Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 724
Filtrar
1.
J Hazard Mater ; 477: 135313, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39067296

RESUMO

Industrial and agricultural production processes lead to the accumulation of cadmium (Cd) in soil, resulting in crops absorb Cd from contaminated soil and then transfer it to human body through the food chain, posing a serious threat to human health. Thus, it is necessary to explore novel genes and mechanisms involved in regulating Cd tolerance and detoxification in plants. Here, we found that CDR1, a DUF946 domain containing protein, localizes to the plasma membrane and positively regulates Cd stress tolerance. The cdr1 mutants exhibited Cd sensitivity, accumulated excessive Cd in the seeds and roots, but decreased in leaves. However, CDR1-OE transgenic plants not only showed Cd tolerance but also significantly reduced Cd in seeds and roots. Additionally, both in vitro and in vivo assays demonstrated an interaction between CDR1 and OPT3. Cell free protein degradation and OPT3 protein level determination assays indicated that CDR1 could maintain the stability of OPT3 protein. Moreover, genetic phenotype analysis and Cd content determination showed that CDR1 regulates Cd stress tolerance and affect the distribution of Cd in plants by maintaining the stability of OPT3 protein. Our discoveries provide a key candidate gene for directional breeding to reduce Cd accumulation in edible seeds of crops.

2.
BMC Genomics ; 25(1): 705, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030501

RESUMO

At the 3' end of the C2 gene in the mammalian TRB locus, a distinct reverse TRBV30 gene (named TRBV31 in mice) has been conserved throughout evolution. In the fully annotated TRB locus of 14 mammals (including six orders), we observed noteworthy variations in the localization and quality of the reverse V30 genes and Recombination Signal Sequences (RSSs) in the gene trees of 13 mammals. Conversely, the forward V29 genes and RSSs were generally consistent with the species tree of their corresponding species. This finding suggested that the evolution of the reverse V30 gene was not synchronous and likely played a crucial role in regulating adaptive immune responses. To further investigate this possibility, we utilized single-cell TCR sequencing (scTCR-seq) and high-throughput sequencing (HTS) to analyze TCRß CDR3 repertoires from both central and peripheral tissues of Primates (Homo sapiens and Macaca mulatta), Rodentia (Mus musculus: BALB/c, C57BL/6, and Kunming mice), Artiodactyla (Bos taurus and Bubalus bubalis), and Chiroptera (Rhinolophus affinis and Hipposideros armige). Our investigation revealed several novel observations: (1) The reverse V30 gene exhibits classical rearrangement patterns adhering to the '12/23 rule' and the 'D-J rearrangement preceding the V-(D-J) rearrangement'. This results in the formation of rearranged V30-D2J2, V30-D1J1, and V30-D1J2. However, we also identified 'special rearrangement patterns' wherein V30-D rearrangement preceding D-J rearrangement, giving rise to rearranged V30-D2-J1 and forward Vx-D2-J. (2) Compared to the 'deletional rearrangement' (looping out) of forward V1-V29 genes, the reverse V30 gene exhibits preferential utilization with 'inversional rearrangement'. This may be attributed to the shorter distance between the V30 gene and D gene and the 'inversional rearrangement' modes. In summary, in the mammalian TRB locus, the reverse V30 gene has been uniquely preserved throughout evolution and preferentially utilized in V(D)J recombination, potentially serving a significant role in adaptive immunity. These results will pave the way for novel and specialized research into the mechanisms, efficiency, and function of V(D)J recombination in mammals.


Assuntos
Evolução Molecular , Mamíferos , Animais , Mamíferos/genética , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Filogenia , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos
3.
Cureus ; 16(6): e62258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39006587

RESUMO

INTRODUCTION: This study aimed to investigate the mechanism of memory function in the context of explicit memory in early-stage Alzheimer's disease (AD) using the short-form Japanese Verbal Learning Test (JVLT-9). METHODS: Participants were 20 patients with early-stage AD and a control group of 23 healthy older adults (normal controls: NC), each of whom was administered the JVLT-9, which is a verbal list learning task used to assess explicit memory comprehensively. Between-group differences for each score were investigated using the Mann-Whitney U test. A two-way analysis of variance (ANOVA) was performed for the number of correct recalls by group (AD/NC) × JVLT-9 task. In addition, the AD group was divided into a CDR 0.5 group and a CDR 1.0 group, and it was performed as a group (CDR 0.5/1.0) × JVLT-9 task two-way ANOVA. RESULTS: The results demonstrated that the AD group had lower immediate recall, learning rate, semantic clustering, and recognition discrimination and significantly higher intrusion errors compared to the NC group. Further, JVLT-9 recall and recognition rates were found to be lower with higher CDR (an index of dementia severity). CONCLUSION: These results are largely consistent with the features of explicit memory in AD reported in the English version, confirming the clinical utility of the JVLT-9 as a test of explicit memory function.

4.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 7): 154-163, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958188

RESUMO

The third complementary-determining regions of the heavy-chain (CDR3H) variable regions (VH) of some cattle antibodies are highly extended, consisting of 48 or more residues. These `ultralong' CDR3Hs form ß-ribbon stalks that protrude from the surface of the antibody with a disulfide cross-linked knob region at their apex that dominates antigen interactions over the other CDR loops. The structure of the Fab fragment of a naturally paired bovine ultralong antibody (D08), identified by single B-cell sequencing, has been determined to 1.6 Šresolution. By swapping the D08 native light chain with that of an unrelated antigen-unknown ultralong antibody, it is shown that interactions between the CDR3s of the variable domains potentially affect the fine positioning of the ultralong CDR3H; however, comparison with other crystallographic structures shows that crystalline packing is also a major contributor. It is concluded that, on balance, the exact positioning of ultralong CDR3H loops is most likely to be due to the constraints of crystal packing.


Assuntos
Regiões Determinantes de Complementaridade , Fragmentos Fab das Imunoglobulinas , Cadeias Pesadas de Imunoglobulinas , Cadeias Leves de Imunoglobulina , Modelos Moleculares , Animais , Bovinos , Cadeias Pesadas de Imunoglobulinas/química , Cristalografia por Raios X , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/genética , Regiões Determinantes de Complementaridade/química , Fragmentos Fab das Imunoglobulinas/química , Sequência de Aminoácidos , Conformação Proteica
5.
Elife ; 122024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38921957

RESUMO

Accurate prediction of the structurally diverse complementarity determining region heavy chain 3 (CDR-H3) loop structure remains a primary and long-standing challenge for antibody modeling. Here, we present the H3-OPT toolkit for predicting the 3D structures of monoclonal antibodies and nanobodies. H3-OPT combines the strengths of AlphaFold2 with a pre-trained protein language model and provides a 2.24 Å average RMSDCα between predicted and experimentally determined CDR-H3 loops, thus outperforming other current computational methods in our non-redundant high-quality dataset. The model was validated by experimentally solving three structures of anti-VEGF nanobodies predicted by H3-OPT. We examined the potential applications of H3-OPT through analyzing antibody surface properties and antibody-antigen interactions. This structural prediction tool can be used to optimize antibody-antigen binding and engineer therapeutic antibodies with biophysical properties for specialized drug administration route.


Assuntos
Regiões Determinantes de Complementaridade , Aprendizado Profundo , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Modelos Moleculares , Conformação Proteica , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Humanos
6.
Toxics ; 12(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38922090

RESUMO

Long-term exposure to lead (Pb) can result in chronic damage to the body through accumulation in the central nervous system (CNS) leading to neurodegenerative diseases, such as Alzheimer's disease (AD). This study delves into the intricate role of miR-671/CDR1as regulation in the etiology of AD-like lesions triggered by chronic Pb exposure in adult mice. To emulate the chronic effects of Pb, we established a rodent model spanning 10 months of controlled Pb administration, dividing 52 C57BL/6J mice into groups receiving varying concentrations of Pb (1, 2, or 4 g/L) alongside an unexposed control. Blood Pb levels were monitored using serum samples to ensure accurate dosing and to correlate with observed toxicological outcomes. Utilizing the Morris water maze, a robust behavioral assay for assessing cognitive functions, we documented a dose-dependent decline in learning and memory capabilities among the Pb-exposed mice. Histopathological examination of the hippocampal tissue revealed tell-tale signs of AD-like neurodegeneration, characterized by the accumulation of amyloid plaques and neurofibrillary tangles. At the molecular level, a significant upregulation of AD-associated genes, namely amyloid precursor protein (APP), ß-secretase 1 (BACE1), and tau, was observed in the hippocampal tissue of Pb-exposed mice. This was accompanied by a corresponding surge in the protein levels of APP, BACE1, amyloid-ß (Aß), and phosphorylated tau (p-tau), further implicating Pb in the dysregulation of these key AD markers. The expression of CDR1as, a long non-coding RNA implicated in AD pathogenesis, was found to be suppressed in Pb-exposed mice. This observation suggests a potential mechanistic link between Pb-induced neurotoxicity and the dysregulation of the CDR1as/miR-671 axis, which warrants further investigation. Moreover, our study identified a dose-dependent alteration in the intracellular and extracellular levels of the transcription factor nuclear factor-kappa B (NF-κB). This finding implicates Pb in the modulation of NF-κB signaling, a pathway that plays a pivotal role in neuroinflammation and neurodegeneration. In conclusion, our findings underscored the deleterious effects of Pb exposure on the CNS, leading to the development of AD-like pathology. The observed modulation of NF-κB signaling and miR-671/CDR1as regulation provides a plausible mechanistic framework for understanding the neurotoxic effects of Pb and its potential contribution to AD pathogenesis.

7.
J Biomed Sci ; 31(1): 58, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824576

RESUMO

BACKGROUND: A vaccine against Trypanosoma cruzi, the agent of Chagas disease, would be an excellent additional tool for disease control. A recombinant vaccine based on Tc24 and TSA1 parasite antigens was found to be safe and immunogenic in naïve macaques. METHODS: We used RNA-sequencing and performed a transcriptomic analysis of PBMC responses to vaccination of naïve macaques after each vaccine dose, to shed light on the immunogenicity of this vaccine and guide the optimization of doses and formulation. We identified differentially expressed genes and pathways and characterized immunoglobulin and T cell receptor repertoires. RESULTS: RNA-sequencing analysis indicated a clear transcriptomic response of PBMCs after three vaccine doses, with the up-regulation of several immune cell activation pathways and a broad non-polarized immune profile. Analysis of the IgG repertoire showed that it had a rapid turnover with novel IgGs produced following each vaccine dose, while the TCR repertoire presented several persisting clones that were expanded after each vaccine dose. CONCLUSIONS: These data suggest that three vaccine doses may be needed for optimum immunogenicity and support the further evaluation of the protective efficacy of this vaccine.


Assuntos
Doença de Chagas , Macaca mulatta , Vacinas Protozoárias , Receptores de Antígenos de Linfócitos T , Animais , Doença de Chagas/imunologia , Doença de Chagas/prevenção & controle , Receptores de Antígenos de Linfócitos T/imunologia , Vacinas Protozoárias/imunologia , Trypanosoma cruzi/imunologia , Imunoglobulinas/imunologia
8.
Cardiooncology ; 10(1): 35, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863010

RESUMO

PURPOSE: Immune checkpoint inhibitors (ICIs)-associated myocarditis was a rare yet severe complication observed in individuals undergoing immunotherapy. This study investigated the immune status and characteristics of patients diagnosed with ICIs- associated myocarditis. METHODS: A total of seven patients diagnosed with ICIs-associated myocarditis were included in the study, while five tumor patients without myocarditis were recruited as reference controls. Additionally, 30 healthy individuals were recruited as blank controls. Biochemical indices, electrocardiogram, and echocardiography measurements were obtained both prior to and following the occurrence of myocarditis. High-throughput sequencing of T cell receptor (TCR) was employed to assess the diversity and distribution characteristics of TCR CDR3 length, as well as the diversity of variable (V) and joining (J) genes of T lymphocytes in peripheral blood. RESULTS: In the seven patients with ICIs-associated myocarditis, Troponin T (TNT) levels exhibited a significant increase following myocarditis, while other parameters such as brain natriuretic peptide (BNP), QTc interval, and left ventricular ejection fraction (LVEF) did not show any significant differences. Through sequencing, it was observed that the diversity and uniformity of CDR3 in the ICIs-associated myocarditis patients were significantly diminished. Additionally, the distribution of CDR3 nucleotides deviated from normality, and variations in the utilization of V and J gene segments. CONCLUSION: The reconstitution of the TCR immune repertoire may play a pivotal role in the recognition of antigens in patients with ICIs-associated myocarditis.

9.
MAbs ; 16(1): 2361928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38844871

RESUMO

The naïve human antibody repertoire has theoretical access to an estimated > 1015 antibodies. Identifying subsets of this prohibitively large space where therapeutically relevant antibodies may be found is useful for development of these agents. It was previously demonstrated that, despite the immense sequence space, different individuals can produce the same antibodies. It was also shown that therapeutic antibodies, which typically follow seemingly unnatural development processes, can arise independently naturally. To check for biases in how the sequence space is explored, we data mined public repositories to identify 220 bioprojects with a combined seven billion reads. Of these, we created a subset of human bioprojects that we make available as the AbNGS database (https://naturalantibody.com/ngs/). AbNGS contains 135 bioprojects with four billion productive human heavy variable region sequences and 385 million unique complementarity-determining region (CDR)-H3s. We find that 270,000 (0.07% of 385 million) unique CDR-H3s are highly public in that they occur in at least five of 135 bioprojects. Of 700 unique therapeutic CDR-H3, a total of 6% has direct matches in the small set of 270,000. This observation extends to a match between CDR-H3 and V-gene call as well. Thus, the subspace of shared ('public') CDR-H3s shows utility for serving as a starting point for therapeutic antibody design.


Assuntos
Produtos Biológicos , Regiões Determinantes de Complementaridade , Mineração de Dados , Descoberta de Drogas , Humanos , Mineração de Dados/métodos , Descoberta de Drogas/métodos , Produtos Biológicos/imunologia , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/genética
10.
Environ Sci Technol ; 58(24): 10567-10581, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38828994

RESUMO

Direct air capture with CO2 storage (DACCS) is among the carbon dioxide removal (CDR) options, with the largest gap between current deployment and needed upscaling. Here, we present a geospatial analysis of the techno-economic performance of large-scale DACCS deployment in Europe using two performance indicators: CDR costs and potential. Different low-temperature heat DACCS configurations are considered, i.e., coupled to the national power grid, using waste heat and powered by curtailed electricity. Our findings reveal that the CDR potential and costs of DACCS systems are mainly driven by (i) the availability of energy sources, (ii) the location-specific climate conditions, (iii) the price and GHG intensity of electricity, and (iv) the CO2 transport distance to the nearest CO2 storage location. The results further highlight the following key findings: (i) the limited availability of waste heat, with only Sweden potentially compensating nearly 10% of national emissions through CDR, and (ii) the need for considering transport and storage of CO2 in a comprehensive techno-economic assessment of DACCS. Finally, our geospatial analysis reveals substantial differences between regions due to location-specific conditions, i.e., useful information elements and consistent insights that will contribute to assessment and feasibility studies toward effective DACCS implementation.


Assuntos
Dióxido de Carbono , Europa (Continente)
11.
EMBO Rep ; 25(7): 3008-3039, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38831125

RESUMO

The circular RNA (circRNA) Cdr1as is conserved across mammals and highly expressed in neurons, where it directly interacts with microRNA miR-7. However, the biological function of this interaction is unknown. Here, using primary cortical murine neurons, we demonstrate that stimulating neurons by sustained depolarization rapidly induces two-fold transcriptional upregulation of Cdr1as and strong post-transcriptional stabilization of miR-7. Cdr1as loss causes doubling of glutamate release from stimulated synapses and increased frequency and duration of local neuronal bursts. Moreover, the periodicity of neuronal networks increases, and synchronicity is impaired. Strikingly, these effects are reverted by sustained expression of miR-7, which also clears Cdr1as molecules from neuronal projections. Consistently, without Cdr1as, transcriptomic changes caused by miR-7 overexpression are stronger (including miR-7-targets downregulation) and enriched in secretion/synaptic plasticity pathways. Altogether, our results suggest that in cortical neurons Cdr1as buffers miR-7 activity to control glutamatergic excitatory transmission and neuronal connectivity important for long-lasting synaptic adaptations.


Assuntos
Ácido Glutâmico , MicroRNAs , Neurônios , Transmissão Sináptica , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Neurônios/metabolismo , Camundongos , Ácido Glutâmico/metabolismo , Transmissão Sináptica/genética , Plasticidade Neuronal/genética , RNA Circular/genética , RNA Circular/metabolismo , Sinapses/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação da Expressão Gênica , Células Cultivadas
12.
Inflammation ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38914737

RESUMO

Autoimmune diseases (AIDs) are immune system disorders where the body exhibits an immune response to its own antigens, causing damage to its own tissues and organs. The pathogenesis of AIDs is incompletely understood. However, recent advances in immune repertoire sequencing (IR-seq) technology have opened-up a new avenue to study the IR. These studies have revealed the prevalence in IR alterations, potentially inducing AIDs by disrupting immune tolerance and thereby contributing to our comprehension of AIDs. IR-seq harbors significant potential for the clinical diagnosis, personalized treatment, and prognosis of AIDs. This article reviews the application and progress of IR-seq in diseases, such as multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and type 1 diabetes, to enhance our understanding of the pathogenesis of AIDs and offer valuable references for the diagnosis and treatment of AIDs.

13.
Mol Biol Rep ; 51(1): 751, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874667

RESUMO

BACKGROUND: Recently, new and advanced techniques have been adopted to design and produce nanobodies, which are used in diagnostic and immunotherapy treatments. Traditionally, nanobodies are prepared from camelid immune libraries that require animal treatments. However, such approaches require large library sizes and complicated selection procedures. The current study has employed CDR grafting and site-directed mutagenesis techniques to create genetically engineered nanobodies against the tumor marker CD20 (anti-CD20 nanobodies) used in leukemia treatment. METHODS AND RESULTS: In this study, we utilized the swapping method to graft CDRs from the VH Rituximab antibody to VHH CDRs. We aimed to enhance the binding affinity of the nanobodies by substituting the amino acids (Y101R-Y102R-Y107R) in the VHH-CDR3. To assess the binding capacity of the mutated nanobodies, we conducted an ELISA test. Moreover, through flow cytometry analysis, we compared the fluorescence intensity of the grafted CD20 and mutant nanobodies with that of the commercially available human anti-CD20 in Raji cells. The results showed a significant difference in the fluorescence intensity of the grafted nanobodies and mutant nanobodies when compared to the commercially available human anti-CD20. CONCLUSION: The approach we followed in this study makes it possible to create multiple anti-CD20 nanobodies with varying affinities without the need for extensive selection efforts. Additionally, our research has demonstrated that computational tools are highly reliable in designing functional nanobodies.


Assuntos
Afinidade de Anticorpos , Antígenos CD20 , Regiões Determinantes de Complementaridade , Mutagênese Sítio-Dirigida , Rituximab , Anticorpos de Domínio Único , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Mutagênese Sítio-Dirigida/métodos , Antígenos CD20/imunologia , Antígenos CD20/genética , Antígenos CD20/metabolismo , Humanos , Rituximab/farmacologia , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Linhagem Celular Tumoral , Animais
14.
Protein J ; 43(3): 405-424, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38724751

RESUMO

As the demand for immunotherapy to treat and manage cancers, infectious diseases and other disorders grows, a comprehensive understanding of amino acids and their intricate role in antibody engineering has become a prime requirement. Naturally produced antibodies may not have the most suitable amino acids at the complementarity determining regions (CDR) and framework regions, for therapeutic purposes. Therefore, to enhance the binding affinity and therapeutic properties of an antibody, the specific impact of certain amino acids on the antibody's architecture must be thoroughly studied. In antibody engineering, it is crucial to identify the key amino acid residues that significantly contribute to improving antibody properties. Therapeutic antibodies with higher binding affinity and improved functionality can be achieved through modifications or substitutions with highly suitable amino acid residues. Here, we have indicated the frequency of amino acids and their association with the binding free energy in CDRs. The review also analyzes the experimental outcome of two studies that reveal the frequency of amino acids in CDRs and provides their significant correlation between the outcomes. Additionally, it discusses the various bond interactions within the antibody structure and antigen binding. A detailed understanding of these amino acid properties should assist in the analysis of antibody sequences and structures needed for designing and enhancing the overall performance of therapeutic antibodies.


Assuntos
Aminoácidos , Regiões Determinantes de Complementaridade , Engenharia de Proteínas , Aminoácidos/química , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Humanos , Engenharia de Proteínas/métodos , Anticorpos/química , Anticorpos/imunologia , Anticorpos/metabolismo , Afinidade de Anticorpos , Animais
15.
Mol Biotechnol ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736021

RESUMO

Programmed cell death protein-1 (PD-1) is a membrane protein expressed on the surface of activated T-cells, B-cells, natural killer cells, dendritic cells, macrophages, and monocytes. Inhibition of the PD-1/PD-L1 interaction by monoclonal antibodies (mAbs) has many therapeutic benefits and has led to a major advance in the treatment of various types of tumors. Due to the large size and immunogenicity of the antibodies (Abs), using small molecules such as nanobodies (nanobodies or VHH) is more appropriate for this purpose. In this research, the complementarity determining regions (CDR) grafting method was used to produce anti-PD-1 nanobody. For producing the grafted anti-PD-1 nanobody, CDRs from the tislelizumab mAb were grafted into the frameworks of a nanobody whose sequence is similar to the tislelizumab mAb. Also, the site-directed mutagenesis method was used to produce two mutated anti-PD-1 nanobodies which increased the affinity of grafted anti-PD-1 nanobodies. Two amino acid substitutions (Tyr97Arg and Tyr102Arg) in the VHH-CDR3 were used to improve grafted nanobody affinity and the binding capacity of the mutated nanobodies. The binding of the anti-PD-1 nanobodies and PD-1 antigen (Ag) was confirmed by Dot blot, western blot, and indirect ELISA analysis. According to the results of these in silico and in vitro studies, the binding between grafted and mutated nanobodies with PD-1 was confirmed. Also, our findings show that site-directed mutagenesis can increase the affinity of nanobodies.

16.
Int Immunopharmacol ; 135: 112279, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38796963

RESUMO

OBJECTIVE: Th17 and Treg play important roles in AS, but their single and dual TCR pairing types, ratios, and CDR3 characteristics remain unknown. METHODS: Single-cell RNA + TCR-seq results from six AS patients were used to cluster T-cell subpopulations and analyze the single and dual TCR T cell ratio, diversity/clonality/overlap of CDR3, and expression of transcription factors. RESULTS: 1. AS patients have about 10% of dual TCR T cells, and SFMC have decreased diversity CDR3 libraries and significant clonal proliferation compared to PBMC. 2. Dual TCR ratio: memory T > naive T; pTh 17 > Th17; Treg /Th17/Th1/EM significantly higher than naive CD4 + T/CM, Pathogenic Th17 cells contain clonally proliferating single TCR and dual TCR cells. 3. The expression of single TCR and dual TCR transcription factors of each T cell subpopulation was basically the same, but there was differential expression of characteristic transcription factors, e.g. Foxp3, CTLA4, STAT5B, IL10RB, LAG3 in dual TCR Treg was higher than that of single TCR Treg; TNFSF10/12, TNFRSF4/14, CCL5, KLRB1 in dual TCR pTh17 were significantly higher than those in single TCR pTh17. 4. Between naive CD4 + T, pTh17, Th1 and Treg, there are partially identity identical tcr paired cells. CONCLUSIONS: The high proportion of dual TCR T cells such as pTh17 and Treg in AS and the high expression of some transcription factors suggested a close association with self-response in AS; The overlap of CDR3 between Th1, Th17,pTh17, and Treg in AS suggested that the subpopulations may be differentiated from each other to regulate the inflammatory homeostasis and progression.


Assuntos
Receptores de Antígenos de Linfócitos T , Espondilite Anquilosante , Linfócitos T Reguladores , Células Th17 , Humanos , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Masculino , Espondilite Anquilosante/imunologia , Espondilite Anquilosante/genética , Adulto , Feminino , Análise de Célula Única , Autoimunidade , RNA-Seq , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adulto Jovem , Pessoa de Meia-Idade
17.
Vaccines (Basel) ; 12(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38793718

RESUMO

Public antibody responses have been found against many infectious agents. Structural convergence of public antibodies is usually determined by immunoglobulin V genes. Recently, a human antibody public class against SARS-CoV-2 was reported, where the D gene (IGHD3-22) encodes a common YYDxxG motif in heavy-chain complementarity-determining region 3 (CDR H3), which determines specificity for the receptor-binding domain (RBD). In this review, we discuss the isolation, structural characterization, and genetic analyses of this class of antibodies, which have been isolated from various cohorts of COVID-19 convalescents and vaccinees. All eleven YYDxxG antibodies with available structures target the SARS-CoV-2 RBD in a similar binding mode, where the CDR H3 dominates the interaction with antigen. The antibodies target a conserved site on the RBD that does not overlap with the receptor-binding site, but their particular angle of approach results in direct steric hindrance to receptor binding, which enables both neutralization potency and breadth. We also review the properties of CDR H3-dominant antibodies that target other human viruses. Overall, unlike most public antibodies, which are identified by their V gene usage, this newly discovered public class of YYDxxG antibodies is dominated by a D-gene-encoded motif and uncovers further opportunities for germline-targeting vaccine design.

18.
BMC Cancer ; 24(1): 645, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802745

RESUMO

BACKGROUND: Cerebellar degeneration-related (CDR) proteins are associated with paraneoplastic cerebellar degeneration (PCD) - a rare, neurodegenerative disease caused by tumour-induced autoimmunity against neural antigens resulting in degeneration of Purkinje neurons in the cerebellum. The pathogenesis of PCD is unknown, in large part due to our limited understanding of the functions of CDR proteins. To this end, we performed an extensive, multi-omics analysis of CDR-knockout cells focusing on the CDR2L protein, to gain a deeper understanding of the properties of the CDR proteins in ovarian cancer. METHODS: Ovarian cancer cell lines lacking either CDR1, CDR2, or CDR2L were analysed using RNA sequencing and mass spectrometry-based proteomics to assess changes to the transcriptome, proteome and secretome in the absence of these proteins. RESULTS: For each knockout cell line, we identified sets of differentially expressed genes and proteins. CDR2L-knockout cells displayed a distinct expression profile compared to CDR1- and CDR2-knockout cells. Knockout of CDR2L caused dysregulation of genes involved in ribosome biogenesis, protein translation, and cell cycle progression, ultimately causing impaired cell proliferation in vitro. Several of these genes showed a concurrent upregulation at the transcript level and downregulation at the protein level. CONCLUSIONS: Our study provides the first integrative multi-omics analysis of the impact of knockout of the CDR genes, providing both new insights into the biological properties of the CDR proteins in ovarian cancer, and a valuable resource for future investigations into the CDR proteins.


Assuntos
Proliferação de Células , Técnicas de Inativação de Genes , Neoplasias Ovarianas , Proteômica , Ribossomos , Humanos , Ribossomos/metabolismo , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Proteômica/métodos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Proteoma/metabolismo , Multiômica
19.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612701

RESUMO

The amyloid cascade hypothesis for Alzheimer's disease is still alive, although heavily challenged. Effective anti-amyloid immunotherapy would confirm the hypothesis' claim that the protein amyloid-beta is the cause of the disease. Two antibodies, aducanumab and lecanemab, have been approved by the U.S. Food and Drug Administration, while a third, donanemab, is under review. The main argument for the FDA approvals is a presumed therapy-induced removal of cerebral amyloid deposits. Lecanemab and donanemab are also thought to cause some statistical delay in the determination of cognitive decline. However, clinical efficacy that is less than with conventional treatment, selection of amyloid-positive trial patients with non-specific amyloid-PET imaging, and uncertain therapy-induced removal of cerebral amyloids in clinical trials cast doubt on this anti-Alzheimer's antibody therapy and hence on the amyloid hypothesis, calling for a more thorough investigation of the negative impact of this type of therapy on the brain.


Assuntos
Doença de Alzheimer , Anticorpos Monoclonais Humanizados , Estados Unidos , Humanos , Doença de Alzheimer/terapia , Camada de Gelo , Proteínas Amiloidogênicas , Radioimunoterapia
20.
Front Immunol ; 15: 1380641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601144

RESUMO

Recent studies have demonstrated a role for Ten-Eleven Translocation-2 (TET2), an epigenetic modulator, in regulating germinal center formation and plasma cell differentiation in B-2 cells, yet the role of TET2 in regulating B-1 cells is largely unknown. Here, B-1 cell subset numbers, IgM production, and gene expression were analyzed in mice with global knockout of TET2 compared to wildtype (WT) controls. Results revealed that TET2-KO mice had elevated numbers of B-1a and B-1b cells in their primary niche, the peritoneal cavity, as well as in the bone marrow (B-1a) and spleen (B-1b). Consistent with this finding, circulating IgM, but not IgG, was elevated in TET2-KO mice compared to WT. Analysis of bulk RNASeq of sort purified peritoneal B-1a and B-1b cells revealed reduced expression of heavy and light chain immunoglobulin genes, predominantly in B-1a cells from TET2-KO mice compared to WT controls. As expected, the expression of IgM transcripts was the most abundant isotype in B-1 cells. Yet, only in B-1a cells there was a significant increase in the proportion of IgM transcripts in TET2-KO mice compared to WT. Analysis of the CDR3 of the BCR revealed an increased abundance of replicated CDR3 sequences in B-1 cells from TET2-KO mice, which was more clearly pronounced in B-1a compared to B-1b cells. V-D-J usage and circos plot analysis of V-J combinations showed enhanced usage of VH11 and VH12 pairings. Taken together, our study is the first to demonstrate that global loss of TET2 increases B-1 cell number and IgM production and reduces CDR3 diversity, which could impact many biological processes and disease states that are regulated by IgM.


Assuntos
Subpopulações de Linfócitos B , Camundongos , Animais , Subpopulações de Linfócitos B/metabolismo , Linfócitos B , Cadeias Leves de Imunoglobulina/genética , Translocação Genética , Imunoglobulina M , Contagem de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA