Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 762
Filtrar
1.
Semin Hematol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117489

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has transformed the treatment landscape of lymphoma and is now approved by the FDA for multiple indications. Given that the indications for CAR T-cell therapy are expanding, a larger patient population will be eligible to receive this treatment in the coming years. Pivotal clinical trials leading to FDA approval of CAR T-cell products required patients to have adequate organ function and good performance status. In the real world, however, the patient population eligible for CAR T-cell therapy includes patients who are older, frail, have poor performance status, and have multiple comorbidities. Studies have shown that CAR T-cell therapy is relatively safe and tolerable in such frail patients, however, there is no agreed upon consensus or guidelines to assess eligibility for CAR T-cell therapy at this moment. Gaining further insight into such patient populations will be vital in order to safely provide and expand access to CAR T-cell therapy.

2.
J Cancer Immunol (Wilmington) ; 6(1): 20-28, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119270

RESUMO

The emergence of chimeric antigen receptor T cell (CAR-T cell) therapy has revolutionized cancer treatment, particularly for hematologic malignancies. This commentary discusses developments in CAR-T cell therapy, focusing on the molecular mechanisms governing T cell fate and differentiation. Transcriptional and epigenetic factors play a pivotal role in determining the specificity, effectiveness, and durability of CAR-T cell therapy. Understanding these mechanisms is crucial to improve the efficacy and decrease the adverse events associated with CAR-T cell therapies, unlocking the full potential of these approaches. T cell differentiation in CAR-T cell product manufacturing plays an important role in clinical outcomes. A positive correlation exists between the clinical efficacy of CAR-T cell therapy and signatures of memory, whereas a negative correlation has been observed with signatures of effector function or exhaustion. The effectiveness of CAR-T cell products is likely influenced by T-cell frequency and by their ability to proliferate, which is closely linked to early T cell differentiation. The differentiation process involving distinct T memory cell subsets is initiated upon antigen elimination, indicating infection resolution. In chronic infections or cancer, T cells may undergo exhaustion, marked by continuous inhibitory receptor expression, decreased cytokine production, and diminished proliferative capacity. Other cell subsets, such as CD4+ T cells, innate-like T lymphocytes, NKT cells, and cord blood-derived hematopoietic stem cells, offer unique advantages in developing the next-generation CAR-T cell-based therapies. Future research should focus on optimizing T-cell-enhancing approaches and developing strategies to potentially cure patients with hematological diseases and solid tumors.

3.
Front Oncol ; 14: 1407001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091918

RESUMO

Introduction: Inconsistent results observed in recent phase III trials assessing chimeric antigenic receptor T (CAR-T) cell therapy as a second-line treatment compared to standard of care (SOC) in patients with relapsed/refractory diffuse large B-cell lymphoma (R/R DLBCL) prompted a meta-analysis to assess the effectiveness of CAR-T cell therapy in this setting. Methods: Random-effects meta-analysis was conducted to pool effect estimates for comparison between CAR-T cell therapy and SOC. Mixed treatment comparisons were made using a frequentist network meta-analysis approach. Results: Meta-analysis of three trials with 865 patients showed significant improvement in event-free survival (EFS: HR: 0.51; 95% CI: 0.27-0.97; I2: 92%), progression-free survival (PFS: HR: 0.47; 95% CI: 0.37-0.60; I2: 0%) with CAR-T cell therapy compared to SOC. Although there was a signal of potential overall survival (OS) improvement with CAR-T cell therapy, the difference was not statistically significant between the two groups (HR 0.76; 95% CI: 0.56 to 1.03; I2: 29%). Mixed treatment comparisons showed significant EFS benefit with liso-cel (HR: 0.37; 95% CI: 0.22-0.61) and axi-cel (HR: 0.42; 95% CI: 0.29-0.61) compared to tisa-cel. Discussion: CAR-T cell therapy, as a second-line treatment, appears to be effective in achieving higher response rates and delaying the disease progression compared to SOC in R/R DLBCL.

4.
Semin Hematol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39095225

RESUMO

Based on the pivotal KarMMa-1 and CARTITUDE-1 studies, Idecabtagene vicleucel (Ide-cel) and Ciltacabtagene autoleucel (Cilta-cel) have been approved to treat multiple myeloma patients, who have been exposed to at least 1 proteasome inhibitor, immunomodulatory drug and anti-CD38 antibody after 4 or 3 lines of therapy, respectively. The unprecedented rates of deep and long-lasting remissions have been meanwhile confirmed in multiple real-world analyses and more recently, the KarMMa-3 and CARTITUDE-4 studies lead to the approval in earlier lines of therapy. It is currently believed that ultimately all patients with relapsed/refractory multiple myeloma experience relapse after anti-BCMA CAR T-cell therapies. There is a plethora of CAR T-cell therapies targeting novel antigens, with the aim to overcome current CAR T-cell resistance. In this review, we will summarize current evidence of novel antigens and their clinical potential. Together with current CAR T-cell therapy and T-cell engagers, these approaches might lead us to the next frontier in multiple myeloma: total immunotherapy and the road to chemotherapy-free cure.

5.
Semin Hematol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39095226

RESUMO

Chimeric antigen receptor (CAR) T-cell therapies are a standard of care for certain relapsed or refractory B-cell cancers. However, many patients do not respond to CAR T-cell therapy or relapse later, short- and long-term toxicities are common, and current CAR T-cell therapies have limited efficacy for solid cancers. The gene engineering inherent in CAR T-cell manufacture offers an unprecedented opportunity to control cellular characteristics and design products that may overcome these limitations. This review summarises available methods to "tune" CAR T-cells for optimal efficacy and safety. The components of a typical CAR, and the modifications that can influence CAR T-cell function are discussed. Methods of engineering passive, inducible or autonomous control mechanisms into CAR T-cells, allowing selective limitation or enhancement of CAR T-cell activity are reviewed. The impact of manufacturing processes on CAR T-cell function are considered, including methods of limiting CAR T-cell terminal differentiation and exhaustion, and the use of specific T-cell subsets as the CAR T starting material. We discuss the use of multicistronic transgenes and multiplexed gene editing. Finally, we highlight the need for innovative clinical trial designs if we are to make the most of the opportunities offered by CAR T-cell therapies.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39102166

RESUMO

OPINION STATEMENT: Acute lymphoblastic leukemia (ALL) represents the predominant cancer in pediatric populations, though its occurrence in adults is relatively rare. Pre-treatment risk stratification is crucial for predicting prognosis. Important factors for assessment include patient age, white blood cell (WBC) count at diagnosis, extramedullary involvement, immunophenotype, and cytogenetic aberrations. Minimal residual disease (MRD), primarily assessed by flow cytometry following remission, plays a substantial role in guiding management plans. Over the past decade, significant advancements in ALL outcomes have been witnessed. Conventional chemotherapy has remarkably reduced mortality rates; however, its intensive nature raises safety concerns and has led to the emergence of treatment-resistant cases with recurrence of relapses. Consequently, The U.S. Food and Drug Administration (FDA) has approved several novel treatments for relapsed/refractory ALL due to their demonstrated efficacy, as indicated by improved complete remission and survival rates. These treatments include tyrosine kinase inhibitors (TKIs), the anti-CD19 monoclonal antibody blinatumomab, anti-CD22 inotuzumab ozogamicin, anti-CD20 rituximab, and chimeric antigen receptor (CAR) T-cell therapy. Identifying the variables that influence treatment decisions is a pressing necessity for tailoring therapy based on heterogeneous patient characteristics. Key predictive factors identified in various observational studies and clinical trials include prelymphodepletion disease burden, complex genetic abnormalities, and MRD. Furthermore, the development of serious adverse events following treatment could be anticipated through predictive models, allowing for appropriate prophylactic measures to be considered. The ultimate aim is to incorporate the concept of precision medicine in the field of ALL through valid prediction platform to facilitate the selection of the most suitable treatment approach.

7.
Pharmacol Res ; : 107352, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147005

RESUMO

A cutting-edge approach in cell-based immunotherapy for combating resistant cancer involves genetically engineered chimeric antigen receptor T (CAR-T) lymphocytes. In recent years, these therapies have demonstrated effectiveness, leading to their commercialization and clinical application against certain types of cancer. However, CAR-T therapy faces limitations, such as the immunosuppressive tumour microenvironment (TME) that can render CAR-T cells ineffective, and the adverse side effects of the therapy, including cytokine release syndrome (CRS). Extracellular vesicles (EVs) are a diverse group of membrane-bound particles released into the extracellular environment by virtually all cell types. They are essential for intercellular communication, transferring cargoes such as proteins, lipids, various types of RNAs, and DNA fragments to target cells, traversing biological barriers both locally and systemically. EVs play roles in numerous physiological processes, with those from both immune and non-immune cells capable of modulating the immune system through activation or suppression. Leveraging this capability of EVs to enhance CAR-T cell therapy could represent a significant advancement in overcoming its current limitations. This review examines the current landscape of CAR-T cell immunotherapy and explores the potential role of EVs in augmenting its therapeutic efficacy.

8.
Discov Oncol ; 15(1): 342, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39127974

RESUMO

Novel therapeutic agents in clinical trials offer a paradigm shift in the approach to battling this prevalent and destructive disease, and the area of cancer therapy is on the precipice of a trans formative revolution. Despite the importance of tried-and-true cancer treatments like surgery, radiation, and chemotherapy, the disease continues to evolve and adapt, making new, more potent methods necessary. The field of cancer therapy is currently witnessing the emergence of a wide range of innovative approaches. Immunotherapy, including checkpoint inhibitors, CAR-T cell treatment, and cancer vaccines, utilizes the host's immune system to selectively target and eradicate malignant cells while minimizing harm to normal tissue. The development of targeted medicines like kinase inhibitors and monoclonal antibodies has allowed for more targeted and less harmful approaches to treating cancer. With the help of genomics and molecular profiling, "precision medicine" customizes therapies to each patient's unique genetic makeup to maximize therapeutic efficacy while minimizing unwanted side effects. Epigenetic therapies, metabolic interventions, radio-pharmaceuticals, and an increasing emphasis on combination therapy with synergistic effects further broaden the therapeutic landscape. Multiple-stage clinical trials are essential for determining the safety and efficacy of these novel drugs, allowing patients to gain access to novel treatments while also furthering scientific understanding. The future of cancer therapy is rife with promise, as the integration of artificial intelligence and big data has the potential to revolutionize early detection and prevention. Collaboration among researchers, and healthcare providers, and the active involvement of patients remain the bedrock of the ongoing battle against cancer. In conclusion, the dynamic and evolving landscape of cancer therapy provides hope for improved treatment outcomes, emphasizing a patient-centered, data-driven, and ethically grounded approach as we collectively strive towards a cancer-free world.

9.
Support Care Cancer ; 32(9): 591, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150486

RESUMO

BACKGROUND: CAR-T therapy has emerged as a potentially effective treatment for individuals diagnosed with hematologic malignancies. Understanding patients' unique experiences with this therapeutic approach is essential. This knowledge will enable the development of tailored nursing interventions that align with the increasing importance of patient-centered care. OBJECTIVE: To examine and synthesize qualitative data on patients and their family caregivers' experiences during the treatment journey. DESIGN: We conducted a systematic review and qualitative meta-synthesis. Eligible studies contained adult patient or family caregiver quotes about experiences of CAR-T therapy, published in English or Chinese in a peer-reviewed journal since 2015. Data sources included MEDLINE, CINAHL, Embase, PsycINFO, Web of Science, Scopus, Cochrane Library, CNKI, and WanFang. METHODS: Systematic search yielded 6373 identified articles. Of these, 12 reports were included in the analysis, which covered 11 separate studies. Two reviewers independently extracted data into NVIVO 12.0. Qualitative meta-synthesis was performed through line-by-line coding of full text, organization of codes into descriptive themes, and development themes. RESULTS: The qualitative meta-synthesis yielded eight primary themes. Noteworthy revelations from patients and their family caregivers regarding the CAR-T therapy journey encompassed various aspects. Prior to CAR-T therapy, patients experienced a lack of actual choice, struggled with expectations for treatment outcomes, and encountered intricate emotional experiences. During or immediately after CAR-T therapy, patients reported both comfortable and uncomfortable experiences. Additionally, patients emphasized that concerns regarding treatment efficacy and adverse reactions intensified treatment-related distress. After CAR-T therapy, significant changes were observed, and the burden of home-based rehabilitation. Additionally, we found factors contributed to the high CAR-T therapy cost. CONCLUSIONS: To ensure the safety and sustainability of CAR-T therapy, it is crucial to address the physical and psychological aspects of the patient's experience. Effective communication and comprehensive management are highly valued by patients and their caregivers. Further research should investigate ways to reduce burdens and develop self-management education programs for patients and their families.


Assuntos
Cuidadores , Neoplasias Hematológicas , Assistência Centrada no Paciente , Pesquisa Qualitativa , Humanos , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/psicologia , Cuidadores/psicologia , Imunoterapia Adotiva/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-39092645

RESUMO

The truancy of representation of the estrogen, progesterone, and human epidermal growth factor receptors occurs during TNBC. TNBC is recognized for the upper reappearance and has a poorer diagnosis compared with rest breast cancer (BC) types. Presently, as such, no targeted therapy is approved for TNBC and treatment options are subjected to chemotherapy and surgery, which have high mortality rates. Hence, the current article focuses on the scenario of TNBC vital pathways and discusses the latest advances in TNBC treatment, including immune checkpoint inhibitors (ICIs), PARP suppressors, and cancer vaccines. Immunotherapy and ICIs, like PD 1 and PD L1 suppressors, displayed potential in clinical trials (CTs). These suppressors obstruct the mechanisms which allow tumor cells to evade the system thereby boosting the body's defense against TNBC. Immunotherapy, either alone or combined with chemotherapy has demonstrated patient outcomes such as increased survival rates and reduced treatment-related side effects. Additionally, targeted therapy approaches include BRCA/2 mutation poly ribose polymerase inhibitors, Vascular Endothelial Growth Factor Receptor (VEGFR) inhibitors, Epidermal growth factor receptor inhibitors, Fibroblast growth factor inhibitors, Androgen Receptor inhibitors, PIK3/AKT/mTOR pathway inhibitors, Cyclin-dependent kinase (CDK) inhibitors, Notch signaling pathway inhibitors, Signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitors, Chimeric antigen receptor T (CAR-T) cell therapy, Transforming growth factor (TGF) -ß inhibitors, Epigenetic modifications (EPM), Aurora Kinase inhibitors and antibody-drug conjugates. We also highlight ongoing clinical trials and potential future directions for TNBC therapy. Despite the challenges in treating TNBC, recent developments in understanding the molecular and immune characteristics of TNBC have opened up new opportunities for targeted therapies, which hold promise for improving outcomes in this aggressive disease.

11.
Am J Clin Pathol ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031946

RESUMO

OBJECTIVES: We attempt to analyze bone marrow findings and correlation with cytopenia(s) after anti-B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) T-cell infusion in this study. METHODS: Relevant clinicopathologic data, including complete blood counts, neutrophil counts, relevant therapy history, and pre- and posttherapy bone marrow evaluations, were studied in 12 patients who received anti-BCMA CAR T-cell therapy. RESULTS: Bone marrow findings after CAR T-cell therapy were available in 6 of 12 cases, 3 of which showed markedly hypocellular marrow with either markedly reduced or essentially absent hematopoiesis. One case showed a hypocellular marrow with trilineage hematopoiesis, while the remaining 2 cases showed persistent involvement by plasma cell myeloma. Reticulin stains did not reveal significant fibrosis. Ten patients had anemia, and 8 patients had leukopenia and thrombocytopenia at day 90 posttherapy. Long-term follow-up showed persistent disease in 10 of 12 cases. CONCLUSIONS: Prolonged cytopenias occur in most patients after BCMA CAR T-cell therapy with bone marrow evaluations demonstrating associated marked hypocellularity with minimal or no hematopoiesis without an increase in fibrosis.

12.
Discov Oncol ; 15(1): 289, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023820

RESUMO

Chimeric antigen receptor (CAR)-T-cell therapy is one of the most effective immunotherapies. CAR-T-cell therapy has achieved great success in the treatment of hematological malignancies. However, due to the characteristics of solid malignant tumors, such as on-target effects, off-tumor toxicity, an immunosuppressive tumor microenvironment (TME), and insufficient trafficking, CAR-T-cell therapy for solid tumors is still in the exploration stage. Mesothelin (MSLN) is a molecule expressed on the surface of various solid malignant tumor cells that is suitable as a target of tumor cells with high MSLN expression for CAR-T-cell therapy. This paper briefly described the development of CAR-T cell therapy and the structural features of MSLN, and especially summarized the strategies of structure optimization of MSLN-targeting CAR-T-cells and the enhancement methods of MSLN-targeting CAR-T cell anti-tumor efficacy by summarizing some preclinical experiment and clinical trials. When considering MSLN-targeting CAR-T-cell therapy as an example, this paper summarizes the efforts made by researchers in CAR-T-cell therapy for solid tumors and summarizes feasible treatment plans by integrating the existing research results.

13.
Cells ; 13(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38994929

RESUMO

Standard-of-care treatment for Glioblastoma Multiforme (GBM) is comprised of surgery and adjuvant chemoradiation. Chimeric Antigen Receptor (CAR) T cell therapy has demonstrated disease-modifying activity in GBM and holds great promise. Radiation, a standard-of-care treatment for GBM, has well-known immunomodulatory properties and may overcome the immunosuppressive tumor microenvironment (TME); however, radiation dose optimization and integration with CAR T cell therapy is not well defined. Murine immunocompetent models of GBM were treated with titrated doses of stereotactic radiosurgery (SRS) of 5, 10, and 20 Gray (Gy), and the TME was analyzed using Nanostring. A conditioning dose of 10 Gy was determined based on tumor growth kinetics and gene expression changes in the TME. We demonstrate that a conditioning dose of 10 Gy activates innate and adaptive immune cells in the TME. Mice treated with 10 Gy in combination with mCAR T cells demonstrated enhanced antitumor activity and superior memory responses to rechallenge with IL13Rα2-positive tumors. Furthermore, 10 Gy plus mCAR T cells also protected against IL13Rα2-negative tumors through a mechanism that was, in part, c-GAS-STING pathway-dependent. Together, these findings support combination conditioning with low-dose 10 Gy radiation in combination with mCAR T cells as a therapeutic strategy for GBM.


Assuntos
Glioblastoma , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Glioblastoma/terapia , Glioblastoma/imunologia , Glioblastoma/radioterapia , Glioblastoma/patologia , Animais , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Camundongos , Microambiente Tumoral/imunologia , Humanos , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Linfócitos T/imunologia , Camundongos Endogâmicos C57BL , Imunomodulação , Feminino
14.
J Blood Med ; 15: 291-303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947230

RESUMO

Primary cranial neurolymphomatosis (PCNL) is a rare subtype of primary CNS lymphoma (PCNSL) in which infiltrative lymphomatous involvement is confined to cranial nerves. Here, we report a case of PCNL with successful genomic profiling. A 57-year-old male had a lengthy prediagnostic phase spanning approximately 30 months, characterized by multiple episodes of cranial neuropathies managed by steroids. At the time of diagnosis, the patient had right-sided cranial neuropathies involving cranial nerves (CN) V, VI, and VII. Pathological findings of the right cavernous lesion biopsy were consistent with large B-cell lymphoma-infiltrating nerve fibers. The clinical course was aggressive and refractory, characterized by relentless progression with the development of cervical spinal neurolymphomatosis, cerebrospinal fluid involvement, and ependymal and intraparenchymal cerebral involvement, despite multiple lines of therapy, including chemoimmunotherapy, Bruton's tyrosine kinase inhibitor, radiation, autologous stem cell transplant, chimeric antigen receptor T-cell therapy (CAR-T), and whole-brain radiation. The patient survived for 22 months from the time of the initial diagnosis and 52 months after the first episode of cranial neuropathy. Next-generation sequencing identified mutations (MYD88, CD79b, and PIM1) that are frequently observed in PCNSL. The unusual findings included a total of 22 mutations involving PIM1, indicating a highly active aberrant somatic hypermutation and two missense CXCR4 mutations. CXCR4 mutations have never been described in PCNSL and may have implications for disease biology and therapeutic interventions. We provide a literature review to further elucidate PCNL.

15.
Ann Palliat Med ; 13(4): 1101-1113, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39043564

RESUMO

Hematologic oncologic emergencies with an urgent indication for radiation are a relatively routine occurrence for the radiation oncologist. As patients are living longer and have multiple treatment options for their relapsed or refractory diseases, it is important that palliative treatments avoid precluding patients from or delaying next-line potentially curative treatments wherever possible. We highlight the following experiences from our clinical practice: newly diagnosed plasma cell disease causing cord compression; life threatening cutaneous lymphoma with tumors covering the majority of the body surface area; and relapsed/refractory diffuse large B-cell lymphoma (DLBCL) requiring bridging radiation to a mass impinging on the brachial plexus combined with chimeric antigen receptor (CAR)-T cell therapy. In each case, urgent palliative radiation was utilized, but the approaches were nuanced, with careful consideration of subsequent potential therapies and how the current course of radiation should be tailored for the best interplay with the overall treatment course and trajectory of the disease. With the rapid development of new therapies, it can be difficult to stay up to date on the most recent practice guidelines. Drawing on hematologic-specific guidelines, such as those provided by the International Lymphoma Radiation Oncology Group, and disease site experts can aid in ensuring patients are appropriately palliated and eligible for future therapies.


Assuntos
Linfoma Difuso de Grandes Células B , Cuidados Paliativos , Humanos , Masculino , Linfoma Difuso de Grandes Células B/radioterapia , Linfoma Difuso de Grandes Células B/terapia , Cuidados Paliativos/métodos , Idoso , Feminino , Pessoa de Meia-Idade , Neoplasias Cutâneas/radioterapia , Emergências , Neoplasias Hematológicas/radioterapia , Neoplasias Hematológicas/terapia
16.
Cancers (Basel) ; 16(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39061225

RESUMO

Immunotherapy has revolutionized oncology care, improving patient outcomes in several cancers. However, these therapies are also associated with typical immune-related adverse events due to the enhanced inflammatory and immune response. These toxicities can arise at any time during treatment but are more frequent within the first few months. Any organ and tissue can be affected, ranging from mild to life-threatening. While some manifestations are common and more often mild, such as dermatitis and colitis, others are rarer and more severe, such as myocarditis. Management depends on the severity, with treatment being held for >grade 2 toxicities. Steroids are used in more severe cases, and immunosuppressive treatment may be considered for non-responsive toxicities, along with specific organ support. A multidisciplinary approach is mandatory for prompt identification and management. The diagnosis is primarily of exclusion. It often relies on imaging features, and, when possible, cytologic and/or pathological analyses are performed for confirmation. In case of clinical suspicion, imaging is required to assess the presence, extent, and features of abnormalities and to evoke and rule out differential diagnoses. This imaging-based review illustrates the diverse system-specific toxicities associated with immune checkpoint inhibitors and chimeric antigen receptor T-cells with a multidisciplinary perspective. Clinical characteristics, imaging features, cytological and histological patterns, as well as the management approach, are presented with insights into radiological tips to distinguish these toxicities from the most important differential diagnoses and mimickers-including tumor progression, pseudoprogression, inflammation, and infection-to guide imaging and clinical specialists in the pathway of diagnosing immune-related adverse events.

17.
J Clin Med ; 13(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39064229

RESUMO

The leading cause of cancer deaths worldwide is attributed to non-small cell lung cancer (NSCLC), necessitating a continual focus on improving the diagnosis and treatment of this disease. In this review, the latest breakthroughs and emerging trends in managing NSCLC are highlighted. Major advancements in diagnostic methods, including better imaging technologies and the utilization of molecular biomarkers, are discussed. These advancements have greatly enhanced early detection and personalized treatment plans. Significant improvements in patient outcomes have been achieved by new targeted therapies and immunotherapies, providing new hope for individuals with advanced NSCLC. This review discusses the persistent challenges in accessing advanced treatments and their associated costs despite recent progress. Promising research into new therapies, such as CAR-T cell therapy and oncolytic viruses, which could further revolutionize NSCLC treatment, is also highlighted. This review aims to inform and inspire continued efforts to improve outcomes for NSCLC patients globally, by offering a comprehensive overview of the current state of NSCLC treatment and future possibilities.

18.
Transplant Cell Ther ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972511

RESUMO

Follicular lymphoma (FL) is the most common indolent B-cell non-Hodgkin lymphoma (NHL), accounting for nearly one-third of all NHL. The therapeutic landscape for patients with FL has significantly expanded over the past decade, but the disease continues to be considered incurable. Hematopoietic cell transplantation (HCT) is potentially curative in some cases. Recently, the emergence of chimeric antigen receptor T-cell therapy (CAR-T) for patients with relapsed/refractory (R/R) FL has yielded impressive response rates and long-term remissions, but definitive statement on the curative potential of CAR-T is currently not possible due to limited patient numbers and relatively short follow up. A consensus on the contemporary role, optimal timing, and sequencing of HCT (autologous or allogeneic) and cellular therapies in FL is needed. As a result, the American Society of Transplantation and Cellular Therapy (ASTCT) Committee on Practice Guidelines endorsed this effort to formulate consensus recommendations to address this unmet need. The RAND-modified Delphi method was used to generate 15 consensus statements/recommendations. These clinical practice recommendations will help guide clinicians managing patients with FL. Of note, the use of bispecific antibodies in R/R FL was not in the scope of this project.

19.
Neuro Oncol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982561

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR)-T cell therapies targeting glioblastoma (GBM)-associated antigens such as interleukin-13 receptor subunit alpha-2 (IL-13Rα2) have achieved limited clinical efficacy to date, in part due to an immunosuppressive tumor microenvironment (TME) characterized by inhibitory molecules such as transforming growth factor-beta (TGF-ß). The aim of this study was to engineer more potent GBM-targeting CAR-T cells by countering TGF-ß-mediated immune suppression in the TME. METHODS: We engineered a single-chain, bispecific CAR targeting IL-13Rα2 and TGF-ß, which programs tumor-specific T cells to convert TGF-ß from an immunosuppressant to an immunostimulant. Bispecific IL-13Rα2/TGF-ß CAR-T cells were evaluated for efficacy and safety against both patient-derived GBM xenografts and syngeneic models of murine glioma. RESULTS: Treatment with IL-13Rα2/TGF-ß CAR-T cells leads to greater T-cell infiltration and reduced suppressive myeloid cell presence in the tumor-bearing brain compared to treatment with conventional IL-13Rα2 CAR-T cells, resulting in improved survival in both patient-derived GBM xenografts and syngeneic models of murine glioma. CONCLUSION: Our findings demonstrate that by reprogramming tumor-specific T-cell responses to TGF-ß, bispecific IL-13Rα2/TGF-ß CAR-T cells resist and remodel the immunosuppressive TME to drive potent anti-tumor responses in GBM.

20.
Asia Pac J Oncol Nurs ; 11(6): 100495, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38975609

RESUMO

Chimeric antigen receptor T cell (CAR-T) therapy is an immunotherapy that involves genetically modifying the patient's own T cells to express a chimeric antigen receptor, enabling them to recognize and destroy cancer cells. This treatment has revolutionized the prognosis and management of hematological malignancies, leading to a significant increase in long-term survivors. However, there is limited evidence regarding late sequelae and post-treatment care due to the recent emergence of this therapy. The rapid advancement of CAR-T therapies has created opportunities for advanced practice nurses to play a crucial role in coordinating care, providing education, and ensuring the ongoing well-being of survivors. This article provides an overview of the physical, psychosocial, and financial challenges faced by long-term survivors of CAR-T therapy and proposes a comprehensive nursing care plan to address these issues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA