Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Biomolecules ; 14(9)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39334951

RESUMO

Saccharomyces cerevisiae HMO1 is an architectural nuclear DNA-binding protein that stimulates the activity of some remodelers and regulates the transcription of ribosomal protein genes, often binding to a DNA motif called IFHL. However, the molecular mechanism dictating this sequence specificity is unclear. Our circular dichroism spectroscopy studies show that the HMO1:DNA complex forms without noticeable changes in the structure of DNA and HMO1. Molecular modeling/molecular dynamics studies of the DNA complex with HMO1 Box B reveal two extended sites at the N-termini of helices I and II of Box B that are involved in the formation of the complex and stabilize the DNA bend induced by intercalation of the F114 side chain between base pairs. A comparison of the affinities of HMO1 for 24 bp DNA fragments containing either randomized or IFHL sequences reveals a twofold increase in the stability of the complex in the latter case, which may explain the selectivity in the recognition of the IFHL-containing promoter regions.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ligação Proteica , DNA/metabolismo , DNA/química , Simulação de Dinâmica Molecular , DNA Fúngico/metabolismo , DNA Fúngico/química , Conformação de Ácido Nucleico , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/genética , Dicroísmo Circular
2.
Artigo em Inglês | MEDLINE | ID: mdl-39347800

RESUMO

Spectroscopic methods offer many new opportunities to study protein-ligand interactions. The aim of this study was to evaluate the possibility of using near-UV CD as well as UV-Vis spectroscopic techniques to study the interaction between human serum albumin (HSA) and markers of Sudlow's site I (warfarin, phenylbutazone) and II (ketoprofen, ibuprofen), as well as prednisolone and indapamide. In order to perform the planned measurements, near-UV CD spectropolarimetry and UV-Vis spectrophotometry have been used. It has been demonstrated that both techniques allow for rapid evaluation of non-covalent interactions between HSA and ligand, as well as identification of the HSA aromatic amino acid residues involved in this process. The near-UV CD spectroscopic data were more valuable than the analysis based on the second derivative of differential UV-Vis absorption spectra, especially for ligands with a non-specified binding site and low affinity towards HSA, such as prednisolone. The combination of both techniques makes it possible for comprehensive analysis of the interaction between HSA and ligands.

3.
Biophys Chem ; 314: 107318, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39226875

RESUMO

The Ebola delta peptide is an amphipathic, 40-residue peptide encoded by the Ebola virus, referred to as E40. The membrane-permeabilising activity of the E40 delta peptide has been demonstrated in cells and lipid vesicles suggesting the E40 delta peptide likely acts as a viroporin. The lytic activity of the peptide increases in the presence of anionic lipids and a disulphide bond in the C-terminal part of the peptide. Previous in silico work predicts the peptide to show a partially helical structure, but there is no experimental information on the structure of E40. Here, we use circular dichroism spectroscopy to report the secondary structure propensities of the reduced and oxidised forms of the E40 peptide in water, detergent micelles, and lipid vesicles composed of neutral and anionic lipids (POPC and POPG, respectively). Results indicate that the peptide is predominately a random coil in solution, and the disulphide bond has a small but measurable effect on peptide conformation. Secondary structure analysis shows large uncertainties and dependence on the reference data set and, in our system, cannot be used to accurately determine the secondary structure motifs of the peptide in membrane environments. Nevertheless, the spectra can be used to assess the relative changes in secondary structure propensities of the peptide depending on the solvent environment and disulphide bond. In POPC-POPG vesicles, the peptide transitions from a random coil towards a more structured conformation, which is even more pronounced in negatively charged SDS micelles. In vesicles, the effect depends on the peptide-lipid ratio, likely resulting from vesicle surface saturation. Further experiments with zwitterionic POPC vesicles and DPC micelles show that both curvature and negatively charged lipids can induce a change in conformation, with the two effects being cumulative. Electrostatic screening from Na+ ions reduced this effect. The oxidised form of the peptide shows a slightly lower propensity for secondary structure and retains a more random coil conformation even in the presence of PG-PC vesicles.


Assuntos
Dicroísmo Circular , Ebolavirus , Micelas , Estrutura Secundária de Proteína , Ebolavirus/química , Fosfatidilcolinas/química , Soluções , Fosfatidilgliceróis/química , Peptídeos/química , Água/química , Proteínas Virais/química , Sequência de Aminoácidos
4.
Biochim Biophys Acta Proteins Proteom ; 1873(1): 141044, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218139

RESUMO

Bacteriophages have evolved different mechanisms of infection and penetration of bacterial cell walls. In Siphoviridae-like viruses, the inner tail proteins have a pivotal role in these processes and often encode lytic protein domains which increase infection efficiency. A soluble lytic transglycosylase (SLT) domain was identified in the minor tail protein gp15 from the BFK20 bacteriophage. Six fragments containing this SLT domain with adjacent regions of different lengths were cloned, expressed and purified. The biophysical properties of the two best expressing fragments were characterized by nanoDSF and CD spectroscopy, which showed that both fragments had a high refolding ability of 90 %. 3D modeling indicated that the bacteriophage BFK20 SLT domain is structurally similar to lysozyme. The degradation activity of these SLT proteins was evaluated using a lysozyme activity assay. BFK20 might use its transglycosylase activity to allow efficient phage DNA entry into the host cell by degrading bacterial peptidoglycan.

5.
Molecules ; 29(16)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39202986

RESUMO

Parallel-stranded G-quadruplex structures are found to be common in the human promoter sequences. We tested highly fluorescent 9-methoxyluminarine ligand (9-MeLM) binding interactions with different parallel G-quadruplexes DNA by spectroscopic methods such as fluorescence and circular dichroism (CD) titration as well as UV melting profiles. The results showed that the studied 9-MeLM ligand interacted with the intramolecular parallel G-quadruplexes (G4s) with similar affinity. The binding constants of 9-methoxyluminarine with different parallel G4s were determined. The studies upon oligonucleotides with different flanking sequences on c-MYC G-quadruplex suggest that 9-methoxyluminarine may preferentially interact with 3'end of the c-MYC promoter. The high decrease in 9-MeLM ligand fluorescence upon binding to all tested G4s indicates that 9-methoxyluminarine molecule can be used as a selective fluorescence turn-off probe for parallel G-quadruplexes.


Assuntos
Dicroísmo Circular , Quadruplex G , Ligantes , Humanos , Espectrometria de Fluorescência , Regiões Promotoras Genéticas , DNA/química , DNA/metabolismo , Fluorescência , Corantes Fluorescentes/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-39041320

RESUMO

Helicobacter pylori, a leading human pathogen associated with duodenal ulcer and gastric cancer, presents a significant threat to human health due to increasing antibiotic resistance rates. This study investigates G-quadruplexes (G4s), which are non-canonical secondary structures form in G-rich regions within the H. pylori genome. Extensive research on G4s in eukaryotes has revealed their role in epigenetically regulating cellular processes like gene transcription, DNA replication, and oncogene expression. However, understanding of G4-mediated gene regulation in other organisms, especially bacterial pathogens, remains limited. Although G4 motifs have been extensively studied in a few bacterial species such as Mycobacterium, Streptococci, and Helicobacter, research on G4 motifs in other bacterial species is still sparse. Like in other organisms such as archaea, mammals, and viruses, G4s in H. pylori display a non-random distribution primarily situated within open reading frames of various protein-coding genes. The occurrence of G4s in functional regions of the genome and their conservation across different species indicates that their placement is not random, suggesting an evolutionary pressure to maintain these sequences at specific genomic sites. Moreover, G-quadruplexes show enrichment in specific gene classes, suggesting their potential involvement in regulating the expression of genes related to cell wall/membrane/envelope biogenesis, amino acid transport, and metabolism. This indicates a probable regulatory role for G4s in controlling the expression of genes essential for H. pylori survival and virulence. Biophysical techniques such as Circular Dichroism spectroscopy and Nuclear Magnetic Resonance were used to characterize G4 motifs within selected H. pylori genes. The study revealed that G-quadruplex ligand inhibited the growth of H. pylori, with minimal inhibitory concentrations in the low micromolar range. This suggests that targeting G4 structures could offer a promising approach for developing novel anti-H. pylori drugs.

7.
Heliyon ; 10(13): e34189, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071576

RESUMO

Flavonoids mostly protect plant cells from the harmful effects of UV-B radiation from the sun. In plants, the R2R3-subfamily of the MYB transcription factor, MYB12, is a key inducer of the biosynthesis of flavonoids. Our study involves the biophysical characterization of Arabidopsis thaliana MYB12 protein (AtMYB12) under UV-B exposure in vitro. Tryptophan fluorescence studies using recombinant full-length AtMYB12 (native) and the N-terminal truncated versions (first N-terminal MYB domain absent in AtMYB12Δ1, and both the first and second N-terminal MYB domains absent in AtMYB12Δ2) have revealed prominent alteration in the tryptophan microenvironment in AtMYB12Δ1 and AtMYB12Δ2 protein as a result of UV-B exposure as compared with the native AtMYB12. Bis-ANS binding assay and urea-mediated denaturation profiling showed an appreciable change in the structural conformation in AtMYB12Δ1 and AtMYB12Δ2 proteins as compared with the native AtMYB12 protein following UV-B irradiation. UV-B-treated AtMYB12Δ2 showed a higher predisposition of aggregate formation in vitro. CD spectral analyses revealed a decrease in α-helix percentage with a concomitant increase in random coiled structure formation in AtMYB12Δ1 and AtMYB12Δ2 as compared to native AtMYB12 following UV-B treatment. Overall, these findings highlight the critical function of the N-terminal MYB domains in maintaining the stability and structural conformation of the AtMYB12 protein under UV-B stress in vitro.

8.
Chirality ; 36(6): e23681, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839280

RESUMO

An N-centered epimeric mixture of chlorophyll-a derivatives methylated at the inner nitrogen atom was separated by reverse-phase high-performance liquid chromatography. Circular dichroism (CD) spectroscopic analyses of the epimerically pure N22-methyl-chlorins revealed that the minor first-eluted and major second-eluted stereoisomers were (22S)- and (22R)-configurations, respectively. Their visible absorption and CD spectra in solution were dependent on the N22-stereochemistry. The epimer-dependent spectral changes were independent of the substituents at the peripheral 3-position of the core chlorin chromophore.


Assuntos
Clorofila A , Clorofila , Dicroísmo Circular , Estereoisomerismo , Clorofila/química , Metilação , Clorofila A/química , Cromatografia Líquida de Alta Pressão/métodos , Nitrogênio/química
9.
Molecules ; 29(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792033

RESUMO

Copper(II), nickel(II) and zinc(II) complexes of various peptide fragments of tau protein were studied by potentiometric and spectroscopic techniques. All peptides contained one histidyl residue and represented the sequences of tau(91-97) (Ac-AQPHTEI-NH2), tau(385-390) (Ac-KTDHGA-NH2) and tau(404-409) (Ac-SPRHLS-NH2). Imidazole-N donors of histidine were the primary metal binding sites for all peptides and all metal ions, but in the case of copper(II) and nickel(II), the deprotonated amide groups were also involved in metal binding by increasing pH. The most stable complexes were formed with copper(II) ions, but the presence of prolyl residues resulted in significant changes in the thermodynamic stability and speciation of the systems. It was also demonstrated that nickel(II) and especially zinc(II) complexes have relatively low thermodynamic stability with these peptides. The copper(II)-catalyzed oxidation of the peptides was also studied. In the presence of H2O2, the fragmentation of peptides was detected in all cases. In the simultaneous presence of H2O2 and ascorbic acid, the fragmentation of the peptide is less preferred, and the formation of 2-oxo-histidine also occurs.


Assuntos
Complexos de Coordenação , Cobre , Níquel , Fragmentos de Peptídeos , Zinco , Proteínas tau , Níquel/química , Cobre/química , Zinco/química , Proteínas tau/química , Complexos de Coordenação/química , Fragmentos de Peptídeos/química , Oxirredução , Histidina/química , Concentração de Íons de Hidrogênio , Peróxido de Hidrogênio/química , Termodinâmica
10.
Methods Appl Fluoresc ; 12(3)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38697201

RESUMO

Fluorescence spectroscopy serves as a vital technique for studying the interaction between light and fluorescent molecules. It encompasses a range of methods, each presenting unique advantages and applications. This technique finds utility in various chemical studies. This review discusses Fluorescence spectroscopy, its branches such as Time-Resolved Fluorescence Spectroscopy (TRFS) and Fluorescence Lifetime Imaging Microscopy (FLIM), and their integration with other spectroscopic methods, including Raman, Infrared (IR), and Circular Dichroism (CD) spectroscopies. By delving into these methods, we aim to provide a comprehensive understanding of the capabilities and significance of fluorescence spectroscopy in scientific research, highlighting its diverse applications and the enhanced understanding it brings when combined with other spectroscopic methods. This review looks at each technique's unique features and applications. It discusses the prospects of their combined use in advancing scientific understanding and applications across various domains.


Assuntos
Espectrometria de Fluorescência , Análise Espectral Raman , Análise Espectral Raman/métodos , Espectrometria de Fluorescência/métodos , Dicroísmo Circular/métodos , Espectrofotometria Infravermelho/métodos , Humanos
11.
Curr Res Struct Biol ; 7: 100138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707546

RESUMO

Eukaryotic proteins often feature long stretches of amino acids that lack a well-defined three-dimensional structure and are referred to as intrinsically disordered proteins (IDPs) or regions (IDRs). Although these proteins challenge conventional structure-function paradigms, they play vital roles in cellular processes. Recent progress in experimental techniques, such as NMR spectroscopy, single molecule FRET, high speed AFM and SAXS, have provided valuable insights into the biophysical basis of IDP function. This review discusses the advancements made in these techniques particularly for the study of disordered regions in proteins. In NMR spectroscopy new strategies such as 13C detection, non-uniform sampling, segmental isotope labeling, and rapid data acquisition methods address the challenges posed by spectral overcrowding and low stability of IDPs. The importance of various NMR parameters, including chemical shifts, hydrogen exchange rates, and relaxation measurements, to reveal transient secondary structures within IDRs and IDPs are presented. Given the high flexibility of IDPs, the review outlines NMR methods for assessing their dynamics at both fast (ps-ns) and slow (µs-ms) timescales. IDPs exert their functions through interactions with other molecules such as proteins, DNA, or RNA. NMR-based titration experiments yield insights into the thermodynamics and kinetics of these interactions. Detailed study of IDPs requires multiple experimental techniques, and thus, several methods are described for studying disordered proteins, highlighting their respective advantages and limitations. The potential for integrating these complementary techniques, each offering unique perspectives, is explored to achieve a comprehensive understanding of IDPs.

12.
Carbohydr Res ; 539: 109122, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657354

RESUMO

The genomic screening of hyper-thermophilic Pyrococcus abyssi showed uncharacterized novel α-amylase sequences. Homology modelling analysis revealed that the α-amylase from P. abyssi consists of an N-terminal GH57 catalytic domain, α-amylase central, and C-terminal domain. Current studies emphasize in-silico structural and functional analysis, recombinant expression, characterization, structural studies through CD spectroscopy, and ligand binding studies of the novel α-amylase from P. abyssi. The soluble expression of PaAFG was observed in the E. coli Rosetta™ (DE3) pLysS strain upon incubation overnight at 18 °C in an orbital shaker. The optimum temperature and pH of the PaAFG were observed at 90 °C in 50 mM phosphate buffer pH 6. The Km value for PaAFG against wheat starch was determined as 0.20 ± 0.053 mg while the corresponding Vmax value was 25.00 ± 0.67 µmol min-1 mg-1 in the presence of 2 mM CaCl2 and 12.5 % glycerol. The temperature ramping experiments through CD spectroscopy reveal no significant change in the secondary structures and positive and negative ellipticities of the CD spectra showing the proper folding and optimal temperature of PaAFG protein. The RMSD and RMSF of the PaAFG enzyme determined through molecular dynamic simulation show the significant protein's stability and mobility. The soluble production, thermostability and broad substrate specificity make this enzyme a promising choice for various industrial applications.


Assuntos
Pyrococcus abyssi , Amido , alfa-Amilases , alfa-Amilases/metabolismo , alfa-Amilases/química , alfa-Amilases/genética , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Modelos Moleculares , Pyrococcus abyssi/enzimologia , Amido/metabolismo , Amido/química , Temperatura
13.
Int J Biol Macromol ; 266(Pt 2): 131298, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574913

RESUMO

This article delves into the interaction between HSA protein and synthesized platinum complexes, with formula: [Pt(Propyl-NH2)2(Propylglycine)]NO3 and [Pt(Tertpentyl-NH2)2(Tertpentylglycine)]NO3, through a range of methods, including spectroscopic (UV-visible, fluorescence, synchronous fluorescence and CD) analysis and computational modeling (molecular docking and MD simulation). The binding constants, the number of binding sites, and thermodynamic parameters were obtained at 25 to 37 °C. The study found that both complexes could bind with HSA (moderate affinity for Tertpentyl and strong affinity for Propyl derivatives) and occupied one binding site in HSA (validated with, Stern-Volmer, Job-plots, and molecular docking investigations) located in subdomain IIA. The binding mechanisms of both mentioned Pt(II) agents were different, with the Propyl derivative predominantly using van der Waals forces and hydrogen bond interactions with a static quenching mechanism and the Tertpentyl derivative mainly utilizing hydrophobic force with a dynamic quenching mechanism. However, the two ligands affected protein differently; the Tertpentyl complex did not significantly alter the protein structure upon binding, as evidenced by synchronous fluorescence spectroscopy (SFS), CD spectroscopy, and MD analysis. The outcome helps in understanding the binding mechanisms and structural modifications induced by the ligands, which could aid in the innovation of more effective and stable Pt(II)-based drugs.


Assuntos
Glicina , Simulação de Acoplamento Molecular , Ligação Proteica , Albumina Sérica Humana , Termodinâmica , Humanos , Glicina/química , Glicina/análogos & derivados , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Sítios de Ligação , Simulação de Dinâmica Molecular , Espectrometria de Fluorescência , Ligantes , Platina/química
14.
Chemistry ; 30(33): e202400082, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38628039

RESUMO

Fagopyrins are phenantroperylenequinones present in the flowers of Fagopyrum esculentum (buckwheat) endowed with photodynamic activity. It has been reported that fagopyrin extracts actually contain a complex mixture of closely related compounds, differing only on the nature of the perylenequinone substituents. We report our systematic and detailed study on the chemical composition of fagopyrin extracts by a combination of preparative and analytical techniques. The combined use of 1H-NMR and CD spectroscopy was found to be particularly suited to fully characterize all stereochemical aspects of the extracted fagopyrins. For the first time nine isomers have been structurally characterized and their stereochemistry fully elucidated. The presence of two different heterocyclic ring substituents, two stereogenic centers and the inherent axial chirality of the aromatic system provides a complex stereochemical relationships among isomers, thus giving account of the high level of molecular multiplicity found in the extract.


Assuntos
Dicroísmo Circular , Fagopyrum , Flores , Fagopyrum/química , Flores/química , Estereoisomerismo , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Estrutura Molecular , Extratos Vegetais/química , Quinonas
15.
Methods Enzymol ; 695: 233-254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38521587

RESUMO

i-Motifs are non-canonical secondary structures of DNA formed by mutual intercalation of hemi-protonated cytosine-cytosine base pairs, most typically in slightly acidic conditions (pH<7.0). These structures are well-studied in vitro and have recently been suggested to exist in cells. Despite nearly a decade of active research, the quest for small-molecule ligands that could selectively bind to and stabilize i-motifs continues, and no reference, bona fide i-motif ligand is currently available. This is, at least in part, due to the lack of robust methods to assess the interaction of ligands with i-motifs, since many techniques well-established for studies of other secondary structures (such as CD-, UV-, and FRET-melting) may generate artifacts when applied to i-motifs. Here, we describe an implementation of automated, potentiometric (pH) titrations as a robust isothermal method to assess the impact of ligands or cosolutes on thermodynamic stability of i-motifs. This approach is validated through the use of a cosolute previously known to stabilize i-motifs (PEG2000) and three small-molecule ligands that are able to stabilize, destabilize, or have no effect on the stability of i-motifs, respectively.


Assuntos
Citosina , DNA , Ligantes , Motivos de Nucleotídeos , Pareamento de Bases , DNA/química , Citosina/química
16.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339061

RESUMO

From the point of view of the search for new pharmaceuticals, pyridazinone derivatives are a very promising group of compounds. In our previous works, we have proved that newly synthesized ligands from this group have desirable biological and pharmacokinetic properties. Therefore, we decided to continue the research evaluating the activity of pyrrolo[3,4-dpyridazinone derivatives. In this work, we focused on the interactions of five pyridazinone derivatives with the following biomolecules: DNA and two plasma proteins: orosomucoid and gamma globulin. Using several of spectroscopic methods, such as UV-Vis, CD, and fluorescence spectroscopy, we proved that the tested compounds form stable complexes with all biomacromolecules selected for analysis. These findings were also confirmed by the results obtained by molecular modeling. All tested pyridazinone derivatives bind to the ctDNA molecule via groove binding mechanisms. All these molecules can also be bound and transported by the tested plasma proteins; however, the stability of the complexes formed is lower than those formed with serum albumin.


Assuntos
Anti-Inflamatórios , Antioxidantes , DNA/química , Modelos Moleculares , Proteínas Sanguíneas , Simulação de Acoplamento Molecular
17.
J Pept Sci ; 30(6): e3568, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38317295

RESUMO

Cyclopeptides hold significant relevance in various fields of science and medicine, due to their unique structural properties and diverse biological activities. Cyclic peptides, characterized by intrinsically higher conformational order, exhibit remarkable stability and resistance to proteolytic degradation, making them attractive candidates for developing targeted drug delivery systems. The aim of this work is to elucidate the unique coordination properties of the multi-His cyclic peptide with c(HDHKHPHHKHHP) sequence (HDCP - heterodomain cyclopeptide). This peptide, indeed, is able to form homo- and hetero-dinuclear complexes in a wide pH range, being thus a good chelator for Cu(II) ions. Herein, we present the results of a combined study, involving potentiometric, spectroscopic (UV-Vis, CD, and EPR), and computational investigations, on its coordination properties. To better understand the interaction pattern with Cu(II) metal ions, two other peptides, each one bearing only one of the two binding domains of HDCP are also considered in this study: c(HDHKHPGGKGGP) = CP1, c(GKGGKPHHKHHP) = CP2, which share sequence fragments of HDCP and allow separate investigations of its coordination domains.


Assuntos
Cobre , Peptídeos Cíclicos , Cobre/química , Peptídeos Cíclicos/química , Histidina/química , Ligação Proteica , Complexos de Coordenação/química , Concentração de Íons de Hidrogênio , Sequência de Aminoácidos
18.
Protein Pept Lett ; 31(2): 161-167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38243925

RESUMO

INTRODUCTION: Parvovirus B19 (B19V) is a human pathogen, and the minor capsid protein of B19V possesses a unique N terminus called VP1u that plays a crucial role in the life cycle of the virus. OBJECTIVES: The objective of this study was to develop a method for domain segmentation of B19 VP1u using intein technology, particularly its receptor binding domain (RBD) and phospholipase A2 (PLA2) domain. METHODS: RBD and PLA2 domains of VP1u were each fused to the DnaE split inteins derived from the Nostoc punctiforme. Each of these precursor proteins was expressed in E. coli. Combining the purified precursors in equal molar ratios resulted in the formation of full-length VP1u. Furthermore, Circular Dichroism (CD) spectroscopy and PLA2 assays were used to probe the structure and activity of the newly formed protein. RESULTS: The CD spectrum of the full length VP1u confirmed the secondary structure of protein, while the PLA2 assay indicated minimal disruption in enzymatic activity. CONCLUSION: This method would allow for the selective incorporation of NMR-active isotopes into either of the VP1u domains, which can reduce signal overlap in NMR structural determination studies.


Assuntos
Proteínas do Capsídeo , Escherichia coli , Inteínas , Inteínas/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Domínios Proteicos , Parvovirus B19 Humano/genética , Parvovirus B19 Humano/química , Nostoc/genética , Nostoc/enzimologia , Nostoc/química , Fosfolipases A2/química , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Dicroísmo Circular , Humanos
19.
Proteins ; 92(3): 356-369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37881117

RESUMO

The fusion of haemagglutinin-neuraminidase (HN) protein of peste des petits ruminant (PPR) virus with signaling lymphocyte activation molecules (SLAM) host cell receptor consequences the virus entry and multiplication inside the host cell. The use of synthetic SLAM homologous peptides (i.e., molecular decoy for HN protein of PPR virus) may check PPR infection at the preliminary stage. Hence, the predicted SLAM homologous peptides using bioinformatics tools were synthesized by solid phase chemistry with standard Merrifield's 9-fluorenylmethoxycarbonyl (Fmoc) chemistry and were purified by reverse phase high performance liquid chromatography. The secondary structures of synthesized peptides were elucidated by circular dichroism spectroscopy. The in vitro interactions of these peptides were studied through indirect Enzyme Linked Immuno Sorbent Assay (ELISA) and visual surface plasmon UV-visible spectroscopy. The SLAM homologous peptides were able to interact with the peste des petits ruminant virus (PPRV) with varying binding efficiency. The interaction of SLAM homologous peptide with the PPR virus was ascertained by the change in the plasmon color from red wine to purple during visual detection and also by bathochromic shift in absorbance spectra under UV-visible spectrophotometry. The cytotoxic and anti-PPRV effect of these peptides were also evaluated in B95a cell line using PPR virus (Sungri/96). The cytotoxic concentration 50 (CC50 ) value of each peptide was greater than 1000 µg mL-1 . The anti-PPRV efficiency of SLAM-22 was relatively high among SLAM homologous peptides, SLAM-22 at 25 µg mL-1 concentration showed a reduction of more than log10 3 virus titer by priming of B95a cell line while the use of SLAM-15 and Muco-17 at the same concentration dropped virus titer from log10 4.8 to log10 2.5 and log10 3.1 respectively. The concentration of SLAM homologous peptide (25 µg mL-1 ) to exert its anti-PPRV effect was much less than its CC50 level (>1000 µg mL-1 ). Therefore, the synthetic SLAM homologous peptides may prove to be better agents to target PPRV.


Assuntos
Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Animais , Vírus da Peste dos Pequenos Ruminantes/metabolismo , Peste dos Pequenos Ruminantes/metabolismo , Linhagem Celular , Proteínas Virais/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Cabras
20.
Protein Sci ; 33(3): e4867, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38093605

RESUMO

Prostate apoptosis response-4 (Par-4) tumor suppressor protein has gained attention as a potential therapeutic target owing to its unique ability to selectively induce apoptosis in cancer cells, sensitize them to chemotherapy and radiotherapy, and mitigate drug resistance. It has recently been reported that Par-4 interacts synergistically with cisplatin, a widely used anticancer drug. However, the mechanistic details underlying this relationship remain elusive. In this investigation, we employed an array of biophysical techniques, including circular dichroism spectroscopy, dynamic light scattering, and UV-vis absorption spectroscopy, to characterize the interaction between the active caspase-cleaved Par-4 (cl-Par-4) fragment and cisplatin. Additionally, elemental analysis was conducted to quantitatively assess the binding of cisplatin to the protein, utilizing inductively coupled plasma-optical emission spectroscopy and atomic absorption spectroscopy. Our findings provide evidence of direct interaction between cl-Par-4 and cisplatin, and reveal a binding stoichiometry of 1:1. This result provides insights that could be useful in enhancing the efficacy of cisplatin-based and tumor suppressor-based cancer therapies.


Assuntos
Antineoplásicos , Cisplatino , Masculino , Humanos , Cisplatino/farmacologia , Cisplatino/química , Caspases , Próstata , Apoptose , Linhagem Celular Tumoral , Antineoplásicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA