Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.574
Filtrar
1.
Protein Expr Purif ; 225: 106596, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39218246

RESUMO

Optimizations of the gene expression cassette combined with the selection of an appropriate signal peptide are important factors that must be considered to enhance heterologous protein expression in Chinese Hamster Ovary (CHO) cells. In this study, we investigated the effectiveness of different signal peptides on the production of recombinant human chorionic gonadotropin (r-hCG) in CHO-K1 cells. Four optimized expression constructs containing four promising signal peptides were stably transfected into CHO-K1 cells. The generated CHO-K1 stable pool was then evaluated for r-hCG protein production. Interestingly, human serum albumin and human interleukin-2 signal peptides exhibited relatively greater extracellular secretion of the r-hCG with an average yield of (16.59 ± 0.02 µg/ml) and (14.80 ± 0.13 µg/ml) respectively compared to the native and murine IgGκ light chain signal peptides. The stably transfected CHO pool was further used as the cell substrate to develop an optimized upstream process followed by a downstream phase of the r-hCG. Finally, the biological activity of the purified r-hCG was assessed using in vitro bioassays. The combined data highlight that the choice of signal peptide can be imperative to ensure an optimal secretion of a recombinant protein in CHO cells. In addition, the stable pool technology was a viable approach for the production of biologically active r-hCG at a research scale with acceptable bioprocess performances and consistent product quality.


Assuntos
Gonadotropina Coriônica , Cricetulus , Proteínas Recombinantes , Células CHO , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Humanos , Gonadotropina Coriônica/genética , Gonadotropina Coriônica/biossíntese , Gonadotropina Coriônica/farmacologia , Cricetinae , Sinais Direcionadores de Proteínas/genética , Expressão Gênica , Transfecção
2.
Appl Microbiol Biotechnol ; 108(1): 480, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365308

RESUMO

Mammalian cells are suitable hosts for producing recombinant therapeutic proteins, with Chinese hamster ovary (CHO) and human embryonic kidney 293 (HEK293) cells being the most commonly used cell lines. Mammalian cell expression system includes stable and transient gene expression (TGE) system, with the TGE system having the advantages of short cycles and simple operation. By optimizing the TGE system, the expression of recombinant proteins has been significantly improved. Here, the TGE system and the detailed and up-to-date improvement strategies of mammalian cells, including cell line, expression vector, culture media, culture processes, transfection conditions, and co-expression of helper genes, are reviewed. KEY POINTS: • Detailed improvement strategies of transient gene expression system of mammalian cells are reviewed • The composition of transient expression system of mammalian cell are summarized • Proposed optimization prospects for transient gene expression systems.


Assuntos
Cricetulus , Expressão Gênica , Proteínas Recombinantes , Humanos , Animais , Células CHO , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Células HEK293 , Transfecção , Meios de Cultura/química , Vetores Genéticos , Mamíferos/genética , Técnicas de Cultura de Células/métodos
3.
J Biotechnol ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357624

RESUMO

Collagen is the most abundant protein in human and mammalian structures and is a component of the mammalian extracellular matrix (ECM). Recombinant collagen is a suitable alternative to native collagen extracted from animal tissue for various biomaterials. However, due to the limitations of the expression system, most recombinant collagens are collagen fragments and lack triple helix structures. In this study, Chinese hamster ovary (CHO) cells were used to express the full-length human type I collagen α1 chain (rhCol1α1). Moreover, Endo180 affinity chromatography and pepsin were used to purify pepsin-soluble rhCol1α1 (PSC1). The amino acid composition of PSC1 was closer to that of native human type I collagen, and PSC1 contained 9.1% hydroxyproline. Analysis of the CD spectra and molecular weight distribution results revealed that PSC1 forms a stable triple helix structure that is resistant to pepsin hydrolysis and has some tolerance to MMP1, MMP2 and MMP8 hydrolysis. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) revealed that PSC1 can self-assemble into fibers at a concentration of 1mg/ml; moreover, PSC1 can promote the proliferation and migration of NIH 3T3 cells. In conclusion, our data suggest that PSC1 is a highly similar type of recombinant collagen that may have applications in biomaterials and other medical fields.

4.
Clin Orthop Surg ; 16(5): 694-701, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39364106

RESUMO

Background: This retrospective study investigates the complications, particularly subacromial osteolysis (SAO), associated with hook plate (HP) fixation, in the treatment of unstable distal clavicle fractures characterized by complete coracoclavicular (CC) ligament rupture. The decision-making process for employing HP in fractures of this nature, such as Neer types IIB and V and Cho classification IIC, involves considerations of distal fragment size and displacement. While HP offers advantages in clinical practice, it is not without complications, with SAO being a notable concern. Factors such as non-anatomic hook tip placement and fracture classification may influence the risk of SAO. Methods: The study comprises a retrospective analysis of unstable distal clavicle fractures treated with HP at our institution from 2019 to 2022. Exclusions include non-displaced fractures, those treated with other locking plates, and pathologic fractures. A total of 91 patients with displaced distal clavicle fractures underwent open reduction and internal fixation with HP. Cho classification was employed to differentiate cases with CC ligament rupture. Patient demographics, classifications, postoperative radiographs, distal fragment size, plate position, timing of implant removal, and complications, including SAO, were recorded. Results: Among the 91 patients, 32 were classified as Cho IIB, 43 as Cho IIC, and 16 as Cho IID. Ninety-one percent exhibited solid union before implant removal. The prevalence of SAO was 43.8%, 76.7%, and 62.5% in Cho IIB, IIC, and IID, respectively. Univariate analysis revealed a significant difference only in Cho classification (p = 0.014). Binary logistic regression identified Cho classification type IIC as the sole risk factor for SAO (p = 0.021; odds ratio, 4.48; 95% confidence interval, 1.56-12.87). Conclusions: Cho type IIC fractures, characterized by CC ligament deficiency causing horizontal instability, demonstrated the highest SAO rate. In contrast, Neer type IIB fractures retained the trapezoid ligament, and Neer type V fractures had intact CC ligaments, resulting in lower SAO rates. Biomechanically, combining HPs with CC ligament reconstruction provided better structural stability than using HPs alone in treating Cho type IIC fractures.


Assuntos
Placas Ósseas , Clavícula , Fixação Interna de Fraturas , Fraturas Ósseas , Osteólise , Humanos , Clavícula/lesões , Clavícula/cirurgia , Estudos Retrospectivos , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Fraturas Ósseas/cirurgia , Fixação Interna de Fraturas/instrumentação , Fixação Interna de Fraturas/métodos , Fixação Interna de Fraturas/efeitos adversos , Osteólise/etiologia , Incidência , Complicações Pós-Operatórias/epidemiologia , Idoso
5.
Mol Biotechnol ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352566

RESUMO

Coronavirus SARS-CoV-2 spike protein remains a key focus of research due to a continued need for diagnostic and therapeutic tools to monitor and respond to new variants. Glycosylation of the spike protein is critical for the protein's functions in viral attachment and host cell entry. For scalable and cost-effective production of the spike protein, expression system-driven divergence in glycosylation patterns on recombinant spike proteins needs to be fully understood. This study assessed the N-glycosylation profiles of a full-length trimeric spike protein expressed in either Human Embryonic Kidney (HEK Expi293F) or Chinese Hamster Ovary (CHO-S) cells. Glycopeptide analysis was performed using a tandem mass spectrometry workflow and BioPharma Finder TM incorporating HEK and CHO glycan databases for protein characterisation. The results outline important differences in the variety and types of N-glycan generated by the two cell lines across the 22 known N-glycosylation sites of the spike protein. A notable increase in terminal sialylation, as well as the presence of the potentially immunogenic N-glycolylneuraminic acid at a functionally key N-glycosylation site, was observed in the CHO-S derived spike protein. With the potential for the relatively vast and more complex CHO glycan repertoire (182 glycans relative to 39 human glycans) to produce functional implications with CHO-S expressed spike protein, this study adds valuable knowledge to aid Quality by Design approaches and enable Multi Attribute Monitoring of specific N-glycosylation sites for proteoform analyses. This can further inform antigen development with future variants in order to devise updated diagnostic tests and therapeutic vaccine designs.

6.
Front Bioeng Biotechnol ; 12: 1461253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318670

RESUMO

Monoclonal antibody drugs have grown into a drug category with a market size of over $100 billion since the first product was launched on the market, which naturally creates a large demand for production. At the same time, the $100 billion market is distributed among more than 200 listed drugs, which indicates that the production demand for monoclonal antibody drugs is diverse. To meet this demand, major suppliers offer single-use bioreactors of all sizes. These single-use bioreactors with different specifications, especially the inconsistency of aeration pore sizes, pose great challenges for technology transfer and scale-up production, and the conventional scale-up strategies of constant Power input/volume ratio (P/V) and constant vessel volume per minute (vvm) can no longer meet the needs. This study simplified the selection of technical parameters in bioreactors based on the differences in aeration pore size. Innovatively combined the aeration pore sizes with initial aeration vvm, and comprehensively investigated the relationship between P/V, vvm and aeration pore size by designing experiments (DoE) using the orthogonal test method. The results showed a quantitative relationship between the aeration pore size and the initial aeration vvm in the P/V range of 20 ± 5 W/m3. The appropriate initial aeration was between 0.01 and 0.005 m3/min for aeration pore size ranging from 1 to 0.3 mm, which was the optimal incubation condition in the bioreactors. The choice of initial ventilation was most related to the final expression. Follow-up studies validated these findings in a 15 L glass bioreactor and a 500 L single-use bioreactor, and the results were consistent with expectations.

7.
Front Microbiol ; 15: 1459402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247689

RESUMO

Introduction: Monoclonal antibodies (mAbs) play a pivotal role in disease diagnosis as well as immunotherapy interventions. Traditional monoclonal antibody generation relies on animal immunization procedures predominantly involving mice; however, recent advances in in-vitro expression methodologies have enabled large-scale production suitable for both industrial applications as well as scientific investigations. Methods: In this study, two mAbs against H7 subtype avian influenza viruses (AIV) were sequenced and analyzed, and the DNA sequences encoding heavy chain (HC) and light chain (LC) were obtained and cloned into pCHO-1.0 expression vector. Then, the HC and LC expression plasmids were transfected into CHO-S cells to establish stable cell lines expressing these mAbs using a two-phase selection scheme with different concentrations of methotrexate and puromycin. Recombinant antibodies were purified from the cell culture medium, and their potential applications were evaluated using hemagglutination inhibition (HI), western blotting (WB), confocal microscopy, and enzyme-linked immunosorbent assay (ELISA). Results: The results indicated that the obtained recombinant antibodies exhibited biological activity similar to that of the parent antibodies derived from ascites and could be used as a replacement for animal-derived mAbs. A kinetic analysis of the two antibodies to the AIV HA protein, conducted using surface plasmon resonance (SPR), showed concordance between the recombinant and parental antibodies. Discussion: The data presented in this study suggest that the described antibody production protocol could avoid the use of experimental animals and better conform to animal welfare regulations, and provides a basis for further research and development of mAbs-based diagnostic products.

8.
JSES Int ; 8(5): 1045-1050, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39280155

RESUMO

Background: This study aimed to characterize patient, imaging, and surgical factors associated with re-tear patterns after rotator cuff repair, as well as to identify predictors of type 2 failure in a large patient cohort. Methods: A retrospective case-control study was performed at a single urban academic institution. All patients who underwent an arthroscopic rotator cuff repair by 2 fellowship-trained shoulder and elbow surgeons between 2005 and 2022 and were subsequently found to have a symptomatic re-tear on magnetic resonance imaging were included. Patients were characterized as either a type 1 (failure at bone-tendon interface) or type 2 (failure medial to the bone-tendon junction) re-tear based on the Cho classification. Chart review was performed to collect demographic, imaging, and intraoperative surgical factors. Multivariable analysis was performed to determine patient and imaging factors associated with type 2 failure. Results: Fifty-seven patients were included in the study. Overall, 33 (57.9%) patients were classified as a Cho 1 re-tear and 24 (42.1%) were classified as Cho 2 re-tear. No differences in preoperative tear characteristics (tear width, tear retraction, and tendon length) or fatty infiltration were found between Cho 1 and Cho 2 re-tears. Bivariate analysis comparing Cho 1 vs. Cho 2 found male sex was associated with a higher incidence of a Cho 2 re-tear (79.2% vs. 20.8%; P = .033). No significant differences in repair construct (single row vs. double row) (P = .816), biceps treatment (P = .552), concomitant subscapularis repair (P = .306), number of medial anchors (P = .533), or number of lateral anchors (P = .776) were noted between re-tear types. After controlling for potential confounding factors, multivariable regression analysis demonstrated that male sex was predictive of developing a Cho 2 re-tear (odds ratio 3.8; 95% confidence interval 1.1-13.3; P = .039). Repair construct was not found to be predictive of re-tear pattern (P = .580). Conclusion: Repair construct used during rotator cuff repair does not appear to influence re-tear pattern. Male sex was associated with a higher rate of type 2 failure.

9.
Biotechnol Prog ; : e3503, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291457

RESUMO

The bio-pharmaceutical industry heavily relies on mammalian cells for the production of bio-therapeutic proteins. The complexity of implementing and high cost-of-goods of these processes are currently limiting more widespread patient access. This is driving efforts to enhance cell culture productivity and cost reduction. Upstream process intensification (PI), using perfusion approaches in the seed train and/or the main bioreactor, has shown substantial promise to enhance productivity. However, developing optimal process conditions for perfusion-based processes remain challenging due to resource and time constraints. Model-based optimization offers a solution by systematically screening process parameters like temperature, pH, and culture media to find the optimum conditions in silico. To our knowledge, this is the first experimentally validated model to explain the perfusion dynamics under different operating conditions and scales for process optimization. The hybrid model accurately describes Chinese hamster ovary (CHO) cell culture growth dynamics and a neural network model explains the production of mAb, allowing for optimization of media exchange rates. Results from six perfusion runs in Ambr® 250 demonstrated high accuracy, confirming the model's utility. Further, the implementation of dynamic media exchange rate schedule determined through model-based optimization resulted in 50% increase in volumetric productivity. Additionally, two 5 L-scale experiments validated the model's reliable extrapolation capabilities to large bioreactors. This approach could reduce the number of wet lab experiments needed for culture process optimization, offering a promising avenue for improving productivity, cost-of-goods in bio-pharmaceutical manufacturing, in turn improving patient access to pivotal medicine.

10.
Sci Rep ; 14(1): 20856, 2024 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242806

RESUMO

At present, biopharmaceuticals have received extensive attention from the society, among which recombinant proteins have a good growth trend and a large market share. Chinese hamster ovary (CHO) cells are the preferred mammalian system to produce glycosylated recombinant protein drugs. A highly efficient and stable cell screening method needs to be developed to obtain more and useful recombinant proteins. Limited dilution method, cell sorting, and semi-solid medium screening are currently the commonly used cell cloning methods. These methods are time-consuming and labor-intensive, and they have the disadvantage of low clone survival rate. Here, a method based on semi-solid medium was developed to screen out high-yielding and stable cell line within 3 weeks to improve the screening efficiency. The semi-solid medium was combined with an expression vector containing red fluorescent protein (RFP) for early cell line development. In accordance with the fluorescence intensity of RFP, the expression of upstream target gene could be indicated, and the fluorescence intensity was in direct proportion to the expression of upstream target gene. In conclusion, semi-solid medium combined with bicistronic expression vector provides an efficient method for screening stable and highly expressed cell lines.


Assuntos
Cricetulus , Proteínas Recombinantes , Células CHO , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Vetores Genéticos/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Cricetinae , Proteína Vermelha Fluorescente , Meios de Cultura/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA