Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cells ; 13(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891121

RESUMO

Hypertension induces cardiac fibrotic remodelling characterised by the phenotypic switching of cardiac fibroblasts (CFs) and collagen deposition. We tested the hypothesis that Wnt1-inducible signalling pathway protein-1 (WISP-1) promotes CFs' phenotypic switch, type I collagen synthesis, and in vivo fibrotic remodelling. The treatment of human CFs (HCFs, n = 16) with WISP-1 (500 ng/mL) induced a phenotypic switch (α-smooth muscle actin-positive) and type I procollagen cleavage to an intermediate form of collagen (pC-collagen) in conditioned media after 24h, facilitating collagen maturation. WISP-1-induced collagen processing was mediated by Akt phosphorylation via integrin ß1, and disintegrin and metalloproteinase with thrombospondin motifs 2 (ADAMTS-2). WISP-1 wild-type (WISP-1+/+) mice and WISP-1 knockout (WISP-1-/-) mice (n = 5-7) were subcutaneously infused with angiotensin II (AngII, 1000 ng/kg/min) for 28 days. Immunohistochemistry revealed the deletion of WISP-1 attenuated type I collagen deposition in the coronary artery perivascular area compared to WISP-1+/+ mice after a 28-day AngII infusion, and therefore, the deletion of WISP-1 attenuated AngII-induced cardiac fibrosis in vivo. Collectively, our findings demonstrated WISP-1 is a critical mediator in cardiac fibrotic remodelling, by promoting CFs' activation via the integrin ß1-Akt signalling pathway, and induced collagen processing and maturation via ADAMTS-2. Thereby, the modulation of WISP-1 levels could provide potential therapeutic targets in clinical treatment.


Assuntos
Proteínas de Sinalização Intercelular CCN , Fibroblastos , Fibrose , Miocárdio , Proteínas Proto-Oncogênicas , Animais , Proteínas de Sinalização Intercelular CCN/metabolismo , Proteínas de Sinalização Intercelular CCN/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos dos fármacos , Humanos , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Miocárdio/patologia , Miocárdio/metabolismo , Colágeno/metabolismo , Angiotensina II/farmacologia , Camundongos Knockout , Colágeno Tipo I/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL
2.
J Transl Med ; 22(1): 601, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937782

RESUMO

CCN4 (cellular communication network factor 4), a highly conserved, secreted cysteine-rich matricellular protein is emerging as a key player in the development and progression of numerous disease pathologies, including cancer, fibrosis, metabolic and inflammatory disorders. Over the past two decades, extensive research on CCN4 and its family members uncovered their diverse cellular mechanisms and biological functions, including but not limited to cell proliferation, migration, invasion, angiogenesis, wound healing, repair, and apoptosis. Recent studies have demonstrated that aberrant CCN4 expression and/or associated downstream signaling is key to a vast array of pathophysiological etiology, suggesting that CCN4 could be utilized not only as a non-invasive diagnostic or prognostic marker, but also as a promising therapeutic target. The cognate receptor of CCN4 remains elusive till date, which limits understanding of the mechanistic insights on CCN4 driven disease pathologies. However, as therapeutic agents directed against CCN4 begin to make their way into the clinic, that may start to change. Also, the pathophysiological significance of CCN4 remains underexplored, hence further research is needed to shed more light on its disease and/or tissue specific functions to better understand its clinical translational benefit. This review highlights the compelling evidence of overlapping and/or diverse functional and mechanisms regulated by CCN4, in addition to addressing the challenges, study limitations and knowledge gaps on CCN4 biology and its therapeutic potential.


Assuntos
Proteínas de Sinalização Intercelular CCN , Animais , Humanos , Proteínas de Sinalização Intercelular CCN/metabolismo , Proteínas de Sinalização Intercelular CCN/genética , Doença , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Transdução de Sinais
3.
Am J Physiol Cell Physiol ; 326(3): C850-C865, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145300

RESUMO

Wnt1-inducible signaling protein 1 (WISP1/CCN4) is a secreted matricellular protein that is implicated in lung and airway remodeling. The macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been associated with chronic lung diseases. In this study, we aimed to investigate the WISP1 signaling pathway and its ability to induce the expression of MIF in primary cultures of fibroblasts from normal human lungs (HLFs). Our results showed that WISP1 significantly stimulated the expression of MIF in a concentration- and time-dependent fashion. In WISP1-induced expression of MIF, αvß5-integrin and chondroitin sulfate proteoglycans as well as Src tyrosine kinases, MAP kinases, phosphatidylinositol 3-kinase/Akt, PKC, and NF-κB were involved. WISP1-induced expression of MIF was attenuated in the presence of the Src kinase inhibitor PP2 or the MIF tautomerase activity inhibitor ISO-1. Moreover, WISP1 significantly increased the phosphorylation and activation of EGF receptor (EGFR) through transactivation by Src kinases. WISP1 also induced the expression of MIF receptor CD74 and coreceptor CD44, through which MIF exerts its effects on HLFs. In addition, it was found that MIF induced its own expression, as well as its receptors CD74/CD44, acting in an autocrine manner. Finally, WISP1-induced MIF promoted the expression of cyclooxygenase 2, prostaglandin E2, IL-6, and matrix metalloproteinase-2 demonstrating the regulatory role of WISP1-MIF axis in lung inflammation and remodeling involving mainly integrin αvß5, Src kinases, PKC, NF-κB, and EGFR. The specific signaling pathways involved in WISP1-induced expression of MIF may prove to be excellent candidates for novel targets to control inflammation in chronic lung diseases.NEW & NOTEWORTHY The present study demonstrates for the first time that Wnt1-inducible signaling protein 1 (WISP1) regulates migration inhibitory factor (MIF) expression and activity and identifies the main signaling pathways involved. The newly discovered WISP1-MIF axis may drive lung inflammation and could result in the design of novel targeted therapies in inflammatory lung diseases.


Assuntos
Pneumopatias , Fatores Inibidores da Migração de Macrófagos , Pneumonia , Humanos , Receptores ErbB , Pulmão , Fatores Inibidores da Migração de Macrófagos/genética , Metaloproteinase 2 da Matriz , NF-kappa B , Transdução de Sinais , Quinases da Família src
4.
Ann Agric Environ Med ; 30(3): 555-560, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37772534

RESUMO

INTRODUCTION AND OBJECTIVE: Wnt-1 signaling pathway protein 1 (WISP-1) and complement-C1q TNF-related protein 1 (CTRP1) are adipokines with possible opposite effects in regulating insulin sensitivity. The study investigated the correlation between circulating WISP-1 and CTRP1 in non-diabetic patients. Correlations between adipokines concentrations and biochemical and anthropometric parameters were also studied. MATERIAL AND METHODS: The cross-sectional study enrolled 107 adult patients without diabetes. Patients with obesity accounted for 52.3% of the study group. Clinical, anthropometric, and laboratory data, including serum levels of WISP-1 and CTRP1, were obtained. RESULTS: The moderate positive correlation between serum WISP-1 and CTRP1 concentrations was observed (p<0.000001, r=0.49). The correlation was more substantial in non-obese patients than in the obese group (r=0.66 and r=0.36, respectively; p<0.01). Circulating CTRP1 correlated positively with fasting insulin, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), total cholesterol, HDL cholesterol, and LDL cholesterol (p<0.05). WISP-1 level correlated with total cholesterol and HDL cholesterol concentrations (p<0.05). There was no significant difference in WISP-1 and CTRP1 concentrations between the groups with and without insulin resistance. The concentrations of WISP-1 and CTRP1 were significantly higher in females than in males (p<0.05). CONCLUSIONS: WISP-1 and CTRP1 may represent interrelated factors that antagonistically affect insulin resistance.

5.
Discov Oncol ; 14(1): 129, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452162

RESUMO

Enrichment of Veillonella parvula in the lung microbiota is strongly associated with non-small cell lung cancer (NSCLC) and induces the progression of lung adenocarcinoma in vivo, but its actual role and mechanism remain unexplored. This study analyzed the correlation between NSCLC and V. parvula abundance based on 16 s rRNA sequencing results. The effects of V. parvula on the progression of lung adenocarcinoma were observed in vivo and in vitro using a C57 bl/6j mouse tumor-bearing model, a bacterial cell co-culture model, combined with transcriptome sequencing, and a TCGA database to explore and validate the growth promotion of lung adenocarcinoma by V. parvula and its molecular mechanism. 16 s rRNA sequencing revealed that V. parvula was significantly enriched in lung adenocarcinoma. In vivo, V. parvula promoted the growth of lung adenocarcinoma in mice by suppressing the infiltration of tumor-associated T lymphocytes and peripheral T lymphocytes. It showed a higher affinity for lung adenocarcinoma in vitro and promoted lung adenocarcinoma cell proliferation through adhesion or intracellular invasion. Further analysis of differential gene expression and KEGG enrichment by transcriptome sequencing revealed that V. parvula induced CCN4 expression and activated NOD-like receptor and NF-κB signaling pathway in lung adenocarcinoma cells. Further analysis clarified that V. parvula promoted activation of the NF-κB pathway via Nod2/CCN4 signaling, which promoted lung adenocarcinoma cell proliferation. Thus, V. parvula mediates activation of the Nod2/CCN4/NF-κB signaling pathway to promote non-small cell lung adenocarcinoma progression, thereby providing a potential target for diagnosing and treating lung adenocarcinoma.

6.
J Cell Commun Signal ; 17(2): 321-332, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37202628

RESUMO

The liver has an inherent regenerative capacity via hepatocyte proliferation after mild-to-modest damage. When hepatocytes exhaust their replicative ability during chronic or severe liver damage, liver progenitor cells (LPC), also termed oval cells (OC) in rodents, are activated in the form of ductular reaction (DR) as an alternative pathway. LPC is often intimately associated with hepatic stellate cells (HSC) activation to promote liver fibrosis. The Cyr61/CTGF/Nov (CCN) protein family consists of six extracellular signaling modulators (CCN1-CCN6) with affinity to a repertoire of receptors, growth factors, and extracellular matrix proteins. Through these interactions, CCN proteins organize microenvironments and modulate cell signalings in a diverse variety of physiopathological processes. In particular, their binding to subtypes of integrin (αvß5, αvß3, α6ß1, αvß6, etc.) influences the motility and mobility of macrophages, hepatocytes, HSC, and LPC/OC during liver injury. This paper summarizes the current understanding of the significance of CCN genes in liver regeneration in relation to hepatocyte-driven or LPC/OC-mediated pathways. Publicly available datasets were also searched to compare dynamic levels of CCNs in developing and regenerating livers. These insights not only add to our understanding of the regenerative capability of the liver but also provide potential targets for the pharmacological management of liver repair in the clinical setting. Ccns in liver regeneration Restoring damaged or lost tissues requires robust cell growth and dynamic matrix remodeling. Ccns are matricellular proteins highly capable of influencing cell state and matrix production. Current studies have identified Ccns as active players in liver regeneration. Cell types, modes of action, and mechanisms of Ccn induction may vary depending on liver injuries. Hepatocyte proliferation is a default pathway for liver regeneration following mild-to-modest damages, working in parallel with the transient activation of stromal cells, such as macrophages and hepatic stellate cells (HSC). Liver progenitor cells (LPC), also termed oval cells (OC) in rodents, are activated in the form of ductular reaction (DR) and are associated with sustained fibrosis when hepatocytes lose their proliferative ability in severe or chronic liver damage. Ccns may facilitate both hepatocyte regeneration and LPC/OC repair via various mediators (growth factors, matrix proteins, integrins, etc.) for cell-specific and context-dependent functions.

7.
Cartilage ; 14(1): 67-75, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36546648

RESUMO

OBJECTIVES: Previously, we have shown the involvement of cellular communication network factor 4/Wnt-activated protein Wnt-1-induced signaling protein 1 (CCN4/WISP1) in osteoarthritic (OA) cartilage and its detrimental effects on cartilage. Here, we investigated characteristics of CCN4 in chondrocyte biology by exploring correlations of CCN4 with genes expressed in human OA cartilage with functional follow-up. DESIGN: Spearman correlation analysis was performed for genes correlating with CCN4 using our previously established RNA sequencing dataset of human preserved OA cartilage of the RAAK study, followed by a pathway enrichment analysis for genes with ρ ≥|0.6.| Chondrocyte migration in the absence or presence of CCN4 was determined in a scratch assay, measuring scratch size using a live cell imager for up to 36 h. Changes in expression levels of 12 genes, correlating with CCN4 and involved in migratory processes, were determined with reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS: Correlation of CCN4 with ρ ≥|0.6| was found for 58 genes in preserved human OA cartilage. Pathway analysis revealed "neural crest cell migration" as most significant enriched pathway, containing among others CORO1C, SEMA3C, and SMO. Addition of CCN4 to primary chondrocytes significantly enhance chondrocyte migration as demonstrated by reduced scratch size over the course of 36 h, but at the timepoints measured no effect was observed on mRNA expression of the 12 genes. CONCLUSION: CCN4 increases cell migration of human primary OA chondrocytes. Since WISP1 expression is known to be increased in OA cartilage, this may serve to direct chondrocytes toward cartilage defects and orchestrate repair.


Assuntos
Cartilagem Articular , Condrócitos , Humanos , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , Células Cultivadas , Diferenciação Celular , Transdução de Sinais
8.
Methods Mol Biol ; 2582: 13-21, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36370340

RESUMO

CCN4 (also known as WNT1-Inducible Signaling Pathway Protein 1 or WISP1) is a 367 amino acid, 40 kDa protein located on chromosome 8q24.1-8q24.3. Prior studies have provided support for a pro-inflammatory role for CCN4. We have shown recently that CCN4 expression is associated with advanced disease, epithelial-mesenchymal transition, and an inflamed tumor microenvironment in multiple solid tumors. We detail here the CCN4 tissue microarray immunofluorescence protocol related to these findings.


Assuntos
Proteínas de Sinalização Intercelular CCN , Neoplasias , Humanos , Proteínas de Sinalização Intercelular CCN/genética , Proteínas de Sinalização Intercelular CCN/metabolismo , Microambiente Tumoral , Transição Epitelial-Mesenquimal , Imunofluorescência
9.
Methods Mol Biol ; 2582: 191-208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36370351

RESUMO

Expanding the number of insulin-producing beta cells through reactivation of their replication has been proposed as a therapy to prevent or delay the appearance of diabetes. Using antibody arrays, we identified CCN4/Wisp1 as a circulating factor enriched in preweaning mice, a period in which beta cells exhibit a dramatic increase in number. This finding led us to investigate the involvement of CCN4 in beta cell proliferation. We demonstrated that CCN4 promotes adult beta cell proliferation in vitro in cultured isolated islets, and in vivo in islets transplanted into the anterior chamber of the eye. In this chapter, we present the methodology that was used to study proliferation in both settings.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Camundongos , Animais , Células Secretoras de Insulina/fisiologia , Proliferação de Células
10.
Methods Mol Biol ; 2582: 369-390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36370364

RESUMO

The matricellular protein Wnt-induced secreted protein 1 (WISP1) is the fourth member of the CCN family of proteins, which has been shown to affect tissues of the musculoskeletal system. In the context of the musculoskeletal disorder osteoarthritis, our lab studied the function of CCN4/WISP1 in joint tissues, including synovium and cartilage, using both gain- and loss-of-function approaches. In mice, this was done by genetic engineering and recombination to generate mice deficient in CCN4/WISP1 protein. Various experimental models of osteoarthritis with different characteristics were induced in these mice. Moreover, CCN4/WISP1 levels in joints were experimentally increased by adenoviral transfections. Osteoarthritis pathology was determined using histology, and the effect of different CCN4/WISP1 levels on gene expression was evaluated in individual tissues. Effects of high levels of CCN4/WISP1 on chondrocytes were studied with an in vitro chondrocyte pellet model. In this chapter, we describe the procedures to conduct these experiments.


Assuntos
Proteínas de Sinalização Intercelular CCN , Osteoartrite , Camundongos , Animais , Proteínas de Sinalização Intercelular CCN/genética , Proteínas de Sinalização Intercelular CCN/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Condrócitos/metabolismo , Membrana Sinovial/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo
11.
Cell Metab ; 34(9): 1377-1393.e8, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35987202

RESUMO

Fibrosis is the major risk factor associated with morbidity and mortality in patients with non-alcoholic steatohepatitis (NASH)-driven chronic liver disease. Although numerous efforts have been made to identify the mediators of the initiation of liver fibrosis, the molecular underpinnings of fibrosis progression remain poorly understood, and therapies to arrest liver fibrosis progression are elusive. Here, we identify a pathway involving WNT1-inducible signaling pathway protein 1 (WISP1) and myocardin-related transcription factor (MRTF) as a central mechanism driving liver fibrosis progression through the integrin-dependent transcriptional reprogramming of myofibroblast cytoskeleton and motility. In mice, WISP1 deficiency protects against fibrosis progression, but not fibrosis onset. Moreover, the therapeutic administration of a novel antibody blocking WISP1 halted the progression of existing liver fibrosis in NASH models. These findings implicate the WISP1-MRTF axis as a crucial determinant of liver fibrosis progression and support targeting this pathway by antibody-based therapy for the treatment of NASH fibrosis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Fatores de Transcrição , Animais , Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Nucleares , Transdução de Sinais , Transativadores , Fatores de Transcrição/metabolismo
12.
EMBO Rep ; 23(4): e54127, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35099839

RESUMO

Cell Communication Network factor 4 (CCN4/WISP1) is a matricellular protein secreted by cancer cells that promotes metastasis by inducing the epithelial-mesenchymal transition. While metastasis limits survival, limited anti-tumor immunity also associates with poor patient outcomes with recent work linking these two clinical correlates. Motivated by increased CCN4 correlating with dampened anti-tumor immunity in primary melanoma, we test for a direct causal link by knocking out CCN4 (CCN4 KO) in the B16F0 and YUMM1.7 mouse melanoma models. Tumor growth is reduced when CCN4 KO melanoma cells are implanted in immunocompetent but not in immunodeficient mice. Correspondingly, CD45+ tumor-infiltrating leukocytes are significantly increased in CCN4 KO tumors, with increased natural killer and CD8+ T cells and reduced myeloid-derived suppressor cells (MDSC). Among mechanisms linked to local immunosuppression, CCN4 suppresses IFN-gamma release by CD8+ T cells and enhances tumor secretion of MDSC-attracting chemokines like CCL2 and CXCL1. Finally, CCN4 KO potentiates the anti-tumor effect of immune checkpoint blockade (ICB) therapy. Overall, our results suggest that CCN4 promotes tumor-induced immunosuppression and is a potential target for therapeutic combinations with ICB.


Assuntos
Melanoma Experimental , Melanoma , Animais , Linfócitos T CD8-Positivos , Comunicação Celular , Tolerância Imunológica , Terapia de Imunossupressão , Melanoma/metabolismo , Camundongos
13.
J Cell Commun Signal ; 15(3): 421-432, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34080128

RESUMO

Patients with abdominal aortic aneurysms are frequently treated with high-risk surgery. A pharmaceutical treatment to reverse aneurysm progression could prevent the need for surgery and save both lives and healthcare resources. Since CCN4 regulates cell migration, proliferation and apoptosis, processes involved in aneurysm progression, it is a potential regulator of aneurysm progression. We investigated the role of CCN4 in a mouse aneurysm model, using apolipoprotein-E knockout (ApoE-/-) mice fed high fat diet and infused with Angiotensin II (AngII). Blood pressure was similarly elevated in CCN4-/-ApoE-/- mice and CCN4+/+ApoE-/- mice (controls) in response to AngII infusion. Deletion of CCN4 significantly reduced the number of ruptured aortae, both thoracic and abdominal aortic area, and aneurysm grade score, compared to controls. Additionally, the frequency of vessel wall remodelling and the number of elastic lamina breaks was significantly suppressed in CCN4-/-ApoE-/- mice compared to controls. Immunohistochemistry revealed a significantly lower proportion of macrophages, while the proportion of smooth muscle cells was not affected by the deletion of CCN4. There was also a reduction in both proliferation and apoptosis in CCN4-/-ApoE-/- mice compared to controls. In vitro studies showed that CCN4 significantly increased monocyte adhesion beyond that seen with TNFα and stimulated macrophage migration by more than threefold. In summary, absence of CCN4 reduced aneurysm severity and improved aortic integrity, which may be the result of reduced macrophage infiltration and cell apoptosis. Inhibition of CCN4 could offer a potential therapeutic approach for the treatment of aneurysms.

14.
Cells ; 10(5)2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946738

RESUMO

Liver fibrosis is a critical complication of obesity-induced fatty liver disease. Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4), a novel adipokine associated with visceral obesity and insulin resistance, also contributes to lung and kidney fibrosis. The aim of the present study was to investigate the role of CCN4 in liver fibrosis in severe obesity. For this, human liver biopsies were collected from 35 severely obese humans (BMI 42.5 ± 0.7 kg/m2, age 46.7 ± 1.8 y, 25.7% males) during bariatric surgery and examined for the expression of CCN4, fibrosis, and inflammation markers. Hepatic stellate LX-2 cells were treated with human recombinant CCN4 alone or in combination with LPS or transforming growth factor beta (TGF-ß) and examined for fibrosis and inflammation markers. CCN4 mRNA expression in the liver positively correlated with BMI and expression of fibrosis markers COL1A1, COL3A1, COL6A1, αSMA, TGFB1, extracellular matrix turnover enzymes TIMP1 and MMP9, and the inflammatory marker ITGAX/CD11c. In LX-2 cells, the exposure to recombinant CCN4 caused dose-dependent induction of MMP9 and MCP1. CCN4 potentiated the TGF-ß-mediated induction of COL3A1, TIMP1, and MCP1 but showed no interaction with LPS treatment. Our results suggest a potential contribution of CCN4 to the early pathogenesis of obesity-associated liver fibrosis.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Obesidade Mórbida/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Adulto , Proteínas de Sinalização Intercelular CCN/genética , Antígenos CD11/genética , Antígenos CD11/metabolismo , Linhagem Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Colágeno/genética , Colágeno/metabolismo , Feminino , Humanos , Fígado/patologia , Cirrose Hepática/etiologia , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Obesidade Mórbida/complicações , Proteínas Proto-Oncogênicas/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
15.
Medicina (Kaunas) ; 57(2)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498604

RESUMO

Insulin resistance refers to the diminished response of peripheral tissues to insulin and is considered the major risk factor for type 2 diabetes. Although many possible mechanisms have been reported to develop insulin resistance, the exact underlying processes remain unclear. In recent years, the role of adipose tissue as a highly active metabolic and endocrine organ, producing proteins called adipokines and their multidirectional activities has gained interest. The physiological effects of adipokines include energy homeostasis and insulin sensitivity regulation. In addition, an excess of adipose tissue is followed by proinflammatory state which results in dysregulation of secreted cytokines contributing to insulin resistance. Wingless-type (Wnt) inducible signalling pathway protein-1 (WISP-1), also known as CCN4, has recently been described as a novel adipokine, whose circulating levels are elevated in obese and insulin resistant individuals. Growing evidence suggests that WISP-1 may participate in the impaired glucose homeostasis. In this review, we characterize WISP-1 and summarize the latest reports on the role of WISP-1 in obesity, insulin resistance and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Obesidade , Proteína Fosfatase 2C , Adipocinas , Tecido Adiposo , Humanos , Proteína Fosfatase 2C/genética
16.
Curr Neurovasc Res ; 17(3): 327-331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32216738

RESUMO

The prevalence of diabetes mellitus (DM) continues to increase throughout the world. In the United States (US) alone, approximately ten percent of the population is diagnosed with DM and another thirty-five percent of the population is considered to have prediabetes. Yet, current treatments for DM are limited and can fail to block the progression of multi-organ failure over time. Wnt1 inducible signaling pathway protein 1 (WISP1), also known as CCN4, is a matricellular protein that offers exceptional promise to address underlying disease progression and develop innovative therapies for DM. WISP1 holds an intricate relationship with other primary pathways of metabolism that include protein kinase B (Akt), mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and mammalian forkhead transcription factors (FoxOs). WISP1 is an exciting prospect to foster vascular as well as neuronal cellular protection and regeneration, control cellular senescence, block oxidative stress injury, and maintain glucose homeostasis. However, under some scenarios WISP1 can promote tumorigenesis, lead to obesity progression with adipocyte hyperplasia, foster fibrotic hepatic disease, and lead to dysregulated inflammation with the progression of DM. Given these considerations, it is imperative to further elucidate the complex relationship WISP1 holds with other vital metabolic pathways to successfully develop WISP1 as a clinically effective target for DM and metabolic disorders.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Proteínas de Sinalização Intercelular CCN/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/uso terapêutico , Animais , Proteínas de Sinalização Intercelular CCN/farmacologia , Humanos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Redes e Vias Metabólicas/fisiologia , Proteínas Proto-Oncogênicas/farmacologia
17.
J Cell Commun Signal ; 14(1): 101-109, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31782053

RESUMO

BACKGROUND: Wnt1-inducible signaling pathway protein 1, or cellular communication network factor 4 (CCN4), a member of CCN family of secreted, extracellular matrix associated signaling proteins, recently was validated as a novel adipose tissue derived cytokine. OBJECTIVE: To assess the relationships between circulating CCN4, adipose tissue distribution and function, and chronic low-grade inflammation in subjects with type 2 diabetes. METHODS: We observed 156 patients with type 2 diabetes and 24 healthy controls. Serum levels of CCN4, hsCRP and alpha1-acid glycoprotein (alpha1-AGP) were measured by ELISA. Serum concentrations of leptin, resistin, visfatin, adipsin, adiponectin, IL-6, IL-8, IL-18 and TNF-alpha were determined by multiplex analysis. Fat mass and distribution was assessed by DEXA. Mean diameter of adipocytes was estimated in samples of subcutaneous adipose tissue. RESULTS: Patients with diabetes had higher levels of circulating CCN4, leptin, resistin, adipsin, visfatin, hsCRP, alpha1-AGP, and IL-6 (all p < 0.02). The CCN4 concentration correlated positively with percentage of fat mass in central abdominal area, as well as with leptin, resistin and visfatin levels; negative correlation was found between CCN4 and mean adipocyte diameter. In multiple regression analysis fat mass in central abdominal area was independent predictor for CCN4 concentration. CONCLUSION: In subjects with type 2 diabetes serum levels of CCN4 are associated with central abdominal fat mass and adipose tissue dysfunction.

18.
J Biol Chem ; 294(14): 5261-5280, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723155

RESUMO

Besides intrinsic changes, malignant cells also release soluble signals that reshape their microenvironment. Among these signals is WNT1-inducible signaling pathway protein 1 (WISP1), a secreted matricellular protein whose expression is elevated in several cancers, including melanoma, and is associated with reduced survival of patients diagnosed with primary melanoma. Here, we found that WISP1 knockout increases cell proliferation and represses wound healing, migration, and invasion of mouse and human melanoma cells in multiple in vitro assays. Metastasis assays revealed that WISP1 knockout represses tumor metastasis of B16F10 and YUMM1.7 melanoma cells in both C57BL/6Ncrl and NOD-scid IL2Rγnull (NSG) mice. WT B16F10 cells having an invasion phenotype in a transwell assay possessed a gene expression signature similar to that observed in the epithelial-mesenchymal transition (EMT), including E-cadherin repression and fibronectin and N-cadherin induction. Upon WISP1 knockout, expression of these EMT signature genes went in the opposite direction in both mouse and human cell lines, and EMT-associated gene expression was restored upon exposure to media containing WISP1 or to recombinant WISP1 protein. In vivo, Wisp1 knockout-associated metastasis repression was reversed by the reintroduction of either WISP1 or snail family transcriptional repressor 1 (SNAI1). Experiments testing EMT gene activation and inhibition with recombinant WISP1 or kinase inhibitors in B16F10 and YUMM1.7 cells suggested that WISP1 activates AKT Ser/Thr kinase and that MEK/ERK signaling pathways shift melanoma cells from proliferation to invasion. Our results indicate that WISP1 present within the tumor microenvironment stimulates melanoma invasion and metastasis by promoting an EMT-like process.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Melanoma Experimental/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Microambiente Tumoral , Animais , Proteínas de Sinalização Intercelular CCN/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células NIH 3T3 , Invasividade Neoplásica , Metástase Neoplásica , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
19.
Cell Stem Cell ; 24(3): 433-446.e7, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30686765

RESUMO

Research on age-related regenerative failure of skeletal muscle has extensively focused on the phenotypes of muscle stem cells (MuSCs). In contrast, the impact of aging on regulatory cells in the MuSC niche remains largely unexplored. Here, we demonstrate that aging impairs the function of mouse fibro-adipogenic progenitors (FAPs) and thereby indirectly affects the myogenic potential of MuSCs. Using transcriptomic profiling, we identify WNT1 Inducible Signaling Pathway Protein 1 (WISP1) as a FAP-derived matricellular signal that is lost during aging. WISP1 is required for efficient muscle regeneration and controls the expansion and asymmetric commitment of MuSCs through Akt signaling. Transplantation of young FAPs or systemic treatment with WISP1 restores the myogenic capacity of MuSCs in aged mice and rescues skeletal muscle regeneration. Our work establishes that loss of WISP1 from FAPs contributes to MuSC dysfunction in aged skeletal muscles and demonstrates that this mechanism can be targeted to rejuvenate myogenesis.


Assuntos
Adipócitos/metabolismo , Envelhecimento/metabolismo , Proteínas de Sinalização Intercelular CCN/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Células-Tronco/metabolismo , Adipócitos/citologia , Adipogenia , Animais , Proteínas de Sinalização Intercelular CCN/deficiência , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/citologia , Proteínas Proto-Oncogênicas/deficiência , Células-Tronco/citologia
20.
Rheumatology (Oxford) ; 58(6): 1065-1074, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649473

RESUMO

OBJECTIVES: Previously, we have shown the involvement of Wnt-activated protein Wnt-1-induced signaling protein 1 (WISP1) in the development of OA in mice. Here, we aimed to characterize the relation between WISP1 expression and human OA and its regulatory epigenetic determinants. METHODS: Preserved and lesioned articular cartilage from end-stage OA patients and non-OA-diagnosed individuals was collected. WISP1 expression was determined using immunohistochemistry and damage was classified using Mankin scoring. RNA expression and DNA methylation were assessed in silico from genome-wide datasets (microarray analysis and RNA sequencing, and 450 k-methylationarrays, respectively). Effects of WISP1 were tested in pellet cultures of primary human chondrocytes. RESULTS: WISP1 expression in cartilage of OA patients was increased compared with non-OA-diagnosed controls and, within OA patients, WISP1 was even higher in lesioned compared with preserved regions, with expression strongly correlating with Mankin score. In early symptomatic OA patients with disease progression, higher synovial WISP1 expression was observed as compared with non-progressors. Notably, increased WISP1 expression was inversely correlated with methylation levels of a positional CpG-dinucleotide (cg10191240), with lesioned areas showing strong hypomethylation for this CpG as compared with preserved cartilage. Additionally, we observed that methylation levels were allele-dependent for an intronic single-nucleotide polymorphism nearby cg10191240. Finally, addition of recombinant WISP1 to pellets of primary chondrocytes strongly inhibited deposition of extracellular matrix as reflected by decreased pellet circumference, proteoglycan content and decreased expression of matrix components. CONCLUSION: Increased WISP1 expression is found in lesioned human articular cartilage, and appears epigenetically regulated via DNA methylation. In vitro assays suggest that increased WISP1 is detrimental for cartilage integrity.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite do Joelho/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Condrócitos/metabolismo , Metilação de DNA , Epigênese Genética , Humanos , Articulação do Joelho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA