated in colon tumorigenesis. We propose that IL-22 increases MASTL protein stability by promoting its association with CAIX potentially via AKT signaling to promote cell survival and proliferation.
Assuntos
Interleucina 22 , Interleucinas , Mucosa Intestinal , Interleucinas/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Animais , Proliferação de Células , Transdução de Sinais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Camundongos , Regulação para Cima , Proteínas Proto-Oncogênicas c-akt/metabolismo , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/genética , Antígenos de NeoplasiasRESUMO
Octocoral of the genus Clavularia is a kind of marine invertebrate possessing abundant cytotoxic secondary metabolites, such as prostanoids and dolabellanes. In our continuous natural product study of C. spp., two previously undescribed prostanoids [clavulone I-15-one (1) and 12-O-deacetylclavulone I (2)] and eleven known analogs (3-13) were identified. The structures of these new compounds were elucidated based on analysis of their 1D and 2D NMR, HRESIMS, and IR data. Additionally, all tested prostanoids (1 and 3-13) showed potent cytotoxic activities against the human oral cancer cell line (Ca9-22). The major compound 3 showed cytotoxic activity against the Ca9-22 cells with the IC50 value of 2.11 ± 0.03 µg/mL, which echoes the cytotoxic effect of the coral extract. In addition, in silico tools were used to predict the possible effects of isolated compounds on human tumor cell lines and nitric oxide production, as well as the pharmacological potentials.
Assuntos
Antozoários , Antineoplásicos , Prostaglandinas , Humanos , Antozoários/química , Animais , Linhagem Celular Tumoral , Prostaglandinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Óxido Nítrico/metabolismo , Concentração Inibidora 50 , Organismos Aquáticos , Estrutura MolecularRESUMO
Brain cancer is a devastating and life-changing disease. Biomarkers are becoming increasingly important in addressing clinical issues, including in monitoring tumour progression and assessing survival and treatment response. The goal of this study was to identify prognostic biomarkers associated with glioma progression. Discovery proteomic analysis was performed on a small cohort of astrocytomas that were diagnosed as low-grade and recurred at a higher grade. Six proteins were chosen to be validated further in a larger cohort. Three proteins, CA9, CYFIP2, and LGALS3BP, were found to be associated with glioma progression and, in univariate analysis, could be used as prognostic markers. However, according to the results of multivariate analysis, these did not remain significant. These three proteins were then combined into a three-protein panel. This panel had a specificity and sensitivity of 0.7459 for distinguishing between long and short survival. In silico data confirmed the prognostic significance of this panel.
RESUMO
The damage of integrated epithelial epithelium is a key pathogenic factor and closely associated with the recurrence of ulcerative colitis (UC). Here, we reported that vanillic acid (VA) exerted potent therapeutic effects on DSS-induced colitis by restoring intestinal epithelium homeostasis via the inhibition of ferroptosis. By the CETSA assay and DARTS assay, we identified carbonic anhydrase IX (CAIX, CA9) as the direct target of VA. The binding of VA to CA9 causes insulin-induced gene-2 (INSIG2) to interact with stromal interaction molecule 1 (STIM1), rather than SREBP cleavage-activating protein (SCAP), leading to the translocation of SCAP-SREBP1 from the endoplasmic reticulum (ER) to the Golgi apparatus for cleavage into mature SREBP1. The activation of SREBP1 induced by VA then significantly facilitated the transcription of stearoyl-CoA desaturase 1 (SCD1) to exert an inhibitory effect on ferroptosis. By inhibiting the excessive death of intestinal epithelial cells caused by ferroptosis, VA effectively preserved the integrity of intestinal barrier and prevented the progression of unresolved inflammation. In conclusion, our study demonstrated that VA could alleviate colitis by restoring intestinal epithelium homeostasis through CA9/STIM1-mediated inhibition of ferroptosis, providing a promising therapeutic candidate for UC.
Assuntos
Colite , Ferroptose , Humanos , Animais , Camundongos , Ácido Vanílico , Molécula 1 de Interação Estromal , Colite/induzido quimicamente , Colite/tratamento farmacológico , Homeostase , Mucosa Intestinal , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Anidrase Carbônica IX , Antígenos de Neoplasias , Proteínas de NeoplasiasRESUMO
Long noncoding RNAs (lncRNAs) play important roles in modulating the tumorigenesis and progression of malignant tumors. LINC02086 is a newly identified oncogene associated with tumorigenesis, but its role in pancreatic cancer (PC) has not been fully elucidated. In this study we examined the expression levels of LINC02086, miR-342-3p, and CA9 in PC. The relationship of ferroptosis with these factors was analyzed by detecting the expression levels of Fe2+, reactive oxygen species (ROS), and ferroptosis marker proteins. The expression of these genes was altered to observe their effects on cell proliferation, migration, and invasion ability. Bioinformatics was used to predict target genes, and the binding relationship was verified luciferase reporter assay. Finally, the function of LINC02086 was evaluated in vivo. The findings suggest that LINC02086 is highly expressed in PC tissues and cell lines and is correlated with a poor prognosis. In vitro experiments demonstrated that LINC02086 knockdown promoted ferroptosis in PC cells to suppress their malignant phenotype. LINC02086 acts as a competitive endogenous RNA that adsorbed miR-342-3p. miR-342-3p hinders the malignant progression of PC by promoting ferroptosis. In addition, miR-342-3p targets CA9 and affects its function. Further mechanistic studies revealed that LINC02086 inhibits ferroptosis and promotes PC progression by acting as a sponge for miR-342-3p to upregulate CA9 expression. In vivo experiments further confirmed this mechanism. Taken together, LINC02086 upregulates CA9 expression by competitively binding with miR-342-3p, thereby inhibiting ferroptosis in PC cells and promoting their malignant phenotype. The results of our study provide new insights into how LINC02086 contributes to the progression of PC.
Assuntos
Ferroptose , MicroRNAs , Neoplasias Pancreáticas , Humanos , Ferroptose/genética , Neoplasias Pancreáticas/genética , Carcinogênese , Fenótipo , MicroRNAs/genética , Anidrase Carbônica IX , Antígenos de NeoplasiasRESUMO
AIMS: The 2022 WHO classification for kidney tumours recently downgraded clear cell tubulopapillary (also known as clear cell papillary) renal cell carcinoma (RCC) to a benign neoplasm (i.e. clear cell tubulopapillary renal cell tumour) based on the overwhelmingly banal nature of this neoplasm. However, it has been recognized that some clear cell tubulopapillary renal cell tumours demonstrate vascular, adipose or pelvicalyceal invasion, raising the possibility of more aggressive behaviour. The goal of this study was to determine if these 'high stage' features have an effect on tumour prognosis, warranting a carcinoma designation. METHODS AND RESULTS: After excluding cases with tissue artefact (i.e. prior core biopsy track changes) and other RCC subtypes with next-generation sequencing, nine clear cell tubulopapillary renal cell tumours with these so-called 'high stage' features, and otherwise classic morphologic and immunophenotypic findings, including low-grade cytology and 'cup-like' CA9 expression, were evaluated. Median tumour size was 2.2 cm with a range of 0.8 to 6.7 cm. Eight cases (89%) demonstrated perinephric or hilar adipose tissue invasion, although most of these cases showed a bulging (in contrast to an infiltrative) growth pattern. One case demonstrated renal vascular invasion in addition to hilar adipose tissue invasion, and one case demonstrated extension into the pelvicalyceal system. There were no recurrences or evidence of metastatic disease. CONCLUSION: These overall findings continue to support the benign designation for clear cell tubulopapillary renal cell tumours, despite morphologic features that might raise the possibility of a 'higher stage' neoplasm.
Assuntos
Tecido Adiposo , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Neoplasias Renais/patologia , Neoplasias Renais/diagnóstico , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/diagnóstico , Pessoa de Meia-Idade , Tecido Adiposo/patologia , Feminino , Masculino , Idoso , Adulto , Invasividade NeoplásicaRESUMO
Fumarate hydratase deficient renal cell carcinoma (FHRCC) can exhibit a heterogenous immunoprofile. In the present case, a solitary 10.5â cm mixed cystic and solid left kidney tumor showed various growth patterns, involving renal sinus adipose tissue and the renal pelvis. Tumor cells showed prominent nucleoli and perinucleolar halos. Aberrant diffuse (>90%), strong, and membranous carbonic anhydrase 9 and variable GATA3 expression were present. Diagnostic loss of fumarate hydratase expression and 2-succinyl cysteine overexpression (cytoplasmic and nuclear) were identified. Carbonic anhydrase 9 and GATA3 expression in FHRCC is rarely reported in the literature, and may cause misdiagnosis of clear cell RCC and/or urothelial carcinoma.
Assuntos
Carcinoma de Células Renais , Carcinoma de Células de Transição , Neoplasias Renais , Neoplasias da Bexiga Urinária , Humanos , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/patologia , Neoplasias Renais/diagnóstico , Neoplasias Renais/patologia , Fumarato Hidratase/genética , Anidrase Carbônica IX , Fator de Transcrição GATA3RESUMO
The three-dimensional (3D) spheroid cell culture model is crucial in screening anticancer drugs in vitro and understanding tumor cell behavior. However, the current in vitro models require highly skilled techniques. Here, we present an in vitro, tumor-mimetic, self-detachable, cancer cell spheroid model that provides the confined space of a tumor microenvironment, convenient spheroid retrieval, immunostaining, treatment, and imaging. We formed a void space within alginate macrobeads by ionic disintegration at a specific region inside. The macrobeads were further destabilized with bovine serum albumin to retrieve the spheroid cultured within the void space. Quantitative analysis of the immunofluorescence images of the cultured spheroids showed enhanced expressions of the hypoxia-inducible factor-1α (HIF-1α) and carbonic anhydrase-9 (CA-9), like monolayer cultures of cancer cells under hypoxic conditions (0.2% oxygen). Furthermore, adding CoCl2 to the cell culture media induces even higher amounts of HIF-1α and CA-9 in the cultured spheroids. In conclusion, the present work highlighted the in vitro spheroid model, which is closer to the tumor microenvironment and has user-friendly cell seeding, spheroid retrieval, and immunostaining steps.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Esferoides Celulares , Hidrogéis , Antineoplásicos/farmacologia , Microambiente TumoralRESUMO
BACKGROUND: Bladder cancer is one of the most common cancers in the world, with men being affected more than women. Diagnosis by cystoscopy, cytology and biopsy is invasive. Urine cytology, a non-invasive modality is not sensitive. This study is undertaken to evaluate whether non- invasive urinary proteomic profiling is more sensitive, specific for bladder cancer. OBJECTIVE: To evaluate the sensitivity and specificity of various urinary proteomic biomarkers as a screening tool for bladder cancer. METHODS: PubMed database was searched from 4th December 2011 to 30th November 2021 using Mesh terms and n = 10,364 articles were found. PRISMA guidelines were followed and Review articles, animal studies, Urinary tract infections, non-bladder cancer and other irrelevant articles were excluded. All studies who have reported mean/median (SD/IQR), sensitivity, specificity, cut off values (ROC analysis) were included (n=5). Post-test probability of various biomarkers was calculated using sequential approach. Pooled analysis was depicted using Forest plot. RESULTS: Analysis of diagnostic studies of bladder cancer showed the post-test probability of CYFRA21-1 was 36.6%. Using sequential approach, the panel of biomarkers CYFRA 21-1, CA-9, APE-1, COL13A1 has post-test probability of 95.10% to diagnose bladder cancer. Analysis of two observational studies with APOE (n= 447) showed non-significant increase of APO-E levels in bladder cancer cases (WMD: 66.41with 95% CI 52.70-185.51; p=0.27, I2 92.4%). CONCLUSION: In patients presenting with hematuria, a panel of CYFRA 21-1, CA-9, APE-1, COL13A1 markers can be considered for screening of bladder cancer.
Assuntos
Neoplasias da Bexiga Urinária , Feminino , Biomarcadores Tumorais , Cistoscopia , Detecção Precoce de Câncer , Probabilidade , Proteômica , Sensibilidade e Especificidade , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/patologia , HumanosRESUMO
The carnivorous pitcher plants of the genus Nepenthes exhibit many ethnobotanical uses, including treatments of stomachache and fever. In this study, we prepared different extracts from the pitcher, stem, and leaf extracts of Nepenthes miranda obtained using 100% methanol and analyzed their inhibitory effects on recombinant single-stranded DNA-binding protein (SSB) from Klebsiella pneumoniae (KpSSB). SSB is essential for DNA replication and cell survival and thus an attractive target for potential antipathogen chemotherapy. Different extracts prepared from Sinningia bullata, a tuberous member of the flowering plant family Gesneriaceae, were also used to investigate anti-KpSSB properties. Among these extracts, the stem extract of N. miranda exhibited the highest anti-KpSSB activity with an IC50 value of 15.0 ± 1.8 µg/mL. The cytotoxic effects of the stem extract of N. miranda on the survival and apoptosis of the cancer cell lines Ca9-22 gingival carcinoma, CAL27 oral adenosquamous carcinoma, PC-9 pulmonary adenocarcinoma, B16F10 melanoma, and 4T1 mammary carcinoma cells were also demonstrated and compared. Based on collective data, the cytotoxic activities of the stem extract at a concentration of 20 µg/mL followed the order Ca9-22 > CAL27 > PC9 > 4T1 > B16F10 cells. The stem extract of N. miranda at a concentration of 40 µg/mL completely inhibited Ca9-22 cell migration and proliferation. In addition, incubation with this extract at a concentration of 20 µg/mL boosted the distribution of the G2 phase from 7.9% to 29.2% in the Ca9-22 cells; in other words, the stem extract might suppress Ca9-22 cell proliferation by inducing G2 cell cycle arrest. Through gas chromatography-mass spectrometry, the 16 most abundant compounds in the stem extract of N. miranda were tentatively identified. The 10 most abundant compounds in the stem extract of N. miranda were used for docking analysis, and their docking scores were compared. The binding capacity of these compounds was in the order sitosterol > hexadecanoic acid > oleic acid > plumbagin > 2-ethyl-3-methylnaphtho[2,3-b]thiophene-4,9-dione > methyl α-d-galactopyranoside > 3-methoxycatechol > catechol > pyrogallol > hydroxyhydroquinone; thus, sitosterol might exhibit the greatest inhibitory capacity against KpSSB among the selected compounds. Overall, these results may indicate the pharmacological potential of N. miranda for further therapeutic applications.
RESUMO
HHLA2 has been recently demonstrated to play multifaceted roles in several types of cancers. However, its underlying mechanism in the progression of human ovarian cancer (OC) remains largely unexplored. In the present study, we aimed to determine whether downregulation of HHLA2 inhibited malignant phenotypes of human OC cells and explore its specific mechanism. Our results revealed that downregulation of HHLA2 by transfection with a lentiviral vector significantly suppressed the viability, invasion, and migration of OC cells. Interaction study showed that downregulation of HHLA2 in OC cells reduced the expression of CA9 and increased the expressions of p-IKKß and p-RelA. Conversely, the viability, invasion, and migration of HHLA2-depleted OC cells were increased when CA9 was upregulated. In vivo, we found that downregulation of HHLA2 significantly inhibited tumor growth, which was reversed by CA9 overexpression. In addition, downregulation of HHLA2 inhibited the OC progression via activating the NF-κB signaling pathway and decreasing the expression of CA9. Collectively, our data suggested a link between HHLA2 and NF-κB axis in the pathogenesis of OC, and these findings might provide valuable insights into the development of novel potential therapeutic targets for OC.
Assuntos
NF-kappa B , Neoplasias Ovarianas , Humanos , Feminino , NF-kappa B/metabolismo , Regulação para Baixo , Linhagem Celular Tumoral , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Transdução de Sinais , Movimento Celular , Proliferação de Células , Anidrase Carbônica IX/genética , Anidrase Carbônica IX/metabolismo , Antígenos de Neoplasias , Imunoglobulinas/metabolismoRESUMO
PURPOSE: The lncRNA IGFL2-AS1 is a known cancer-promoting factor in colorectal cancer (CRC); nonetheless, the mechanism of its carcinogenic effects has not yet been elucidated. This study elaborated on the role and underlying molecular mechanism of IGFL2-AS1 in promoting CRC cell functions. METHODS: IGLF2-AS1 expression levels in CRC tissue/normal tissue and CRC cell line/normal colon epithelial cell line were detected by quantitative real-time polymerase chain reaction. Cell counting kit-8, colony formation assay, and EdU assay were performed to assess the effect of IGFL2-AS1 knockdown or overexpression on the proliferative capacity of CRC cells. The migration and invasion abilities of LoVo cells were measured using transwell assay. The expression relationship between IGFL2-AS1 and carbonic anhydrase 9 (CA9) and the CA9 expression level in CRC tissues and cells was verified by transcriptome sequencing, western blotting, and immunohistochemical staining. Treatment with MG132 and cycloheximide was utilized to explore the mechanism by which IGFL2-AS1 affects the hypoxia-inducible factor-1α (HIF-1α)/CA9 pathway. A nude mouse xenograft model was constructed to evaluate the effect of IGFL2-AS1 on CRC growth in vivo. RESULTS: We discovered that IGFL2-AS1 was highly upregulated in CRC tumor tissues and cells. IGFL2-AS1 can functionally promote CRC cell proliferation, migration, and invasion in vitro and accelerate CRC occurrence in vivo. Mechanistic studies demonstrated that IGFL2-AS1 upregulated the CA9 level by affecting the degradation pathway of HIF-1α, which elucidates its pro-proliferative effect in CRC. The lncRNA IGFL2-AS1 mediated the inhibition of HIF-1α degradation in CRC and increased CA9 expression, thereby promoting CRC progression. CONCLUSION: Our findings suggested that IGFL2-AS1 is expected to be a promising new diagnostic marker and therapeutic target for CRC.
Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Humanos , Anidrase Carbônica IX/metabolismo , RNA Longo não Codificante/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Colorretais/patologia , Movimento Celular/genética , MicroRNAs/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Antígenos de NeoplasiasRESUMO
Hypoxia caused by photodynamic therapy (PDT) is a major hurdle to cancer treatment since it can promote recurrence and progression by activating angiogenic factors, lowering therapeutic efficacy dramatically. In this work, AZB-I-CAIX2 was developed as a carbonic anhydrase IX (CAIX)-targeting NIR photosensitizer that can overcome the challenge by utilizing a combination of CAIX knockdown and PDT. AZB-I-CAIX2 showed a specific affinity to CAIX-expressed cancer cells and enhanced photocytotoxicity compared to AZB-I-control (the molecule without acetazolamide). Moreover, selective detection and effective cell cytotoxicity of AZB-I-CAIX2 by PDT in hypoxic CAIX-expressed murine cancer cells were achieved. Essentially, AZB-I-CAIX2 could minimize tumor size in the tumor-bearing mice compared to that in the control groups. The results suggested that AZB-I-CAIX2 can improve therapeutic efficiency by preventing PDT-induced hypoxia through CAIX inhibition.