Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1316: 342815, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969420

RESUMO

BACKGROUND: Capillary electrophoresis (CE) has the advantage of rapid anion analysis, when employing a reverse electroosmotic flow (EOF). The conventional CE method utilizes dynamic coatings with surfactants like cetyltrimethylammonium bromide (CTAB) in the run buffer to reverse the EOF. However, this method suffers from very slow equilibration leading to drifting effective migration times of the analyte anions, which adversely affects the identification and quantification of peaks. Permanent coating of the capillary surface may obviate this problem but has been relatively little explored. Thus, permanent capillary surface modification by the covalent binding of 3-aminopropyltriethoxysilane (APTES) was studied as an alternative. RESULTS: This study investigates the effect of APTES concentration for surface functionalization on EOF mobility, separation efficiency, and reproducibility of anion separation. The performance data was complemented by X-ray photoelectron spectroscopy (XPS) and contact angle (CA) measurements. The XPS measurements showed that the coverage with APTES was dependent on its concentration in the coating solution. The XPS measurements correlated well with the EOF values determined for the capillaries tested. A standard mixture of 21 anions could be baseline separated within 10 min in the capillaries with lower EOF, but not in the capillary with the highest EOF as the residence time of the analytes was too short in this case. Compared to conventional dynamic coating with CTAB, APTES-functionalized capillaries provide faster equilibration and long-term EOF stability. The application of APTES-functionalized capillaries in analyzing different beverages demonstrates the precision, reliability, and specificity in determining organic anions, providing valuable insights of their compositions. SIGNIFICANCE: APTES coating on capillaries provides a facile approach to achieve a permanent reversal of the stable EOF to determine anions. The control of the coverage via the concentration of the reagent solution allows the tailoring of the EOF to different needs, a faster EOF for less complex samples where resolution is not challenging, while a lower EOF for higher complex samples where the focus is on separation efficiency. This enhancement in efficiency and sensitivity has been applied to analyzing organic acids in several beverages.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36174264

RESUMO

Vitamins and minerals are usually incorporated in pharmaceutical and nutraceutical products, but a simple, rapid, and inexpensive analytical method for their simultaneous determination is still lacking. In this study, we developed a quantification method for pyridoxine (vitamin B6) and magnesium (Mg) by using purpose-made capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) instrument. Main analytical conditions include: fused silica capillary (total length 55 cm, effective length 40 cm, inner diameter 50 µm); background electrolyte consisted of 10 mM L-arginine/acetic acid (pH 5) with 20% acetonitrile; separation voltage + 20 kV; hydrodynamic injection (siphoning at 20 cm in 25 s). Detection limits of vitamin B6 and Mg were 1 and 0.1 mg/L, respectively. Good linearity (R2 > 0.999) was observed for vitamin B6 and Mg calibration curves over concentration ranges of 3-100 and 0.3-200 mg/L, respectively. The method was applied to analyze vitamin B6 and Mg in several pharmaceutical and nutraceutical samples. The analytical results obtained by our method were in good agreement with reference methods (i.e., HPLC for vitamin B6 and ICP-OES for Mg). High-efficient and low-cost CE-C4D method can accordingly serve as a promising tool for concurrent analysis of inorganic and organic species in pharmaceutical and nutraceutical analysis.


Assuntos
Magnésio , Vitamina B 6 , Acetonitrilas , Arginina , Suplementos Nutricionais , Condutividade Elétrica , Eletrólitos , Eletroforese Capilar/métodos , Preparações Farmacêuticas , Piridoxina , Dióxido de Silício , Vitaminas
3.
J Chromatogr A ; 1675: 463191, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35675730

RESUMO

γ-Hydroxybutyric acid (GHB), a neurotransmitter or neuromodulator in the human central nervous system, is often abused in drug-facilitated sexual assaults due to its euphoric and sedative effects. While the analysis of GHB has received continuous attention, its inherent characteristics pose challenges. In the current study, capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C4D) was built, and Good's buffers were evaluated as the background electrolytes for CE separation and C4D detection. On this basis, a simple and efficient CE-C4D method was developed for GHB analysis. Through theoretical discussion and experimental optimization, the separation of GHB and related positional isomers α-hydroxybutyric acid (AHB) and ß-hydroxybutyric acid (BHB) was achieved within 4 min using 150 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) as the running buffer. Under the optimized condition, the relative standard deviations of migration time and peak area were less than 1.1% and 4.5%, indicating good precision. The C4D signal of GHB showed a good linear relationship with GHB concentration in the range of 3-300 µM with a determination coefficient of 0.9997, and the detection limit was calculated to be 0.37 µM based on the signal-to-noise ratio of three. Furthermore, liquid-liquid extraction (LLE) and solid-phase extraction (SPE) were comparatively studied for sample matrix purification. Combined with the optimized SPE procedure, the developed CE-C4D method has been successfully applied for the determination of exogenous GHB in spiked beverages and endogenous GHB in human urine.


Assuntos
Oxibato de Sódio , Bebidas/análise , Condutividade Elétrica , Eletrólitos , Eletroforese Capilar/métodos , Humanos , Hidroxibutiratos , Oxibato de Sódio/urina
4.
Electrophoresis ; 43(3): 446-455, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34687464

RESUMO

Breast cancer is the second leading cause of cancer death in women after lung cancer. The first-line treatment of metastatic breast cancer in premenopausal women relies on tamoxifen. The development of tamoxifen resistance is not fully understood. In this study, capillary electrophoresis with capacitively coupled contactless conductivity detector was developed to monitor the changes in lactate and pyruvate levels in supernatant media of three models of developed MCF-7 tamoxifen-resistant cells and correlate these metabolites changes with lactate dehydrogenase genes expression and glucose consumption. The electrophoretic separation was achieved under reversed electroosmotic flow conditions. The linear ranges were 0.15-5 and 0.01-1 mM with a correlation coefficient of 0.9966 and 0.9971 and the limits of detection were 0.01 and 0.02 µM for lactate and pyruvate, respectively. Inter- and intrarun accuracy were in the range of 96.88-105.94% with precision (CV, %) of ≤7.35%. The method was completely validated and the results were in agreement with those obtained using the lactate and glucose assay kits. The results revealed a significant increase in both lactate and pyruvate production in the three tamoxifen-resistant MCF-7 cells models compared to control cells. This increase was correlated with the increase of lactate dehydrogenase genes expression and the increase of glucose consumption.


Assuntos
Neoplasias da Mama , Ácido Pirúvico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Condutividade Elétrica , Eletroforese Capilar/métodos , Feminino , Expressão Gênica , Glucose , Humanos , L-Lactato Desidrogenase , Ácido Láctico/análise , Células MCF-7 , Tamoxifeno/farmacologia
5.
Molecules ; 26(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34641293

RESUMO

A fast method for the determination of tropane alkaloids, using a portable CE instrument with a capacitively coupled contactless conductivity detector (CE-C4D) was developed and validated for determination of atropine and scopolamine in seeds from Solanaceae family plants. Separation was obtained within 5 min, using an optimized background electrolyte consisting of 0.5 M acetic acid with 0.25% (w/v) ß-CD. The limit of detection and quantification was 0.5 µg/mL and 1.5 µg/mL, respectively, for both atropine and scopolamine. The developed method was validated with the following parameters-precision (CV): 1.07-2.08%, accuracy of the assay (recovery, RE): 101.0-102.7% and matrix effect (ME): 92.99-94.23%. Moreover, the optimized CE-C4D method was applied to the analysis of plant extracts and pharmaceuticals, proving its applicability and accuracy.


Assuntos
Atropina/análise , Escopolamina/análise , Solanaceae/química , Eletroforese Capilar , Limite de Detecção , Alcaloides de Solanáceas/análise
6.
Molecules ; 26(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34641364

RESUMO

A simple and fast method for the analysis of lactate from a single drop of blood was developed. The finger-prick whole blood sample (10 µL) was diluted (1:20) with a 7% (w/v) solution of [tris(hydroxymethyl)methylamino] propanesulfonic acid and applied to a blood plasma separation device. The device accommodates a membrane sandwich composed of an asymmetric polysulfone membrane and a supporting textile membrane that allows the collection of blood plasma into a narrow glass capillary in less than 20 s. Separated and simultaneously diluted blood plasma was directly injected into a capillary electrophoresis instrument with a contactless conductivity detector (CE-C4D) and analyzed in less than one minute. A separation electrolyte consisted of 10 mmol/L l-histidine, 15 mmol/L dl-glutamic acid, and 30 µmol/L cetyltrimethylammonium bromide. The whole procedure starting from the finger-prick sampling until the CE-C4D analysis was finished, took less than 5 min and was suitable for monitoring lactate increase in blood plasma during incremental cycling exercise. The observed lactate increase during the experiments measured by the developed CE-C4D method correlated well with the results from a hand-held lactate analyzer (R = 0.9882). The advantage of the developed CE method is the speed, significant savings per analysis, and the possibility to analyze other compounds from blood plasma.


Assuntos
Atletas/psicologia , Condutividade Elétrica , Eletroforese Capilar/métodos , Exercício Físico , Ácido Láctico/sangue , Humanos , Limite de Detecção
7.
Electrophoresis ; 42(3): 191-199, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32735355

RESUMO

The aim of the present study is to determine four anionic alkyl sulfate (AS) surfactants with different alkyl chains, namely, C8, C10, C12, and C14, in wastewater by CE with capacitively coupled contactless conductivity detection (CE-C4 D). The conditions effective for the separation of the four AS surfactants were systematically optimized and found to be in a Tris-His (50 mM/20 mM) BGE solution at a pH of 8.95, using a separation voltage of +15 kV, hydrodynamic injection by siphoning using a 20 cm injection height and an injection time of 20 s. The LODs for C8, C10, C12, and C14 were 2.58, 2.30, 2.08, and 3.16 mg/L, respectively. The conditions used to achieve the simultaneous adsorption and preconcentration of the AS surfactants using Al2 O3 beads were pH of 3 and 0.1 mM NaCl. The adsorption efficiencies were found to be 45.6, 50.8, 81.7, and 99.9%, while the desorption efficiencies reached 66.1, 70.4, 83.9, and 100.0% for C8, C10, C12, and C14, respectively. The concentrations of the AS surfactants in wastewater samples were quantified by CE-C4 D after preconcentration by simultaneous adsorption using Al2 O3 beads. The results obtained from the proposed method were consistent with those obtained by HPLC-MS/MS, with a deviation of less than 15%. Our results indicate that the CE-C4 D performed after preconcentration by an adsorption technique using Al2 O3 beads is a new, inexpensive, and suitable method for quantifying AS surfactants in wastewater samples.


Assuntos
Ácidos Alcanossulfônicos/análise , Óxido de Alumínio/química , Eletroforese Capilar/métodos , Tensoativos/análise , Águas Residuárias/química , Adsorção , Ácidos Alcanossulfônicos/química , Ácidos Alcanossulfônicos/isolamento & purificação , Condutividade Elétrica , Eletroforese Capilar/instrumentação , Desenho de Equipamento , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Tensoativos/química , Tensoativos/isolamento & purificação
8.
Electrophoresis ; 41(15): 1273-1279, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32358896

RESUMO

Mutations in the potassium channel genes may be linked to the development of epilepsy and affect the blood potassium levels. Therefore, accurate determination of potassium in the blood will be critical to diagnose the cause of epilepsy. CE is a competent technique for the fast detection of multiple ions, but complicated matrices of a blood sample may cause significant variation of migration times and the peak shape. In this work, a procedure for rapid stabilization of the capillary inner surface through preflushing of a blood sample was employed. The process takes only 40 min for a capillary and then it can be used for more than 2 weeks. No pretreatment of the blood sample or other surface modification of the capillary is needed for the analysis. The RSDs of the migration time and peak area were reduced to 1.5 and 5.1% from 12.6 and 14.5%, respectively. The proposed method has been successfully applied to the determination of the potassium contents in the blood sample of patients with epilepsy at different stages. The recoveries of potassium ions in these blood samples are in a range from 86.5 to 104.5%.


Assuntos
Eletroforese Capilar/métodos , Epilepsia/diagnóstico , Potássio/sangue , Coleta de Amostras Sanguíneas , Humanos , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes
9.
J Pharm Biomed Anal ; 129: 1-8, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27386824

RESUMO

A capillary electrophoresis method with capacitively coupled contactless conductivity detection (CE-C(4)D) has been developed, optimized and validated for the determination of ciprofloxacin. Ciprofloxacin is a member of the fluoroquinolone antibiotics with a broad spectrum bactericidal activity and recommended for complicated respiratory infections, sexually transmitted diseases, tuberculosis, bacterial diarrhea etc. Method development was conducted with major focus on the quality by design (QbD) approach. During method development, multiple buffers were tried at different ionic strength. However, the optimized method finally involved a very simple background electrolyte, monosodium citrate at a concentration of 10mM without pH adjustment. The optimized CE-C(4)D method involved an uncoated fused silica capillary (59/39cm, 50µm i.d.) and hydrodynamic sample injection at a pressure of 0.5 p.s.i. for 5s. The actual separation was conducted for 10min at normal polarity with a voltage of 20kV corresponding to 5.9µA current. LiCl (1mg/mL) was used as an internal standard. The optimized method is robust and accurate (recovery >98%) which rendered the ciprofloxacin peak within five minutes with good linearity (R(2)>0.999) in the concentration range of 0.0126-0.8mg/mL. The repeatability is expressed by percentage relative standard deviation (%RSD) of the relative peak areas (RPA) and it showed good repeatability both intra-day (<3%) and inter-day (3.1%). This method, proven to be free of matrix interference, showed that the estimated percent content of ciprofloxacin (102%) was within the official requirements. Moreover, due to its ease of use and robustness, the method should also be applicable in less well controlled laboratory environments.


Assuntos
Química Farmacêutica/normas , Química Farmacêutica/tendências , Ciprofloxacina/análise , Condutividade Elétrica , Soluções Tampão , Química Farmacêutica/métodos , Eletroforese Capilar/métodos , Eletroforese Capilar/normas , Eletroforese Capilar/tendências , Reprodutibilidade dos Testes
10.
Electrophoresis ; 37(19): 2449-2457, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27449824

RESUMO

Composting is a sustainable approach to manage animal and vegetal waste generated in the Fundação Parque Zoológico de São Paulo. The resulting compost is often used in ZOO's premises as an organic fertilizer for the production of vegetables, which is further used to feed the animals. The composting product provides many forms of mineral and also amino acids (AA) that are absorbed by plants as nutrients. Since most amino acids absorb only slightly or not at all in the UV wavelengths, we developed a method for the determination of AA of agricultural interest in the composting samples. Due to the complexity of samples, we used ion exchange chromatography for the purification of AA prior to analysis. The proposed CZE-C4 D method allowed a separation of the AA in a short analysis time (less than 3.0 min), with great linearity (with R2 ranging from 0.993 to 0.998). Using a BGE of 10 mmol/L TEA, reduction of high-frequency noise and lower baseline fluctuations were obtained. The LOQ for the five AA were around 35 µmol/L, and were adequate for our purpose. In addition, the method showed good precision (RSD of peak area and migration time less than 1.55 and 1.16%, respectively).


Assuntos
Agricultura , Aminoácidos/análise , Cromatografia por Troca Iônica/métodos , Eletroforese Capilar/métodos , Solo/química , Aminoácidos/química , Condutividade Elétrica , Modelos Lineares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Electrophoresis ; 36(16): 1982-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25999258

RESUMO

S-Nitrosothiols (RSNO) are composed of a NO group bound to the sulfhydryl group of a peptide or protein. RSNO are very important biological molecules, since they have many effects on human health. RSNO are easily naturally decomposed by metal ions, light, and heat, with different kinetics. They can furthermore undergo transnitrosation (NO moieties exchange), which is a crucial point in physiological conditions since the concentration ratios between the different nitrosothiols is a key factor in many physiopathological processes. There is therefore a great need for their quantitation. Many S-nitrosothiol detection and quantitation methods need their previous decomposition, leading thus to some limitations. We propose a direct quantitation method employing the coupling of capillary electrophoresis with a homemade capacitively coupled contactless conductivity (C(4) D) detector in order to separate and quantify S-nitrosoglutathione and its decomposition products. After optimization of the method, we have studied the kinetics of decomposition using light and heat. Our results show that the decomposition by light is first order (kobs   =  (3.40 ± 0.15) × 10(-3)  s(-1) ) while that using heat (at 80°C) is zeroth order (kobs,80°C   =  (4.34 ± 0.14) × 10(-6)  mol L(-1) s(-1) ). Transnitrosation reaction between S-nitrosoglutathione and cysteine was also studied, showing the possibility of separation and detection of all the products of this reaction in less than 2.5 min.


Assuntos
Eletroforese Capilar/métodos , S-Nitrosoglutationa/análise , S-Nitrosoglutationa/química , Cisteína/química , Condutividade Elétrica , Luz , Limite de Detecção , Modelos Lineares , Óxido Nítrico/química , S-Nitrosoglutationa/efeitos da radiação , Temperatura
12.
Talanta ; 116: 1026-32, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24148511

RESUMO

In this paper, we present two new electrochemical methods for fast and simultaneous determination of codeine (CO) and diclofenac (DCF). The first one is based on batch injection analysis with amperometric detection (BIA-MPA) and the second one is based on capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4)D). The proposed BIA-MPA method is highly-precise (RSD of 1.1% and 0.9% for DCF and CO, respectively; n=10), fast (300 injections h(-1)) and has low detection limits (1.1 and 1.0 µmol L(-1) for DCF and CO, respectively). The proposed CE-C(4)D method allows the determination of CO and DFC in less than 1 min with high precision (RSD of 0.3% and 0.7% for DCF and CO, respectively; n=10) and low detection limits (11 and 21 µmol L(-1) for DCF and CO, respectively). Both proposed methods were applied to the determination of CO and DCF in pharmaceutical samples with similar results to those achieved by high-performance liquid chromatography (HPLC) at a 95% confidence level.


Assuntos
Codeína/análise , Diclofenaco/análise , Técnicas Eletroquímicas/instrumentação , Eletroforese Capilar/instrumentação , Comprimidos/química , Cromatografia Líquida de Alta Pressão , Condutividade Elétrica , Análise de Injeção de Fluxo , Limite de Detecção , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA