Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Rep ; 42(8): 112859, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37505984

RESUMO

Biomolecular condensates have been shown to interact in vivo, yet it is unclear whether these interactions are functionally meaningful. Here, we demonstrate that cooperativity between two distinct condensates-germ granules and P bodies-is required for transgenerational gene silencing in C. elegans. We find that P bodies form a coating around perinuclear germ granules and that P body components CGH-1/DDX6 and CAR-1/LSM14 are required for germ granules to organize into sub-compartments and concentrate small RNA silencing factors. Functionally, while the P body mutant cgh-1 is competent to initially trigger gene silencing, it is unable to propagate the silencing to subsequent generations. Mechanistically, we trace this loss of transgenerational silencing to defects in amplifying secondary small RNAs and the stability of WAGO-4 Argonaute, both known carriers of gene silencing memories. Together, these data reveal that cooperation between condensates results in an emergent capability of germ cells to establish heritable memory.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , RNA Interferente Pequeno/genética , Inativação Gênica , Interferência de RNA , Células Germinativas/metabolismo , RNA Nucleotidiltransferases/genética
2.
BMC Res Notes ; 14(1): 311, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34391474

RESUMO

OBJECTIVE: RNA-binding proteins (RBPs) are important regulators of gene expression that influence mRNA splicing, stability, localization, transport, and translational control. In particular, RBPs play an important role in neurons, which have a complex morphology. Previously, we showed that there are many RBPs that play a conserved role in dendrite development in Drosophila dendritic arborization neurons and Caenorhabditis elegans (C. elegans) PVD neurons including the cytoplasmic polyadenylation element binding proteins (CPEBs), Orb in Drosophila and CPB-3 in C. elegans, and the DEAD box RNA helicases, Me31B in Drosophila and CGH-1 in C. elegans. During these studies, we observed that fluorescently-labeled CPB-3 and CGH-1 localize to cytoplasmic particles that are motile, and our research aims to further characterize these RBP-containing particles in live neurons. RESULTS: Here we extend on previous work to show that CPB-3 and CGH-1 localize to motile particles within dendrites that move at a speed consistent with microtubule-based transport. This is consistent with a model in which CPB-3 and CGH-1 influence dendrite development through the transport and localization of their mRNA targets. Moreover, CPB-3 and CGH-1 rarely localize to the same particles suggesting that these RBPs function in discrete ribonucleoprotein particles (RNPs) that may regulate distinct mRNAs.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dendritos , RNA Nucleotidiltransferases , Proteínas de Ligação a RNA/genética , Células Receptoras Sensoriais/metabolismo
3.
Biochem Biophys Res Commun ; 549: 135-142, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33676181

RESUMO

A protein-RNA complex containing the RNA helicase CGH-1 and a germline specific RNA-binding protein CAR-1 is involved in various aspects of function in C. elegans. However, the structural basis for the assembly of this protein complex remains unclear. Here, we elucidate the molecular basis of the recognition of CGH-1 by CAR-1. Additionally, we found that the ATPase activity of CGH-1 is stimulated by NTL-1a MIF4G domain in vitro. Furthermore, we determined the structures of the two RecA-like domains of CGH-1 by X-ray crystallography at resolutions of 1.85 and 2.40 Å, respectively. Structural and biochemical approaches revealed a bipartite interface between CGH-1 RecA2 and the FDF-TFG motif of CAR-1. NMR and structure-based mutations in CGH-1 RecA2 or CAR-1 attenuated or disrupted CGH-1 binding to CAR-1, assessed by ITC and GST-pulldown in vitro. These findings provide insights into a conserved mechanism in the recognition of CGH-1 by CAR-1. Together, our data provide the missing physical links in understanding the assembly and function of CGH-1 and CAR-1 in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , RNA Nucleotidiltransferases/química , RNA Nucleotidiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Aminoácidos/química , Animais , Sequência Conservada , Cristalografia por Raios X , Isótopos de Nitrogênio , Domínios Proteicos , Espectroscopia de Prótons por Ressonância Magnética
4.
Curr Biol ; 30(5): 865-876.e7, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-31983639

RESUMO

mRNA decay factors regulate mRNA turnover by recruiting non-translating mRNAs and targeting them for translational repression and mRNA degradation. How mRNA decay pathways regulate cellular function in vivo with specificity is poorly understood. Here, we show that C. elegans mRNA decay factors, including the translational repressors CAR-1/LSM14 and CGH-1/DDX6, and the decapping enzymes DCAP-1/DCP1, function in neurons to differentially regulate axon development, maintenance, and regrowth following injury. In neuronal cell bodies, CAR-1 fully colocalizes with CGH-1 and partially colocalizes with DCAP-1, suggesting that mRNA decay components form at least two types of cytoplasmic granules. Following axon injury in adult neurons, loss of CAR-1 or CGH-1 results in increased axon regrowth and growth cone formation, whereas loss of DCAP-1 or DCAP-2 results in reduced regrowth. To determine how CAR-1 inhibits regrowth, we analyzed mRNAs bound to pan-neuronally expressed GFP::CAR-1 using a crosslinking and immunoprecipitation-based approach. Among the putative mRNA targets of CAR-1, we characterized the roles of micu-1, a regulator of the mitochondrial calcium uniporter MCU-1, in axon injury. We show that loss of car-1 results increased MICU-1 protein levels, and that enhanced axon regrowth in car-1 mutants is dependent on micu-1 and mcu-1. Moreover, axon injury induces transient calcium influx into axonal mitochondria, dependent on MCU-1. In car-1 loss-of-function mutants and in micu-1 overexpressing animals, the axonal mitochondrial calcium influx is more sustained, which likely underlies enhanced axon regrowth. Our data uncover a novel pathway that controls axon regrowth through axonal mitochondrial calcium uptake.


Assuntos
Axônios/fisiologia , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Cálcio/metabolismo , Endorribonucleases/genética , Regeneração Nervosa/genética , RNA Nucleotidiltransferases/genética , Proteínas de Ligação a RNA/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Endorribonucleases/metabolismo , Dinâmica Mitocondrial , RNA Nucleotidiltransferases/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
5.
Proc Natl Acad Sci U S A ; 112(52): E7213-22, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26669440

RESUMO

MicroRNAs (miRNAs) play essential, conserved roles in diverse developmental processes through association with the miRNA-induced silencing complex (miRISC). Whereas fundamental insights into the mechanistic framework of miRNA biogenesis and target gene silencing have been established, posttranslational modifications that affect miRISC function are less well understood. Here we report that the conserved serine/threonine kinase, casein kinase II (CK2), promotes miRISC function in Caenorhabditis elegans. CK2 inactivation results in developmental defects that phenocopy loss of miRISC cofactors and enhances the loss of miRNA function in diverse cellular contexts. Whereas CK2 is dispensable for miRNA biogenesis and the stability of miRISC cofactors, it is required for efficient miRISC target mRNA binding and silencing. Importantly, we identify the conserved DEAD-box RNA helicase, CGH-1/DDX6, as a key CK2 substrate within miRISC and demonstrate phosphorylation of a conserved N-terminal serine is required for CGH-1 function in the miRNA pathway.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caseína Quinase II/genética , MicroRNAs/genética , Interferência de RNA , RNA Nucleotidiltransferases/genética , Complexo de Inativação Induzido por RNA/genética , Animais , Animais Geneticamente Modificados , Western Blotting , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caseína Quinase II/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Perfilação da Expressão Gênica , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Ligação Proteica , RNA Nucleotidiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Serina/genética , Serina/metabolismo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA