Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurol Res ; 45(3): 248-259, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36215431

RESUMO

OBJECTIVES: White matter lesions (WML) are usually accompanied by cognitive decline, which consist of axonal loss and demyelination. CC chemokine ligand 21 (CCL21) and its receptor C-C chemokine receptor 7 (CCR7) belong to the chemokine family, which are involved in many diseases. However, their function in the central nervous system (CNS) is still unexplored. This study aimed to explore the role of CCL21/CCR7 axis in the pathological process of chronic ischemia-induced WML. METHODS: Bilateral common carotid artery stenosis (BCAS) was employed in C57BL/6 mice as the in vivo WML model. Microarray analysis was performed to detect the overall molecular changes induced in the endothelial cells by BCAS. Q-PCR, Western blotting, and immunofluorescence staining were performed to evaluate expression levels of the related molecules. The mice were injected with LV-CCL21-GFP virus in the corpus callosum to overexpress CCL21. WML degree was determined via MRI, and cognitive ability was assessed by Y-maze and novel object recognition tests. Myelin sheath integrity was evaluated via immunofluorescence staining. RESULTS: CCL21 was significantly downregulated in endothelial cells after BCAS and CCL21 overexpression alleviated BCAS-induced cognitive deficits and demyelination. Furthermore, CCR7 was found to be mainly expressed in oligodendrocytes (OLs) after exposed to hypoxia and CCR7 silencing blocked the protective effects induced by CCL21 overexpression. Conclusions CCL21/CCR7 axis may play a key role in demyelination induced by BCAS. This might provide a novel therapeutic target for WML.


Assuntos
Isquemia Encefálica , Estenose das Carótidas , Disfunção Cognitiva , Doenças Desmielinizantes , Camundongos , Animais , Receptores CCR7/genética , Receptores CCR7/metabolismo , Ligantes , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Isquemia Encefálica/complicações , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Doenças Desmielinizantes/complicações , Doenças Desmielinizantes/metabolismo
2.
Int J Biol Sci ; 18(4): 1476-1490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280672

RESUMO

Chemotherapeutic drugs have been successfully used to treat several cancers, including melanoma. However, metastasis occasionally occurs after chemotherapy. Here, we reported that paclitaxel (PTX) treatment for B16F10 tumour in mice led to an enhanced lymphatic metastasis of the melanoma cells, although a significant inhibition of tumour growth at the injection site was observed. Further study demonstrated that PTX upregulated the expression of C-C chemokine receptor type 7 (CCR7) in B16F10 cells, enhancing their migration through the activation of JNK and p38 signalling pathways. Loss of CCR7 or blockade of C-C motif chemokine ligand 21 (CCL21)/CCR7 axis abolished the pro-migration effect of PTX on B16F10 melanoma cells. Importantly, combination of PTX and CCR7 mAb could simultaneously delay the tumour growth and reduce the lymphatic metastasis in B16F10 melanoma. The blockade of CCL21/CCR7 axis may collectively serve as a strategy for lymphatic metastasis in some melanoma after chemotherapy.


Assuntos
Quimiocina CCL21 , Melanoma , Animais , Linhagem Celular Tumoral , Movimento Celular , Quimiocina CCL21/metabolismo , Quimiocina CCL21/farmacologia , Ligantes , Metástase Linfática , Melanoma/tratamento farmacológico , Camundongos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Receptores CCR7/metabolismo
3.
Front Immunol ; 12: 716405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566971

RESUMO

Naïve T cells (TN) constitutively recirculate through secondary lymphatic organs (SLOs), where they scan dendritic cells (DCs) for cognate peptide-loaded major histocompatibility complexes (pMHC). Continuous trafficking between SLOs not only enables rapid clonal selection but also ensures TN homeostasis by providing access to prosurvival signals from TCR, IL-7R, and the chemokine receptor CCR7. Inside the lymphoid tissue, CCR7-mediated TN motility is mainly driven by the Rac activator DOCK2, with a separate contribution by a phosphoinositide-3-kinase γ (PI3Kγ)-dependent pathway. Tec tyrosine kinases and the Rac activator Tiam1 constitute prominent downstream effectors of PI3K signaling. Yet, the precise role of Tec kinase versus Tiam1 signaling during CCR7-mediated TN migration and homeostasis remains incompletely understood. Here, we examined the function of the Tec family member interleukin-2-inducible T-cell kinase (Itk) and Tiam1 during TN migration in vitro and in vivo using intravital microscopy. Itk deficiency caused a mild decrease in CCR7-triggered TN migration, mirroring observations made with PI3Kγ;-/- T cells, while lack of Tiam1 did not affect TN motility. In silico modeling suggested that reduced migration in the absence of Itk does not result in a substantial decrease in the frequency of TN encounters with DCs within the lymphoid tissue. In contrast, Itk was important to maintain in vivo homeostasis of CD4+ TN, also in MHCII-deficient hosts. Taken together, our data suggest that Itk contributes to TN migration and survival by integrating chemokine receptor and TCR signaling pathways.


Assuntos
Movimento Celular/imunologia , Homeostase , Ativação Linfocitária/imunologia , Proteínas Tirosina Quinases/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Movimento Celular/genética , Quimiocina CCL21/metabolismo , Citocinas/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Ativação Linfocitária/genética , Camundongos , Proteínas Tirosina Quinases/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA