Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Autoimmun ; 148: 103295, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39141984

RESUMO

OBJECTIVE: This study will explore the function of WTAP, the critical segment of m6A methyltransferase complex, in UC and its regulation on immune response. METHODS: The expression levels of key proteins were detected in colon tissues which were derived from UC patients and mice. Macrophage polarization and CD4+ T cell infiltration were detected by flow cytometry and IF staining. ELISA assay was utilized to analyze the level of the inflammatory cytokines. m6A-RIP-PCR, actinomycin D test, and RIP assays were utilized to detect the m6A level, stability, and bound proteins of CES2 mRNA. A dual luciferase reporter assay was conducted to confirm the transcriptional interactions between genes. A co-culture system of intestinal epithelium-like organs was constructed to detect the primary mouse intestinal epithelial cells (PMIEC) differentiation. The interaction between proteins was detected via Co-IP assay. RESULTS: The expression of WTAP and CES2 in UC tissues was increased and decreased, respectively. Knockdown of WTAP inhibited the progression of UC in mice by inhibiting M1 macrophage polarization and CD4+ T cell infiltration. WTAP combined YTHDF2 to promote the m6A modification of CES2 mRNA and inhibited its expression. CES2 co-expressed with EPHX2 and overexpression of CES2 promoted the differentiation of PMIEC. The inhibitory effect of WTAP knockdown on the progress of UC was partially abrogated by CES2 knockdown. CONCLUSION: WTAP/YTHDF2 silences CES2 by promoting its m6A modification and then promotes the progression of UC. WTAP could be a promoting therapy target of UC.


Assuntos
Colite Ulcerativa , Progressão da Doença , Macrófagos , Animais , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Camundongos , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Modelos Animais de Doenças , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/imunologia , Masculino , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Regulação da Expressão Gênica , Metiltransferases/metabolismo , Metiltransferases/genética , Feminino
2.
Res Vet Sci ; 175: 105314, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823354

RESUMO

Over the course of the last twenty years, there has been a growing recognition of the pig's potential as a valuable model for studying human drug metabolism. This study aimed to investigate the expression, enzymatic activity, inhibitory susceptibility, and cellular localization of carboxylesterases (CES) in porcine lung tissue not yet explored. Our results showed that CESs hydrolysis activity followed Michaelis-Menten kinetics in both cytosolic and microsomal fractions of porcine lung tissues (N = 8), with comparable hydrolysis rates for tested substrates, namely 4-nitrophenyl acetate (pNPA), 4-methylumbelliferyl acetate (4-MUA), and fluorescein diacetate (FD). We also determined the CESs hydrolysis activity in a representative sample of the porcine liver that, as expected, displayed higher activity than the lung ones. The study demonstrated variable levels of enzyme activities and interindividual variability in both porcine lung fractions. Inhibition studies used to assess the CESs' involvement in the hydrolysis of pNPA, 4-MUA, and FD suggested that CESs may be the enzymes primarily involved in the metabolism of ester compounds in the pig lung tissue. Overall, this study provides insight into the distribution and diversity of CES isoforms involved in substrate hydrolysis across different cellular fractions (cytosol and microsomes) in porcine lungs.


Assuntos
Hidrolases de Éster Carboxílico , Pulmão , Animais , Pulmão/enzimologia , Pulmão/metabolismo , Suínos , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Microssomos/enzimologia , Nitrofenóis/metabolismo , Umbeliferonas/metabolismo , Fluoresceínas , Hidrólise , Citosol/enzimologia , Fígado/enzimologia
3.
Expert Opin Drug Metab Toxicol ; 20(5): 377-397, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706437

RESUMO

INTRODUCTION: Carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) are among the most abundant hydrolases in humans, catalyzing the metabolism of numerous clinically important medications, such as methylphenidate and clopidogrel. The large interindividual variability in the expression and activity of CES1 and CES2 affects the pharmacokinetics (PK) and pharmacodynamics (PD) of substrate drugs. AREAS COVERED: This review provides an up-to-date overview of CES expression and activity regulations and examines their impact on the PK and PD of CES substrate drugs. The literature search was conducted on PubMed from inception to January 2024. EXPERT OPINION: Current research revealed modest associations of CES genetic polymorphisms with drug exposure and response. Beyond genomic polymorphisms, transcriptional and posttranslational regulations can also significantly affect CES expression and activity and consequently alter PK and PD. Recent advances in plasma biomarkers of drug-metabolizing enzymes encourage the research of plasma protein and metabolite biomarkers for CES1 and CES2, which could lead to the establishment of precision pharmacotherapy regimens for drugs metabolized by CESs. Moreover, our understanding of tissue-specific expression and substrate selectivity of CES1 and CES2 has shed light on improving the design of CES1- and CES2-activated prodrugs.


Assuntos
Hidrolases de Éster Carboxílico , Humanos , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Animais , Polimorfismo Genético , Preparações Farmacêuticas/metabolismo , Pró-Fármacos/farmacocinética , Biomarcadores/metabolismo , Carboxilesterase
4.
Biomolecules ; 14(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38540686

RESUMO

Low efficacy of treatments and chemoresistance are challenges in addressing refractory hepatocellular carcinoma (HCC). SPINK1, an oncogenic protein, is frequently overexpressed in many HCC cases. However, the impact of SPINK1 on HCC treatment resistance remains poorly understood. Here, we elucidate the functions of SPINK1 on HCC therapy resistance. Analysis of SPINK1 protein level reveals a correlation between elevated SPINK1 expression and unfavorable prognosis. Furthermore, intercellular variations in SPINK1 expression levels are observed. Subsequent examination of single cell RNA-sequencing data from two HCC cohorts further suggest that SPINK1-high cells exhibit heightened activity in drug metabolic pathways compared to SPINK1-low HCC cells. High SPINK1 expression is associated with reduced sensitivities to both chemotherapy drugs and targeted therapies. Moreover, spatial transcriptomics data indicate that elevated SPINK1 expression correlates with non-responsive phenotype during treatment with targeted therapy and immune checkpoint inhibitors. This is attributed to increased levels of drug metabolic regulators, especially CES2 and CYP3A5, in SPINK1-high cells. Experimental evidence further demonstrates that SPINK1 overexpression induces the expression of CES2 and CYP3A5, consequently promoting chemoresistance to sorafenib and oxaliplatin. In summary, our study unveils the predictive role of SPINK1 on HCC treatment resistance, identifying it as a potential therapeutic target for refractory HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Inibidor da Tripsina Pancreática de Kazal/genética , Inibidor da Tripsina Pancreática de Kazal/metabolismo , Inibidor da Tripsina Pancreática de Kazal/uso terapêutico , Citocromo P-450 CYP3A/genética , Perfilação da Expressão Gênica , RNA , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
5.
Infect Dis (Lond) ; 56(4): 308-319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38315168

RESUMO

BACKGROUND: Rifampicin, a key drug against tuberculosis (TB), displays wide between-patient pharmacokinetics variability and concentration-dependent antimicrobial effect. We investigated variability in plasma rifampicin concentrations and the role of SLCO1B1, ABCB1, arylacetamide deacetylase (AADAC) and carboxylesterase 2 (CES-2) genotypes in Ethiopian patients with TB. METHODS: We enrolled adult patients with newly diagnosed TB (n = 119) who had received 2 weeks of rifampicin-based anti-TB therapy. Venous blood samples were obtained at three time points post-dose. Genotypes for SLCO1B1 (c.388A > G, c.521T > C), ABCB1 (c.3435C > T, c.4036A > G), AADACc.841G > A and CES-2 (c.269-965A > G) were determined. Rifampicin plasma concentration was quantified using LC-MS/MS. Predictors of rifampicin Cmax and AUC0-7 h were analysed. RESULTS: The median rifampicin Cmax and AUC0-7 were 6.76 µg/mL (IQR 5.37-8.48) and 17.05 µg·h/mL (IQR 13.87-22.26), respectively. Only 30.3% of patients achieved the therapeutic efficacy threshold (Cmax>8 µg/mL). The allele frequency for SLCO1B1*1B (c.388A > G), SLCO1B1*5 (c.521T > C), ABCB1 c.3435C > T, ABCB1c.4036A > G, AADAC c.841G > A and CES-2 c.269-965A > G were 2.2%, 20.2%, 24.4%, 14.6%, 86.1% and 30.6%, respectively. Sex, rifampicin dose and ABCB1c.4036A > G, genotypes were significant predictors of rifampicin Cmax and AUC0-7. AADACc.841G > A genotypes were significant predictors of rifampicin Cmax. There was no significant influence of SLCO1B1 (c.388A > G, c.521T > C), ABCB1c.3435C > T and CES-2 c.269-965A > G on rifampicin plasma exposure variability. CONCLUSIONS: Subtherapeutic rifampicin plasma concentrations occurred in two-thirds of Ethiopian TB patients. Rifampicin exposure varied with sex, dose and genotypes. AADACc.841G/G and ABCB1c.4036A/A genotypes and male patients are at higher risk of lower rifampicin plasma exposure. The impact on TB treatment outcomes and whether high-dose rifampicin is required to improve therapeutic efficacy requires further investigation.


Assuntos
Rifampina , Tuberculose , Adulto , Humanos , Masculino , Rifampina/uso terapêutico , Cromatografia Líquida , Espectrometria de Massas em Tandem , Genótipo , Tuberculose/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Carboxilesterase/genética
6.
Cell Metab ; 35(7): 1261-1279.e11, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37141889

RESUMO

There is a significant interest in identifying blood-borne factors that mediate tissue crosstalk and function as molecular effectors of physical activity. Although past studies have focused on an individual molecule or cell type, the organism-wide secretome response to physical activity has not been evaluated. Here, we use a cell-type-specific proteomic approach to generate a 21-cell-type, 10-tissue map of exercise training-regulated secretomes in mice. Our dataset identifies >200 exercise training-regulated cell-type-secreted protein pairs, the majority of which have not been previously reported. Pdgfra-cre-labeled secretomes were the most responsive to exercise training. Finally, we show anti-obesity, anti-diabetic, and exercise performance-enhancing activities for proteoforms of intracellular carboxylesterases whose secretion from the liver is induced by exercise training.


Assuntos
Diabetes Mellitus , Secretoma , Camundongos , Animais , Proteômica , Proteínas , Obesidade
7.
Drug Metab Pharmacokinet ; 50: 100497, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37037169

RESUMO

Caco-2 cells are widely used as an in vitro intestinal model. However, the expression levels of the drug-metabolizing enzymes CYP3A4 and UGT1A1 are lower in these cells than in intestinal cells. Furthermore, the majority of prodrugs in use today are ester-containing, and carboxylesterase (CES) 1 and CES2 are among the enzymes that process the prodrugs into drugs. In the human small intestine, CES1 is hardly expressed while CES2 is highly expressed, but the CES expression pattern in Caco-2 cells is the opposite. In this study, we generated CYP3A4-POR-UGT1A1-CES2 knock-in (KI) and CES1 knock-out (KO) Caco-2 (genome-edited Caco-2) cells using a PITCh system. Genome-edited Caco-2 cells were shown to express functional CYP3A4, POR, UGT1A1 and CES2 while the expression of the CES1 protein was completely knocked out. We performed transport assays using temocapril. The Papp value of temocapril in genome-edited Caco-2 cells was higher than that in WT Caco-2 cells. Interestingly, the amount of temocaprilat on the apical side in genome-edited Caco-2 cells was lower than that in WT Caco-2 cells. These results suggest that genome-edited Caco-2 cells are more suitable than WT Caco-2 cells as a model for predicting intestinal drug absorption and metabolism.


Assuntos
Carboxilesterase , Pró-Fármacos , Humanos , Células CACO-2 , Carboxilesterase/genética , Carboxilesterase/metabolismo , Citocromo P-450 CYP3A/genética , Pró-Fármacos/metabolismo
8.
Mol Metab ; 65: 101600, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113774

RESUMO

OBJECTIVE: Oral squamous cell carcinoma (OSCC) is characterized by high recurrence and metastasis and places a heavy burden on societies worldwide. Cancer cells thrive in a changing microenvironment by reprogramming lipidomic metabolic processes to provide nutrients and energy, activate oncogenic signaling pathways, and manage redox homeostasis to avoid lipotoxicity. The mechanism by which OSCC cells maintain lipid homeostasis during malignant progression is unclear. METHODS: The altered expression of fatty acid (FA) metabolism genes in OSCC, compared with that in normal tissues, and in OSCC patients with or without recurrence or metastasis were determined using public data from the TCGA and GEO databases. Immunohistochemistry was performed to examine the carboxylesterase 2 (CES2) protein level in our own cohort. CCK-8 and Transwell assays and an in vivo xenograft model were used to evaluate the biological functions of CES2. Mass spectrometry and RNA sequencing were performed to determine the lipidome and transcriptome alterations induced by CES2. Mitochondrial mass, mtDNA content, mitochondrial membrane potential, ROS levels, and oxygen consumption and apoptosis rates were evaluated to determine the effects of CES2 on mitochondrial function in OSCC. RESULTS: CES2 was downregulated in OSCC patients, especially those with recurrence or metastasis. CES2high OSCC patients showed better overall survival than CES2low OSCC patients. Restoring CES2 expression reduced OSCC cell viability and suppressed their migration and invasion in vitro, and it inhibited OSCC tumor growth in vivo. CES2 reprogrammed lipid metabolism in OSCC cells by hydrolyzing neutral lipid diacylglycerols (DGs) to release free fatty acids and reduce the membrane structure lipid phospholipids (PLs) synthesis. Free FAs were converted to acyl-carnitines (CARs) and transferred to mitochondria for oxidation, which induced reactive oxygen species (ROS) accumulation, mitochondrial damage, and apoptosis activation. Furthermore, the reduction in signaling lipids, e.g., DGs, PLs and substrates, suppressed PI3K/AKT/MYC signaling pathways. Restoring MYC rescued the diminished cell viability, suppressed migratory and invasive abilities, damaged mitochondria and reduced apoptosis rate induced by CES2. CONCLUSIONS: We demonstrated that CES2 downregulation plays an important role in OSCC by maintaining lipid homeostasis and reducing lipotoxicity during tumor progression and may provide a potential therapeutic target for OSCC.


Assuntos
Carboxilesterase/metabolismo , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Hidrolases de Éster Carboxílico/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , DNA Mitocondrial/metabolismo , DNA Mitocondrial/farmacologia , DNA Mitocondrial/uso terapêutico , Diglicerídeos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Homeostase , Humanos , Mitocôndrias/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/farmacologia , Proteínas Proto-Oncogênicas c-myc/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sincalida/metabolismo , Sincalida/farmacologia , Sincalida/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
9.
J Mass Spectrom Adv Clin Lab ; 25: 27-35, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35721272

RESUMO

Introduction: Remdesivir (GS-5734) is a nucleoside analog prodrug with antiviral activity against several single-stranded RNA viruses, including the novel severe respiratory distress syndrome virus 2 (SARS-CoV-2). It is currently the only FDA-approved antiviral agent for the treatment of individuals with COVID-19 caused by SARS-CoV-2. However, remdesivir pharmacokinetics/pharmacodynamics (PK/PD) and toxicity data in humans are extremely limited. It is imperative that precise analytical methods for the quantification of remdesivir and its active metabolite, GS-441524, are developed for use in further studies. We report, herein, the first validated anti-viral paper spray-mass spectrometry (PS-MS/MS) assay for the quantification of remdesivir and GS-441524 in human plasma. We seek to highlight the utility of PS-MS/MS technology and automation advancements for its potential future use in clinical research and the clinical laboratory setting. Methods: Calibration curves for remdesivir and GS-441524 were created utilizing seven plasma-based calibrants of varying concentrations and two isotopic internal standards of set concentrations. Four plasma-based quality controls were prepared in a similar fashion to the calibrants and utilized for validation. No sample preparation was needed. Briefly, plasma samples were spotted on a paper substrate contained within pre-manufactured plastic cassette plates, and the spots were dried for 1 h. The samples were then analyzed directly for 1.2 min utilizing PS-MS/MS. All experiments were performed on a Thermo Scientific Altis triple quadrupole mass spectrometer utilizing automated technology. Results: The calibration ranges were 20 - 5000 and 100 - 25000 ng/mL for remdesivir and GS-441524, respectively. The calibration curves for the two antiviral agents showed excellent linearity (average R2 = 0.99-1.00). The inter- and intra-day precision (%CV) across validation runs at four QC levels for both analytes was less than 11.2% and accuracy (%bias) was within ± 15%. Plasma calibrant stability was assessed and degradation for the 4 °C and room temperature samples were seen beginning at Day 7. The plasma calibrants were stable at -20 °C. No interference, matrix effects, or carryover was discovered during the validation process. Conclusions: PS-MS/MS represents a useful methodology for rapidly quantifying remdesivir and GS-441524, which may be useful for clinical PK/PD, therapeutic drug monitoring (TDM), and toxicity assessment, particularly during the current COVID-19 pandemic and future viral outbreaks.

10.
Mol Metab ; 56: 101426, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34971802

RESUMO

OBJECTIVE: Intra-tumoral expression of the serine hydrolase carboxylesterase 2 (CES2) contributes to the activation of the pro-drug irinotecan in pancreatic ductal adenocarcinoma (PDAC). Given other potential roles of CES2, we assessed its regulation, downstream effects, and contribution to tumor development in PDAC. METHODS: Association between the mRNA expression of CES2 in pancreatic tumors and overall survival was assessed using The Cancer Genome Atlas. Cell viability, clonogenic, and anchorage-independent growth assays as well as an orthotopic mouse model of PDAC were used to evaluate the biological relevance of CES2 in pancreatic cancer. CES2-driven metabolic changes were determined by untargeted and targeted metabolomic analyses. RESULTS: Elevated tumoral CES2 mRNA expression was a statistically significant predictor of poor overall survival in PDAC patients. Knockdown of CES2 in PDAC cells reduced cell viability, clonogenic capacity, and anchorage-independent growth in vitro and attenuated tumor growth in an orthotopic mouse model of PDAC. Mechanistically, CES2 was found to promote the catabolism of phospholipids resulting in HNF4α activation through a soluble epoxide hydrolase (sEH)-dependent pathway. Targeting of CES2 via siRNA or small molecule inhibitors attenuated HNF4α protein expression and reduced gene expression of classical/progenitor markers and increased basal-like markers. Targeting of the CES2-sEH-HNF4α axis using small molecule inhibitors of CES2 or sEH reduced cell viability. CONCLUSIONS: We establish a novel regulatory loop between CES2 and HNF4α to sustain the progenitor subtype and promote PDAC progression and highlight the potential utility of CES2 or sEH inhibitors for the treatment of PDAC as part of non-irinotecan-containing regimens.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/genética , Animais , Carboxilesterase/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Epóxido Hidrolases/genética , Epóxido Hidrolases/uso terapêutico , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
11.
JID Innov ; 1(4): 100040, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34909741

RESUMO

Dimethyl fumarate (DMF) is an effective oral treatment for psoriasis administered in Europe for nearly 60 years. However, its potential has been limited by contact dermatitis that prohibits topical application. This paper characterizes a DMF derivative, isosorbide DMF (IDMF), which was designed to have antipsoriatic effects without skin-sensitizing properties. We show that IDMF exhibits neither genotoxicity nor radiation sensitivity in skin fibroblasts and is nonirritating and nonsensitizing in animal models (rat, rabbit, guinea pig). Microarray analysis of cytokine-stimulated keratinocytes showed that IDMF represses the expression of genes specifically upregulated in psoriatic skin lesions but not those of other skin diseases. IDMF also downregulated genes induced by IL-17A and TNF in keratinocytes as well as predicted targets of NF-κB and the antidifferentiation noncoding RNA (i.e., ANCR). IDMF further stimulated the transcription of oxidative stress response genes (NQO1, GPX2, GSR) with stronger NRF2/ARE activation compared to DMF. Finally, IDMF reduced erythema and scaling while repressing the expression of immune response genes in psoriasiform lesions elicited by topical application of imiquimod in mice. These data show that IDMF exhibits antipsoriatic activity that is similar or improved compared with that exhibited by DMF, without the harsh skin-sensitizing effects that have prevented topical delivery of the parent molecule.

12.
Mol Ther Methods Clin Dev ; 22: 263-278, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34485610

RESUMO

The human small intestine is the key organ for absorption, metabolism, and excretion of orally administered drugs. To preclinically predict these reactions in drug discovery research, a cell model that can precisely recapitulate the in vivo human intestinal monolayer is desired. In this study, we developed a monolayer platform using human biopsy-derived duodenal organoids for application to pharmacokinetic studies. The human duodenal organoid-derived monolayer was prepared by a simple method in 3-8 days. It consisted of polarized absorptive cells and had tight junctions. It showed much higher cytochrome P450 (CYP)3A4 and carboxylesterase (CES)2 activities than did the existing models (Caco-2 cells). It also showed efflux activity of P-glycoprotein (P-gp) and inducibility of CYP3A4. Finally, its gene expression profile was closer to the adult human duodenum, compared to the profile of Caco-2 cells. Based on these findings, this monolayer assay system using biopsy-derived human intestinal organoids is likely to be widely adopted.

13.
Front Pharmacol ; 12: 655659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084136

RESUMO

Human carboxylesterase 2 (CES2), one of the most abundant hydrolases distributed in the small intestine, has been validated as a key therapeutic target to ameliorate the intestinal toxicity caused by irinotecan. This study aims to discover efficacious CES2 inhibitors from natural products and to characterize the inhibition potentials and inhibitory mechanisms of the newly identified CES2 inhibitors. Following high-throughput screening and evaluation of the inhibition potency of more than 100 natural products against CES2, it was found that the biflavones isolated from Ginkgo biloba displayed extremely potent CES2 inhibition activities and high specificity over CES1 (>1000-fold). Further investigation showed that ginkgetin, bilobetin, sciadopitysin and isoginkgetin potently inhibited CES2-catalyzed hydrolysis of various substrates, including the CES2 substrate-drug irinotecan. Notably, the inhibition potentials of four biflavones against CES2 were more potent than that of loperamide, a marketed anti-diarrhea agent used for alleviating irinotecan-induced intestinal toxicity. Inhibition kinetic analyses demonstrated that ginkgetin, bilobetin, sciadopitysin and isoginkgetin potently inhibited CES2-catalyzed fluorescein diacetate hydrolysis via a reversible and mixed inhibition manner, with K i values of less than 100 nM. Ensemble docking and molecular dynamics revealed that these biflavones could tightly and stably bind on the catalytic cavity of CES2 via hydrogen bonding and π-π stacking interactions, while the interactions with CES1 were awfully poor. Collectively, this study reports that the biflavones isolated from Ginkgo biloba are potent and highly specific CES2 inhibitors, which offers several promising lead compounds for developing novel anti-diarrhea agent to alleviate irinotecan-induced diarrhea.

14.
Am J Physiol Gastrointest Liver Physiol ; 320(2): G166-G174, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325808

RESUMO

Human carboxylesterase 2 (CES2) has triacylglycerol hydrolase (TGH) activities and plays an important role in lipolysis. In this study, we aim to determine the role of human CES2 in the progression or reversal of steatohepatitis in diet-induced or genetically obese mice. High-fat/high-cholesterol/high-fructose (HFCF) diet-fed C57BL/6 mice or db/db mice were intravenously injected with an adeno-associated virus expressing human CES2 under the control of an albumin promoter. Human CES2 protected against HFCF diet-induced nonalcoholic fatty liver disease (NAFLD) in C57BL/6J mice and reversed steatohepatitis in db/db mice. Human CES2 also improved glucose tolerance and insulin sensitivity. Mechanistically, human CES2 reduced hepatic triglyceride (T) and free fatty acid (FFA) levels by inducing lipolysis and fatty acid oxidation and inhibiting lipogenesis via suppression of sterol regulatory element-binding protein 1. Furthermore, human CES2 overexpression improved mitochondrial respiration and glycolytic function, and inhibited gluconeogenesis, lipid peroxidation, apoptosis, and inflammation. Our data suggest that hepatocyte-specific expression of human CES2 prevents and reverses steatohepatitis. Targeting hepatic CES2 may be an attractive strategy for treatment of NAFLD.NEW & NOTEWORTHY Human CES2 attenuates high-fat/cholesterol/fructose diet-induced steatohepatitis and reverses steatohepatitis in db/db mice. Mechanistically, human CES2 induces lipolysis, fatty acid and glucose oxidation, and inhibits hepatic glucose production, inflammation, lipid oxidation, and apoptosis. Our data suggest that human CES2 may be targeted for treatment of non-alcoholic steatohepatitis (NASH).


Assuntos
Carboxilesterase/metabolismo , Hepatócitos/enzimologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/terapia , Ácido 3-Hidroxibutírico/sangue , Ácido 3-Hidroxibutírico/metabolismo , Alanina Transaminase/sangue , Alanina Transaminase/metabolismo , Animais , Apoptose/fisiologia , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/metabolismo , Glicemia , Carboxilesterase/genética , Dieta/efeitos adversos , Hidroxiprolina/sangue , Hidroxiprolina/metabolismo , Metabolismo dos Lipídeos , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Obesidade/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo
15.
Mol Cell Biochem ; 475(1-2): 107-118, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32779042

RESUMO

Long noncoding RNAs (lncRNAs) have been shown to be implicated in acetaminophen (APAP)-induced liver injury (AILI). We applied this study to investigate the role and functional mechanism of KCNQ1 overlapping transcript 1 (KCNQ1OT1) in AILI. The AILI model was established by APAP treatment in mice. The liver injury was preliminarily evaluated by ALT and AST activities via the detection kits. The quantitative real-time polymerase chain reaction (qRT-PCR) was exploited for detecting the expression of KCNQ1OT1, microRNA-122-5p (miR-122-5p), and carboxylesterase 2 (CES2). Protein levels were analyzed via Western blot. 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) assay, and flow cytometry were separately applied to determine cell proliferation and apoptosis rate. Inflammation was assessed by enzyme-linked immunosorbent assay (ELISA). Dual-luciferase reporter assay was implemented to testify the intergenic combination. The function of KCNQ1OT1 in vivo was explored through KCNQ1OT1 knockdown in mice. APAP triggered the downregulation of KCNQ1OT1 and CES2 in mice serums. KCNQ1OT1 upregulation could relieve the AILI in HepaRG cells, which were abrogated by CES2 downregulation. KCNQ1OT1 served as a sponge of miR-122-5p and miR-122-5p directly targeted CES2. KCNQ1OT1 overexpression abated the AILI through the miR-122-5p/CES2 axis in HepaRG cells in vitro and mice in vivo. The collective results clarified that KCNQ1OT1 weakened the AILI in vitro and in vivo by the miR-122-5p/CES2 axis, providing an explicit molecular mechanism and selectable therapeutic strategy of AILI.


Assuntos
Acetaminofen/toxicidade , Carboxilesterase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , Analgésicos não Narcóticos/toxicidade , Animais , Apoptose/fisiologia , Carboxilesterase/sangue , Carboxilesterase/genética , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Longo não Codificante/sangue
16.
Xenobiotica ; 50(1): 92-100, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31601149

RESUMO

The carboxylesterase drug hydrolysis pathway has been used extensively to improve the oral availability of drugs under the assumption that the high capacity and low substrate specificity of hydrolytic enzymes would ensure rapid, complete, and consistent conversion of prodrugs to their active metabolite. However, a growing body of literature indicates that drug hydrolysis is usually catalyzed by one primary enzyme, either carboxylesterase-1 or carboxlylesterase-2, and that there is wide variability in enzyme activity affecting the metabolism of prodrugs to their active metabolites.This review identifies carboxylesterase substrates and describes our current understanding of the influence of genetic polymorphisms on substrate disposition and clinical effects. Several polymorphisms are described in the literature and included in the personalized medicine database PharmGKB, but there are no carboxylesterase genotypes referenced in Food and Drug Administration approved drug labeling. The limited validation of metabolic pathways for drugs undergoing hydrolysis, and the small number of studies evaluating genotype-drug interactions confirm that this is an emerging field of drug metabolism research.The dependence of prodrugs, many with low therapeutic indexes, on carboxylesterase-mediated hydrolysis indicate that genetic variation plays an important role in prodrug activation, and that carboxylesterase genotyping will become an important component of personalized medicine.


Assuntos
Hidrolases de Éster Carboxílico/genética , Medicina de Precisão , Hidrolases de Éster Carboxílico/metabolismo , Interações Medicamentosas , Genótipo , Humanos , Hidrólise , Inativação Metabólica/genética , Taxa de Depuração Metabólica , Polimorfismo Genético , Pró-Fármacos , Especificidade por Substrato
17.
Int J Biol Macromol ; 137: 261-269, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31260759

RESUMO

Human carboxylesterase 2 (CES2A), one of the most abundant hydrolases distributed in human small intestine and colon, play key roles in the hydrolysis of a wide range of prodrugs and other esters. Recent studies have demonstrated that CES2A inhibitors may ameliorate irinotecan-induced severe diarrhea, but the specific and efficacious inhibitors targeting intracellular CES2A are rarely reported. Herein, a large-scale screening campaign was conducted for discovery of potent and specific CES2A inhibitor(s). Following screening of more than one hundred of natural products, glabridin (a bioactive compound of Glycyrrhiza glabra L.) was found displaying potent inhibition on CES2A and high specificity over CES1A (>500-fold) and other serine hydrolases. Further investigation showed that glabridin was cell permeable and low cytotoxic, as well as capable of inhibiting intracellular CES2A in living cells, with the IC50 value of 0.52 µM. Molecular dynamics simulations showed that glabridin formed strong and stable interactions with both the catalytic cavity and Z site of CES2A via hydrophobic interactions. In summary, glabridin was a potent and specific inhibitor targeting intracellular CES2A, which could be used as an ideal lead compound to develop more efficacious CES2A inhibitors for modulating the pharmacokinetic behaviors of CES2A-substrate drugs and alleviating irinotecan-induced diarrhea.


Assuntos
Carboxilesterase/antagonistas & inibidores , Carboxilesterase/química , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Técnicas de Cultura de Células , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Humanos , Hidrólise , Cinética , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Especificidade por Substrato
18.
Curr Drug Metab ; 20(2): 91-102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30129408

RESUMO

BACKGROUND: Carboxylesterases (CES) play a critical role in catalyzing hydrolysis of esters, amides, carbamates and thioesters, as well as bioconverting prodrugs and soft drugs. The unique tissue distribution of CES enzymes provides great opportunities to design prodrugs or soft drugs for tissue targeting. Marked species differences in CES tissue distribution and catalytic activity are particularly challenging in human translation. METHODS: Review and summarization of CES fundamentals and applications in drug discovery and development. RESULTS: Human CES1 is one of the most highly expressed drug metabolizing enzymes in the liver, while human intestine only expresses CES2. CES enzymes have moderate to high inter-individual variability and exhibit low to no expression in the fetus, but increase substantially during the first few months of life. The CES genes are highly polymorphic and some CES genetic variants show significant influence on metabolism and clinical outcome of certain drugs. Monkeys appear to be more predictive of human pharmacokinetics for CES substrates than other species. Low risk of clinical drug-drug interaction is anticipated for CES, although they should not be overlooked, particularly interaction with alcohols. CES enzymes are moderately inducible through a number of transcription factors and can be repressed by inflammatory cytokines. CONCLUSION: Although significant advances have been made in our understanding of CESs, in vitro - in vivo extrapolation of clearance is still in its infancy and further exploration is needed. In vitro and in vivo tools are continuously being developed to characterize CES substrates and inhibitors.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Hidrolases de Éster Carboxílico/genética , Interações Medicamentosas , Humanos , Farmacocinética , Polimorfismo Genético , Especificidade da Espécie , Especificidade por Substrato
19.
Curr Drug Metab ; 20(2): 130-137, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29600756

RESUMO

BACKGROUND: Herbal products have grown steadily across the globe and have increasingly been incorporated into western medicine for healthcare aims, thereby causing potential pharmacokinetic Herb-drug Interactions (HDIs) through the inhibition or induction of drug-metabolizing enzymes and transporters. Human Carboxylesterases 1 (CES1) and 2 (CES2) metabolize endogenous and exogenous chemicals including many important therapeutic medications. The growing number of CES substrate drugs also underscores the importance of the enzymes. Herein, we summarized those potential inhibitors and inducers coming from herbal constituents toward CES1 and CES2. We also reviewed the reported HDI studies focusing on herbal products and therapeutic agents metabolized by CES1 or CES2. METHODS: We searched in PubMed for manuscript published in English after Jan 1, 2000 combining terms "carboxylesterase 1", "carboxylesterase 2", "inhibitor", "inducer", "herb-drug interaction", "inhibitory", and "herbal supplement". We also searched specific websites including FDA and EMA. The data of screened papers were analyzed and summarized. RESULTS: The results showed that more than 50 natural inhibitors of CES1 or CES2, including phenolic chemicals, triterpenoids, and tanshinones were found from herbs, whereas only few inducers of CES1 and CES2 were reported. Systemic exposure to some commonly used drugs including oseltamivir, irinotecan, and clopidogrel were changed when they were co-administered with herb products such as goldenseal, black cohosh, ginger, St. John's Wort, curcumin, and some Chinese compound formula in animals. CONCLUSION: Nonclinical and clinical studies on HDIs are warranted in the future to provide safety information toward better clinical outcomes for the combination of herbal products and conventional drugs.


Assuntos
Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Interações Ervas-Drogas , Compostos Fitoquímicos/farmacocinética , Preparações de Plantas/farmacocinética , Animais , Disponibilidade Biológica , Suplementos Nutricionais , Humanos
20.
Acta Pharm Sin B ; 8(5): 699-712, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30245959

RESUMO

Mammalian carboxylesterases (CEs) are key enzymes from the serine hydrolase superfamily. In the human body, two predominant carboxylesterases (CES1 and CES2) have been identified and extensively studied over the past decade. These two enzymes play crucial roles in the metabolism of a wide variety of endogenous esters, ester-containing drugs and environmental toxicants. The key roles of CES in both human health and xenobiotic metabolism arouse great interest in the discovery of potent CES modulators to regulate endobiotic metabolism or to improve the efficacy of ester drugs. This review covers the structural and catalytic features of CES, tissue distributions, biological functions, genetic polymorphisms, substrate specificities and inhibitor properties of CES1 and CES2, as well as the significance and recent progress on the discovery of CES modulators. The information presented here will help pharmacologists explore the relevance of CES to human diseases or to assign the contribution of certain CES in xenobiotic metabolism. It will also facilitate medicinal chemistry efforts to design prodrugs activated by a given CES isoform, or to develop potent and selective modulators of CES for potential biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA