Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Am J Clin Pathol ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39288406

RESUMO

OBJECTIVES: Classic Hodgkin lymphoma (CHL) is characterized by infrequent neoplastic Hodgkin and Reed-Sternberg (HRS) cells in an inflammatory background. The diagnostic utility of CC-chemokine receptor 7 (CCR7) in CHL was explored using flow cytometry and immunohistochemistry (IHC). METHODS: Neoplastic specimens and non-neoplastic lymph nodes were immunophenotyped and CCR7 expression was measured semiquantitatively by flow cytometry (clone 3D12) and IHC (clone 150503). RESULTS: Our results showed that CCR7 was expressed on HRS cells in the vast majority of CHL cases (45/48 by flow cytometry, 57/59 by IHC) but rarely expressed in neoplastic cells in diffuse large B-cell lymphoma, not otherwise specified (1/25 by flow cytometry, 2/40 by IHC) and nodular lymphocyte predominant Hodgkin lymphoma (0/4 by flow cytometry, 1/13 by IHC). Primary mediastinal large B-cell lymphoma (PMLBCL) revealed weak CCR7 expression by flow cytometry in most cases (8/10) but only occasionally by IHC (2/12). Both cases (2/2) of T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL) also showed CCR7 expression detected by flow cytometry compared with IHC (0/7). The HRS cells demonstrated a greater percentage of positive cells and greater antigen intensity than the other B-cell lymphomas by IHC. The expression identified by flow cytometry in PMLBCL and THRLBCL but not by IHC suggests that there may be differences in the detection capabilities of the 2 techniques or the 2 CCR7 clones used. CONCLUSIONS: The expression of CCR7 in HRS cells suggests its potential utility in differentiating CHL from other B-cell lymphomas. Incorporating CCR7 into flow cytometry and IHC panels may further enhance the diagnostic sensitivity of CHL.

2.
Cancers (Basel) ; 16(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39001456

RESUMO

BACKGROUND: We aim to investigate any possible associations between chemokine receptor expression and responses to neoadjuvant chemotherapy (NAC) along with outcomes in patients with triple-negative breast cancer (TNBC) with locally advanced disease. METHOD: Expressions of chemokine receptors were examined immunohistochemically after staining archival tissue of surgical specimens (n = 63) using specific antibodies for CCR5, CCR7, CXCR4, and CXCR5. RESULTS: Patients with high CCR5, CCR7, CXCR4, and CXCR5 expression on tumors and high CXCR4 expression on tumor-infiltrating lymphocytes (TILs) were less likely to have a pathological complete response (pCR) or Class 0-I RCB-Index compared to others. Patients with residual lymph node metastases (ypN-positive), high CCR5TM(tumor), and high CXCR4TM expressions had an increased hazard ratio (HR) compared to others (DFS: HR = 2.655 [1.029-6.852]; DSS: HR = 2.763 [1.008-7.574]), (DFS: HR = 2.036 [0.805-5.148]; DSS: HR = 2.689 [1.020-7.090]), and (DFS: HR = 2.908 [1.080-7.829]; DSS: HR = 2.132 (0.778-5.846)), respectively. However, patients without CXCR5TIL expression had an increased HR compared to those with CXCR5TIL (DFS: 2.838 [1.266-6.362]; DSS: 4.211 [1.770-10.016]). CONCLUSIONS: High expression of CXCR4TM and CCR5TM was found to be associated with poor prognosis, and CXCR5TM was associated with poor chemotherapy response in the present cohort with locally advanced TNBC. Our results suggest that patients with TNBC could benefit from a chemokine receptor inhibitor therapy containing neoadjuvant chemotherapy protocols.

3.
Cell Signal ; 122: 111305, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39067836

RESUMO

OBJECTIVE: C-C motif chemokine receptor 7 (CCR7) significantly influences tumors onset and progression, yet its impact on the tumor microenvironment (TME) and specific mechanisms remain elusive. Inflammatory Cancer-Associated Fibroblasts (iCAF), a vital subtype of Cancer-Associated Fibroblasts (CAF), play a critical role in regulating the TME and tumor growth, though the underlying molecular mechanisms are not fully understood. This study aims to determine whether CCR7 participates in tumor regulation by iCAF and to elucidate the specific mechanisms involved. METHODS: Differential gene analysis of CAF subtypes in CCR7 knockout and wild-type groups was conducted using single-cell data. Animal models facilitated the extraction of primary iCAF cells via flow cytometry sorting. Changes in DUSP1 expression and the efficiency of lentivirus-mediated knockdown and overexpression were examined through qPCR and Western Blot. MOC1 and MOC2 cells were co-cultured with iCAF, with subsequent validation of changes in tumor cell proliferation, migration, and invasion using CCK8, EdU, and wound healing assays. ELISA was employed to detect changes in TGF-ß1 concentration in the iCAF supernatant. RESULTS: CAF was categorized into three subtypes-myCAF, iCAF, and apCAF-based on single-cell data. Analysis revealed a significant increase in DUSP1 expression in iCAF from the CCR7 knockout group, confirmed by in vitro experiments. Co-culturing MOC1 and MOC2 cells with iCAF exhibiting lentivirus-mediated DUSP1 knockdown resulted in inhibited tumor cell proliferation, invasion, and migration. In contrast, co-culture with iCAF overexpressing DUSP1 enhanced these capabilities. Additionally, the TGF-ß1 concentration in the supernatant increased in the DUSP1 knockdown iCAF group, whereas it decreased in the DUSP1 overexpression group. CONCLUSION: The CCR7/DUSP1 signaling axis regulates tumor growth by modulating TGF-ß1 secretion in iCAF.


Assuntos
Proliferação de Células , Fosfatase 1 de Especificidade Dupla , Receptores CCR7 , Transdução de Sinais , Animais , Humanos , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular , Fosfatase 1 de Especificidade Dupla/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Regulação Neoplásica da Expressão Gênica , Receptores CCR7/metabolismo , Receptores CCR7/genética , Microambiente Tumoral
4.
Oncoimmunology ; 13(1): 2369373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915784

RESUMO

Dendritic cells (DCs) are the main antigen presenting cells of the immune system and are essential for anti-tumor responses. DC-based immunotherapies are used in cancer treatment, but their functionality is not optimized and their clinical efficacy is currently limited. Approaches to improve DC functionality in anti-tumor immunity are therefore required. We have previously shown that the loss of ß2-integrin-mediated adhesion leads to epigenetic reprogramming of bone marrow-derived DCs (BM-DCs), resulting in an increased expression of costimulatory markers (CD86, CD80, and CD40), cytokines (IL-12) and the chemokine receptor CCR7. We now show that the loss of ß2-integrin-mediated adhesion of BM-DCs also leads to a generally suppressed metabolic profile, with reduced metabolic rate, decreased ROS production, and lowered glucose uptake in cells. The mRNA levels of glycolytic enzymes and glucose transporters were reduced, indicating transcriptional regulation of the metabolic phenotype. Surprisingly, although signaling through a central regulator of immune cell metabolisms, the mechanistic target of rapamycin (mTOR), was increased in BM-DCs with dysfunctional integrins, rapamycin treatment revealed that mTOR signaling was not involved in suppressing DC metabolism. Instead, bioinformatics and functional analyses showed that the Ikaros transcription factor may be involved in regulating the metabolic profile of non-adhesive DCs. Inversely, we found that induction of metabolic stress through treatment of cells with low levels of an inhibitor of glycolysis, 2-deoxyglucose (2DG), led to increased BM-DC activation. Specifically, 2DG treatment led to increased levels of Il-12 and Ccr7 mRNA, increased production of IL-12, increased levels of cell surface CCR7 and increased in vitro migration and T cell activation potential. Furthermore, 2DG treatment led to increased histone methylation in cells (H3K4me3, H3K27me3), indicating metabolic reprogramming. Finally, metabolic stress induced by 2DG treatment led to improved BM-DC-mediated anti-tumor responses in vivo in a melanoma cancer model, B16-OVA. In conclusion, our results indicate a role for ß2-integrin-mediated adhesion in regulating a novel type of metabolic reprogramming of DCs and DC-mediated anti-tumor responses, which may be targeted to enhance DC-mediated anti-tumor responses in cancer immunotherapy.


Assuntos
Antígenos CD18 , Células Dendríticas , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Animais , Camundongos , Antígenos CD18/metabolismo , Antígenos CD18/genética , Camundongos Endogâmicos C57BL , Adesão Celular , Receptores CCR7/metabolismo , Receptores CCR7/genética , Melanoma Experimental/patologia , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Humanos , Reprogramação Metabólica
5.
Immun Ageing ; 21(1): 33, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762550

RESUMO

BACKGROUND: Research has suggested significant correlations among ageing, immune microenvironment, inflammation and tumours. However, the relationships among ageing, immune microenvironment, cystitis and bladder urothelial carcinoma (BLCA) in the bladder have rarely been reported. METHODS: Bladder single-cell and transcriptomic data from young and old mice were used for immune landscape analysis. Transcriptome, single-cell and The Cancer Genome Atlas Program datasets of BLCA and interstitial cystitis/bladder pain syndrome (IC/BPS) were used to analyse immune cell infiltration and molecular expression. Bladder tissues from mice, IC/BPS and BLCA were collected to validate the results. RESULTS: Eight types of immune cells (macrophages, B-cells, dendritic cells, T-cells, monocytes, natural killer cells, γδ T-cells and ILC2) were identified in the bladder of mice. Aged mice bladder tissues had a significantly higher number of T-cells, γδ T-cells, ILC2 and B-cells than those in the young group (P < 0.05). Three types of T-cells (NK T-cells, γδ T-cells and naïve T-cells) and three types of B-cells (follicular B-cells, plasma and memory B-cells) were identified in aged mice bladder. Chemokine receptor 7 (CCR7) is highly expressed in aged bladder, IC/BPS and BLCA (P < 0.05). CCR7 is likely to be involved in T- and B-cell infiltration in aged bladder, IC/BPS and BLCA. Interestingly, the high CCR7 expression on BLCA cell membranes was a prognostic protective factor. CONCLUSIONS: In this study, we characterised the expression profiles of immune cells in bladder tissues of aged and young mice and demonstrated that CCR7-mediated T- and B-cell filtration contributes to the development of bladder ageing, IC/BPS and BLCA.

6.
Transl Oncol ; 44: 101924, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430712

RESUMO

BACKGROUND: Head and neck cancer is the sixth most common malignancy worldwide, and oral squamous cell carcinoma (OSCC) is the most common head and neck cancer, being one of the leading causes of cancer morbidity and mortality worldwide. CC Chemokine receptor 7(CCR7) is a multifunctional G protein-coupled trans-membrane chemokine that affects immune cell chemotaxis, migration, and cancer progression through its interaction with its ligands C-C motif chemokine ligand 19(CCL19) and C-C motif chemokine ligand 21(CCL21). Numerous studies have demonstrated the involvement of CCR7 in the malignant progression of a variety of cancers, reflecting the pro-cancer properties of CCR7. The Cancer Genome Atlas data suggests CCR7 has elevated expression in oral cancer. Specifically, CCR7 expression in tumor microenvironment (TME) may regulate the ability of some immune cells to engage in anti-tumor immune responses. Since CD8+ T cells have become a key immunotherapeutic target, the role of CCR7 in antitumor immune response of naïve CD8+ T cells in TME has not been thoroughly investigated. METHODS: A CCR7 knockout mouse model was constructed, and the mechanism of ccr7 on the regulation of tumor microenvironment by naïve CD8+ T cells was verified under the guidance of single-cell RNA sequencing combined with in vivo animal experiments and in vitro cell experiments. RESULTS: CCR7 is knocked out with impaired tumor growth and altered CD8+ T cell profiles, revealing the importance of this protein in OSCC. CONCLUSIONS: Inhibition of CCR7 enhances CD8+ T cell activation, proliferation, and anti-tumor function, suggesting its potential as a therapeutic target.

7.
Biosensors (Basel) ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534251

RESUMO

The human CC chemokine receptor 7 (CCR7) is activated by two natural ligands, CC chemokine ligand 19 (CCL19) and 21 (CCL21). The CCL19-CCL21-CCR7 axis has been extensively studied in vitro, but there is still debate over whether CCL21 is an overall weaker agonist or if the axis displays biased signalling. In this study, we performed a systematic analysis at the transducer level using NanoBRET-based methodologies in three commonly used cellular backgrounds to evaluate pathway and ligand preferences, as well as ligand bias and the influence of the cellular system thereon. We found that both CCL19 and CCL21 activated all cognate G proteins and some non-cognate couplings in a cell-type-dependent manner. Both ligands recruited ß-arrestin1 and 2, but the potency was strongly dependent on the cellular system. Overall, CCL19 and CCL21 showed largely conserved pathway preferences, but small differences were detected. However, these differences only consolidated in a weak ligand bias. Together, these data suggest that CCL19 and CCL21 share mostly overlapping, weakly biased, transducer profiles, which can be influenced by the cellular context.


Assuntos
Transdução de Sinais , Humanos , Receptores CCR7/metabolismo , Ligantes
8.
J Exp Clin Cancer Res ; 43(1): 94, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539232

RESUMO

BACKGROUND: Studies have shown that CCR7, an important inflammatory factor, can promote the proliferation and metastasis of oral squamous cell carcinoma (OSCC), but its role in the tumor microenvironment (TME) remains unclear. This paper explores the role of CCR7 in the TME of OSCC. METHODS: In this work, we constructed CCR7 gene knockout mice and OSCC mouse models. Single-cell RNA sequencing (scRNA-seq) and bioinformatics were used to analyze the differences in the OSCC microenvironment between three CCR7 gene knockout mice (KO) and three wild-type mice (WT). Immunohistochemistry, immunofluorescence staining, and flow cytometry were used to analyze the expression of key genes in significantly different cell types between the KO and WT groups. An in vitro experiment was used to verify the effect of CCR7 on M2 macrophage polarization. RESULTS: In the mouse OSCC models, the tumor growth rate in the KO group was significantly lower than that in the WT group. Eight main cell types (including tumor cells, fibroblasts, macrophages, granulocytes, T cells, endothelial cells, monocytes, and B cells) were identified by Seurat analysis. The scRNA-seq results showed that the proportion of tumor cells was lower, but the proportion of inflammatory cells was significantly higher in the KO group than in the WT group. CellPhoneDB analysis results indicated a strong interaction relationship between tumor cells and macrophages, T cells, fibroblasts, and endothelial cells. Functional enrichment results indicated that the expression level of the Dusp1 gene in the KO group was generally higher than that in the WT group in various cell types. Macrophage subclustering results indicated that the proportion of M2 macrophages in the KO group was lower than that in the WT group. In vitro experimental results showed that CCR7 can promote M2 macrophage polarization, thus promoting the proliferation, invasion and migration of OSCC cells. CONCLUSIONS: CCR7 gene knockout can significantly inhibit the growth of mouse oral squamous cell carcinoma by promoting the polarization of M2 macrophages.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Camundongos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Neoplasias Bucais/patologia , Receptores CCR7/genética , Análise de Sequência de RNA , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral/genética
9.
J Asian Nat Prod Res ; 26(6): 699-713, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38213072

RESUMO

Astragaloside IV (AST) has been confirmed to have antiasthmatic effects. However, the underline mechanism is unclear. The study aimed to explore the treatment mechanism of AST based on autophagy of memory T cells. AST treatment significantly decreased the number of T effector cells in asthma mice blood and the nude mice that received AST-treated TCMs had relieved inflammation compared with the untreated group; meanwhile, we found that AST significantly decreased the autophagy level and inhibited OX40/OX40L signal pathway of lymphocytes. The results highlighted that AST regulated autophagy to inhibit differentiation of effector T-cell phenotype.


Assuntos
Asma , Autofagia , Inflamação , Saponinas , Linfócitos T , Triterpenos , Animais , Saponinas/farmacologia , Asma/tratamento farmacológico , Triterpenos/farmacologia , Triterpenos/química , Camundongos , Autofagia/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Inflamação/tratamento farmacológico , Camundongos Nus , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos BALB C
10.
Mol Ther ; 32(2): 503-526, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38155568

RESUMO

Multiple myeloma (MM) is a rarely curable malignancy of plasma cells. MM expresses B cell maturation antigen (BCMA). We developed a fully human anti-BCMA chimeric antigen receptor (CAR) with a heavy-chain-only antigen-recognition domain, a 4-1BB domain, and a CD3ζ domain. The CAR was designated FHVH33-CD8BBZ. We conducted the first-in-humans clinical trial of T cells expressing FHVH33-CD8BBZ (FHVH-T). Twenty-five patients with relapsed MM were treated. The stringent complete response rate (sCR) was 52%. Median progression-free survival (PFS) was 78 weeks. Of 24 evaluable patients, 6 (25%) had a maximum cytokine-release syndrome (CRS) grade of 3; no patients had CRS of greater than grade 3. Most anti-MM activity occurred within 2-4 weeks of FHVH-T infusion as shown by decreases in the rapidly changing MM markers serum free light chains, urine light chains, and bone marrow plasma cells. Blood CAR+ cell levels peaked during the time that MM elimination was occurring, between 7 and 15 days after FHVH-T infusion. C-C chemokine receptor type 7 (CCR7) expression on infusion CD4+ FHVH-T correlated with peak blood FHVH-T levels. Single-cell RNA sequencing revealed a shift toward more differentiated FHVH-T after infusion. Anti-CAR antibody responses were detected in 4 of 12 patients assessed. FHVH-T has powerful, rapid, and durable anti-MM activity.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Imunoterapia Adotiva , Medula Óssea/metabolismo
11.
3 Biotech ; 14(1): 17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38130686

RESUMO

Breast cancer-related transcript 1 (BCRT1), a lncRNA that is overexpressed in several human cancers, facilitates the progression of breast cancer and osteosarcoma. Nevertheless, the function of BCRT1 in cervical cancer (CC) still remains unknown. In this study, BCRT1 was significantly overexpressed in CC tissues and correlated with the advanced stage of CC patients. BCRT1 depletion dampened CC cell proliferation, and drives cell apoptosis and cell cycle inhibition. Mechanistically, BCRT1 bound miR-432-5p and negatively modulated miR-432-5p's expression in CC cells. Reduced miR-452-3p expression was observed in CC tissues and exerted tumor suppressive function in CC cell growth. Further mechanism study revealed that CCR7 was clarified as a target of miR-432-5p and was inhibited following BCRT1 depletion. CCR7 transfection could recover CC cell growth that was suppressed with BCRT1 down-regulation. These results revealed the novel function of BCRT1/miR-432-5p/CCR7 pathway in CC, suggesting BCRT1 might be a potential biomarker and target for CC treatment. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03863-x.

12.
Int J Hematol Oncol Stem Cell Res ; 17(4): 267-274, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076780

RESUMO

Background : This study investigates the CCR7 chemokine receptor's prognostic value in gastric cancer and its relationship to metastasis. Materials and Methods : Normal and adjacent tumor cells in 70 patients with gastric cancer were evaluated for CCR7 expression using immunohistochemical staining. The prognostic values of high and low levels of expression of CCR7 were also evaluated by multivariate and univariate analyses. Results : Analysis indicated high expression of CCR7 in 52.9% of tumor tissue. Moreover, high expression of CCR7 was significantly related to metastasis of lymph nodes (p = 0.00). In addition, high expression of CCR7 had a positive correlation to the disease stage (p = 0.00), age of ≥50 years (p = 0.019), male gender (p = 0.024), vascular involvement (p = 0.009), histology of tumor adenocarcinoma (p = 0.00), and poor tumor differentiation (p = 0.00). However, the high expression of the CCR7 marker was not related to the tumor size. Conclusion : Based on our results, CCR7 expression in gastric cancer can be considered a clinical prognostic indicator in patients with gastric cancer.

13.
BMC Med Genomics ; 16(1): 254, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864213

RESUMO

BACKGROUND: The study of CCR7/CCL19 chemokine axis and breast cancer (BC) prognosis and metastasis is a current hot topic. We constructed a ceRNA network and risk-prognosis model based on CCR7/CCL19. METHODS: Based on the lncRNA, miRNA and mRNA expression data downloaded from the TCGA database, we used the starbase website to find the lncRNA and miRNA of CCR7/CCL19 and established the ceRNA network. The 1008 BC samples containing survival data were divided into Train group (504 cases) and Test group (504 cases) using R "caret" package. Then we constructed a prognostic risk model using RNA screened by univariate Cox analysis in the Train group and validated it in the Test and All groups. In addition, we explored the correlation between riskScores and clinical trials and immune-related factors (22 immune-infiltrating cells, tumor microenvironment, 13 immune-related pathways and 24 HLA genes). After transfection with knockdown CCR7, we observed the activity and migration ability of MDA-MB-231 and MCF-7 cells using CCK8, scratch assays and angiogenesis assays. Finally, qPCR was used to detect the expression levels of five RNAs in the prognostic risk model in MDA-MB-231 and MCF-7 cell. RESULTS: Patients with high expression of CCR7 and CCL19 had significantly higher overall survival times than those with low expression. The ceRNA network is constructed by 3 pairs of mRNA-miRNA pairs and 8 pairs of miRNA-lncRNA. After multivariate Cox analysis, we obtained a risk prognostic model: riskScore= -1.544 *`TRG-AS1`+ 0.936 * AC010327.5 + 0.553 *CCR7 -0.208 *CCL19 -0.315 *`hsa-let-7b-5p. Age, stage and riskScore can all be used as independent risk factors for BC prognosis. By drug sensitivity analysis, we found 5 drugs targeting CCR7 (convolamine, amikacin, AH-23,848, ondansetron, flucloxacillin). After transfection with knockdown CCR7, we found a significant reduction in cell activity and migration capacity in MDA-MB-231 cells. CONCLUSION: We constructed the first prognostic model based on the CCR7/CCL19 chemokine axis in BC and explored its role in immune infiltration, tumor microenvironment, and HLA genes.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , Quimiocina CCL19/genética , Quimiocina CCL19/metabolismo , Neoplasias da Mama/patologia , Prognóstico , Receptores CCR7/genética , Receptores CCR7/metabolismo , RNA Longo não Codificante/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores Tumorais/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Microambiente Tumoral
14.
Cells ; 12(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37566089

RESUMO

Multiple signaling pathways facilitate the survival and drug resistance of malignant B-cells by regulating their migration and adhesion to microenvironmental niches. NF-κB pathways are commonly dysregulated in mantle cell lymphoma (MCL), but the exact underlying mechanisms are not well understood. Here, using a co-culture model system, we show that the adhesion of MCL cells to stromal cells is associated with elevated levels of KDM6B histone demethylase mRNA in adherent cells. The inhibition of KDM6B activity, using either a selective inhibitor (GSK-J4) or siRNA-mediated knockdown, reduces MCL adhesion to stromal cells. We showed that KDM6B is required both for the removal of repressive chromatin marks (H3K27me3) at the promoter region of NF-κB encoding genes and for inducing the expression of NF-κB genes in adherent MCL cells. GSK-J4 reduced protein levels of the RELA NF-κB subunit and impaired its nuclear localization. We further demonstrated that some adhesion-induced target genes require both induced NF-κB and KDM6B activity for their induction (e.g., IL-10 cytokine gene), while others require induction of NF-κB but not KDM6B (e.g., CCR7 chemokine gene). In conclusion, KDM6B induces the NF-κB pathway at different levels in MCL, thereby facilitating MCL cell adhesion, survival, and drug resistance. KDM6B represents a novel potential therapeutic target for MCL.

15.
Biochem Biophys Rep ; 35: 101524, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37554427

RESUMO

Chemokines are from a family of secreted cytokines that direct the trafficking of immune cells to coordinate immune responses. Chemokines are involved in numerous disease states, including responding to infections, autoimmune disorders, and cancer metastasis. Ther are chemokines, like CCL21, that signal for cellular migration through the activation of G protein-coupled receptors, like CCR7, through interaction with the receptor's extracellular N-terminus, loops, and core of the receptor. CCL21 is involved in routine immune surveillance but can also attract metastasizing cancer cells to lymph nodes. P-selectin glycoprotein ligand 1 (PSGL1) has a role in cellular adhesion during chemotaxis and is a transmembrane signaling molecule. PSGL1 expression enhances chemotactic responses of T cells to CCL21. Here NMR studies indicate the binding sites on CCL21 for the N-termini or PSGL1 and CCR7 overlap, and binding of the N-termini of PSGL1 and CCR7 is competitive.

16.
Hematol Oncol ; 41(5): 869-876, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37545392

RESUMO

The Bruton's tyrosine kinase inhibitor ibrutinib and the B-cell lymphoma 2 anti-apoptotic protein inhibitor venetoclax provide high response rates in chronic lymphocytic leukemia (CLL). However, there is a growing number of patients that relapse after treatment or show refractory disease, thus new targets and agents are still needed. We have previously reported the chemokine receptor CCR7 as a relevant deregulated target in CLL and have developed CAP-100, a novel therapeutic anti-CCR7 antibody that is under evaluation for relapse/refractory CLL (NCT04704323). While CCR7 expression has been shown to be down-modulated in CLL patients treated with ibrutinib, whether venetoclax acts in a similar manner remains unaddressed. Here, we aimed to document the impact of venetoclax on CCR7 expression in CLL cells, as well as on the pre-clinical activity of CAP-100. To this end, we addressed CCR7 expression by flow cytometry and the antibody efficacy by means of in vitro chemotactic and antibody-dependent cell-mediated cytotoxicity (ADCC) assays. Our data indicate that venetoclax treatment did not significantly modify CCR7 expression pattern nor CAP-100 mechanisms of action. Together, these findings support CAP-100 as an adjuvant therapy to venetoclax that may introduce additional modes of action in CLL therapy.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Receptores CCR7/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Recidiva
17.
Iran J Pathol ; 18(2): 156-164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600570

RESUMO

Background & Objective: The expression of matrix metalloproteinase-9 (MMP-9) and chemokine receptor 7 (CCR7) is significantly associated with tumor invasion and metastasis. Little is known regarding the potential of these markers in predicting cancer metastasis in Laryngeal Squamous Cell Carcinoma (LSCC). Therefore, this study aimed to dissect the potential of these markers in predicting the lymph node metastasis in LSCC patients. Methods: Sixty tissue samples were obtained from the patients diagnosed pathologically with LSCC who underwent partial or total laryngectomy. The expression of MMP-9 and CCR7 was measured using the immunohistochemistry staining in the tissue samples of LSCC patients. The ROC (receiver operating characteristic) curve was used to determine the most significant cut-off points of expression according to the highest sensitivity and specificity of both the markers to predict the lymph node metastasis in LSCC. Then, the relationship between the clinicopathology features and the expression of MMP-9 and CCR7 was evaluated. Results: The expression of both MMP-9 and CCR7 was significantly correlated with the lymph node metastasis in LSCC (P<0.001). Furthermore, CCR7 expression exhibited the highest prediction accuracy (AUC 95.7%) and sensitivity (100%) in predicting the lymph node metastasis in LSCC compared to that of MMP-9 (AUC 92.9%, sensitivity 90%). We also found that patients with larger tumor size (> 4 cm) had significantly higher expression of MMP-9 and CCR7 (P<0.002 and P<0.001, respectively). The Elevated expression level of CCR7 statistically correlated with higher MMP-9 expression (P<0.001). Conclusion: MMP-9 and CCR7 might be beneficial as predictors of lymph node metastasis in LSCC patients.

18.
Front Genet ; 14: 1112251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408777

RESUMO

Objective: Interferon-γ (IFN-γ) encoded by IFNG gene is a pleiotropic molecule linked with inflammatory cell death mechanisms. This work aimed to determine and characterize IFNG and co-expressed genes, and to define their implications in breast carcinoma (BRCA). Methods: Transcriptome profiles of BRCA were retrospectively acquired from public datasets. Combination of differential expression analysis with WGCNA was conducted for selecting IFNG-co-expressed genes. A prognostic signature was generated through Cox regression approaches. The tumor microenvironment populations were inferred utilizing CIBERSORT. Epigenetic and epitranscriptomic mechanisms were also probed. Results: IFNG was overexpressed in BRCA, and connected with prolonged overall survival and recurrence-free survival. Two IFNG-co-expressed RNAs (AC006369.1, and CCR7) constituted a prognostic model that acted as an independent risk factor. The nomogram composed of the model, TNM, stage, and new event owned the satisfying efficacy in BRCA prognostication. IFNG, AC006369.1, and CCR7 were closely linked with the tumor microenvironment components (e.g., macrophages, CD4/CD8 T cells, NK cells), and immune checkpoints (notably PD1/PD-L1). Somatic mutation frequencies were 6%, and 3% for CCR7, and IFNG, and high amplification potentially resulted in their overexpression in BRCA. Hypomethylated cg05224770 and cg07388018 were connected with IFNG and CCR7 upregulation, respectively. Additionally, transcription factors, RNA-binding proteins, and non-coding RNAs possibly regulated IFNG and co-expressed genes at the transcriptional and post-transcriptional levels. Conclusion: Collectively, our work identifies IFNG and co-expressed genes as prognostic markers for BRCA, and as possible therapeutic targets for improving the efficacy of immunotherapy.

19.
Cancer Sci ; 114(9): 3509-3522, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421165

RESUMO

CCL21-Ser, a chemokine encoded by the Ccl21a gene, is constitutively expressed in the thymic epithelial cells and stromal cells of secondary lymphoid organs. It regulates immune cell migration and survival through its receptor CCR7. Herein, using CCL21-Ser-expressing melanoma cells and the Ccl21a-deficient mice, we demonstrated the functional role of cancer cell-derived CCL21-Ser in melanoma growth in vivo. The B16-F10 tumor growth was significantly decreased in Ccl21a-deficient mice compared with that in wild-type mice, indicating that host-derived CCL21-Ser contributes to melanoma proliferation in vivo. In Ccl21a-deficient mice, tumor growth of melanoma cells expressing CCL21-Ser was significantly enhanced, suggesting that CCL21-Ser from melanoma cells promotes tumor growth in the absence of host-derived CCL21-Ser. The increase in tumor growth was associated with an increase in the CCR7+ CD62L+ T cell frequency in the tumor tissue but was inversely correlated with Treg frequency, suggesting that naïve T cells primarily promote tumor growth. Adoptive transfer experiments demonstrated that naïve T cells are preferentially recruited from the blood into tumors with melanoma cell-derived CCL21-Ser expression. These results suggest that CCL21-Ser from melanoma cells promotes the infiltration of CCR7+ naïve T cells into the tumor tissues and creates a tumor microenvironment favorable for melanoma growth.


Assuntos
Melanoma , Linfócitos T , Camundongos , Animais , Receptores CCR7/metabolismo , Quimiocina CCL21/metabolismo , Melanoma/patologia , Microambiente Tumoral
20.
Elife ; 122023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37266571

RESUMO

Central tolerance ensures autoreactive T cells are eliminated or diverted to the regulatory T cell lineage, thus preventing autoimmunity. To undergo central tolerance, thymocytes must enter the medulla to test their T-cell receptors (TCRs) for autoreactivity against the diverse self-antigens displayed by antigen-presenting cells (APCs). While CCR7 is known to promote thymocyte medullary entry and negative selection, our previous studies implicate CCR4 in these processes, raising the question of whether CCR4 and CCR7 play distinct or redundant roles in central tolerance. Here, synchronized positive selection assays, two-photon time-lapse microscopy, and quantification of TCR-signaled apoptotic thymocytes, demonstrate that CCR4 and CCR7 promote medullary accumulation and central tolerance of distinct post-positive selection thymocyte subsets in mice. CCR4 is upregulated within hours of positive selection signaling and promotes medullary entry and clonal deletion of immature post-positive selection thymocytes. In contrast, CCR7 is expressed several days later and is required for medullary localization and negative selection of mature thymocytes. In addition, CCR4 and CCR7 differentially enforce self-tolerance, with CCR4 enforcing tolerance to self-antigens presented by activated APCs, which express CCR4 ligands. Our findings show that CCR7 expression is not synonymous with medullary localization and support a revised model of central tolerance in which CCR4 and CCR7 promote early and late stages of negative selection, respectively, via interactions with distinct APC subsets.


Autoimmune diseases occur when immune cells mistakenly identify the body's own tissues as 'foreign' and attack them. To reduce the risk of this happening, the body has multiple ways of removing self-reactive immune cells, including T cells. One such way, known as central tolerance, occurs in the thymus ­ the organ where T cells develop. In the center of the thymus ­ the medulla ­ specialized cells display fragments of the majority of proteins expressed by healthy cells throughout the body. Developing T cells enter the medulla, where they scan these specialized cells to determine if they recognize the presented protein fragments. If an immature T cell recognizes and binds to these 'self-antigens' too strongly, it is either destroyed, or it develops into a regulatory cell, capable of actively suppressing T cell responses to that self-antigen. This ensures that T cells won't attack healthy cells in the body that make those self-antigens, and therefore, it is important that T cells enter the medulla and carry out this scanning process efficiently. T cells are recruited to the medulla from the outer region of the thymus by chemical signals called chemokines. These signals are recognized by chemokine receptors on T cells, which are expressed at different times during T cell development. Previous work has shown that one of these receptors, called CCR7, guides T cells to the medulla. Although it was thought that CCR7 was solely responsible for this migration, prior work suggests another receptor, CCR4, may also contribute to T cell migration into the medulla and central tolerance. To determine whether CCR7 and CCR4 play the same or different roles in central tolerance, Li, Tipan et al. used a combination of experimental methods, including live imaging of the thymus, to study T cell development in mice. The experiments revealed that CCR4 is expressed first, and this receptor alone guides immature T cells into the medulla and ensures that they are the first to be checked for self-reactivity. In contrast, CCR7 is expressed by more mature developing T cells two to three days later, ensuring they also accumulate within the medulla and become tolerant to self-antigens. Both receptors are required for protection from autoimmunity, with results suggesting that CCR4 and CCR7 promote tolerance against different tissues. Taken together, the findings provide new information about the distinct requirement for CCR4 and CCR7 in guiding immature T cells into the medulla and ensuring central tolerance to diverse tissues. One outstanding question is whether defects in T cells entering the medulla earlier or later alter tolerance to distinct self-antigens and lead to different autoimmune diseases. Future work will also investigate whether these observations hold true in humans, potentially leading to therapies for autoimmune diseases.


Assuntos
Timócitos , Timo , Animais , Camundongos , Autoantígenos/metabolismo , Diferenciação Celular , Tolerância Central , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores CCR7/metabolismo , Timócitos/metabolismo , Timo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA