Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Elife ; 132024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073063

RESUMO

Activating transcription factor 6 (ATF6) is one of three endoplasmic reticulum (ER) transmembrane stress sensors that mediate the unfolded protein response (UPR). Despite its crucial role in long-term ER stress adaptation, regulation of ATF6 alpha (α) signalling remains poorly understood, possibly because its activation involves ER-to-Golgi and nuclear trafficking. Here, we generated an ATF6α/Inositol-requiring kinase 1 (IRE1) dual UPR reporter CHO-K1 cell line and performed an unbiased genome-wide CRISPR/Cas9 mutagenesis screen to systematically profile genetic factors that specifically contribute to ATF6α signalling in the presence and absence of ER stress. The screen identified both anticipated and new candidate genes that regulate ATF6α activation. Among these, calreticulin (CRT), a key ER luminal chaperone, selectively repressed ATF6α signalling: Cells lacking CRT constitutively activated a BiP::sfGFP ATF6α-dependent reporter, had higher BiP levels and an increased rate of trafficking and processing of ATF6α. Purified CRT interacted with the luminal domain of ATF6α in vitro and the two proteins co-immunoprecipitated from cell lysates. CRT depletion exposed a negative feedback loop implicating ATF6α in repressing IRE1 activity basally and overexpression of CRT reversed this repression. Our findings indicate that CRT, beyond its known role as a chaperone, also serves as an ER repressor of ATF6α to selectively regulate one arm of the UPR.


Assuntos
Fator 6 Ativador da Transcrição , Sistemas CRISPR-Cas , Calreticulina , Cricetulus , Fator 6 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/genética , Calreticulina/metabolismo , Calreticulina/genética , Animais , Células CHO , Humanos , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
2.
Artigo em Inglês | MEDLINE | ID: mdl-37770139

RESUMO

Lambda-cyhalothrin (LCT) and its microformulation Karate® (25 % a.i.) were analysed for its genotoxicity and cytotoxicity on Chinese hamster ovary (CHO-K1) cells. Cytokinesis-block micronucleus cytome (CBMN-cyt) and alkaline single-cell gel electrophoresis (SCGE) bioassays were selected to test genotoxicity. Neutral red uptake (NRU), succinic dehydrogenase activity (MTT) and apoptogenic induction were employed for estimating cytotoxicity. Both compounds were analysed within a concentration range of 0.1-100 µg/mL. Only LCT produced a significant augment in the frequency of micronuclei (MNs) when the cultures were exposed to highest concentrations of 10 and 100 µg LCT/mL. A noticeable decrease in NDI was observed for cultures treated with LCT at 10 and 100 µg/mL. Karate® induced the inhibition of both the proportion of viable cells and succinic dehydrogenase activity and triggered apoptosis 24 h of exposition. Whilst an increased GDI in CHO-K1 cells was observed in the treatments with 1-100 µg Karate®/mL, the GDI was not modified in the treatments employing LCT at equivalent doses. SCGE showed that Karate® was more prone to induce genotoxic effects than LCT. Only 50 µg/mL of Karate® was able to increase apoptosis. Our results demonstrate the genomic instability and cytotoxic effects induced by this pyrethroid insecticide, confirming that LCT exposure can result in a severe drawback for the ecological equilibrium of the environment.

3.
Front Bioeng Biotechnol ; 11: 1237963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744245

RESUMO

Introduction: Hybrid modeling combining First-Principles with machine learning is becoming a pivotal methodology for Biopharma 4.0 enactment. Chinese Hamster Ovary (CHO) cells, being the workhorse for industrial glycoproteins production, have been the object of several hybrid modeling studies. Most previous studies pursued a shallow hybrid modeling approach based on three-layered Feedforward Neural Networks (FFNNs) combined with macroscopic material balance equations. Only recently, the hybrid modeling field is incorporating deep learning into its framework with significant gains in descriptive and predictive power. Methods: This study compares, for the first time, deep and shallow hybrid modeling in a CHO process development context. Data of 24 fed-batch cultivations of a CHO-K1 cell line expressing a target glycoprotein, comprising 30 measured state variables over time, were used to compare both methodologies. Hybrid models with varying FFNN depths (3-5 layers) were systematically compared using two training methodologies. The classical training is based on the Levenberg-Marquardt algorithm, indirect sensitivity equations and cross-validation. The deep learning is based on the Adaptive Moment Estimation Method (ADAM), stochastic regularization and semidirect sensitivity equations. Results and conclusion: The results point to a systematic generalization improvement of deep hybrid models over shallow hybrid models. Overall, the training and testing errors decreased by 14.0% and 23.6% respectively when applying the deep methodology. The Central Processing Unit (CPU) time for training the deep hybrid model increased by 31.6% mainly due to the higher FFNN complexity. The final deep hybrid model is shown to predict the dynamics of the 30 state variables within the error bounds in every test experiment. Notably, the deep hybrid model could predict the metabolic shifts in key metabolites (e.g., lactate, ammonium, glutamine and glutamate) in the test experiments. We expect deep hybrid modeling to accelerate the deployment of high-fidelity digital twins in the biopharma sector in the near future.

4.
Appl Microbiol Biotechnol ; 107(9): 2855-2870, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36947192

RESUMO

Polyamines such as putrescine (PUT), spermidine (SPD), and spermine (SPM) are amine group-containing biomolecules that regulate multiple intracellular functions such as proliferation, differentiation, and stress response in mammalian cells. Although these biomolecules can be generated intracellularly, lack of polyamine-synthesizing activity has occasionally been reported in a few mammalian cell lines such as Chinese hamster ovary (CHO)-K1; thus, polyamine supplementation in serum-free media is required to support cell growth and production. In the present study, the effects of biogenic polyamines PUT, SPD, and SPM in media on cell growth, production, metabolism, and antibody quality were explored in cultures of antibody-producing CHO-K1 cells. Polyamine withdrawal from media significantly suppressed cell growth and production. On the other hand, enhanced culture performance was achieved in polyamine-containing media conditions in a dose-dependent manner regardless of polyamine type. In addition, in polyamine-deprived medium, distinguishing metabolic features, such as enriched glycolysis and suppressed amino acid consumption, were observed and accompanied by higher heterogeneity of antibody quality compared with the optimal concentration of polyamines. Furthermore, an excessive concentration of polyamines negatively affected culture performance as well as antibody quality. Hence, the results suggest that polyamine-related metabolism needs to be further investigated and polyamines in cell growth media should be optimized as a controllable parameter in CHO cell culture bioprocessing. KEY POINTS: • Polyamine supplementation enhanced cell growth and production in a dose-dependent manner • Polyamine type and concentration in the media affected mAb quality • Optimizing polyamines in the media is suggested in CHO cell bioprocessing.


Assuntos
Poliaminas , Espermidina , Cricetinae , Animais , Poliaminas/farmacologia , Poliaminas/metabolismo , Células CHO , Cricetulus , Espermidina/metabolismo , Putrescina/farmacologia , Putrescina/metabolismo , Espermina/metabolismo , Espermina/farmacologia , Proliferação de Células
5.
Drug Chem Toxicol ; 46(4): 726-735, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35702048

RESUMO

Myricitrin (MYR), a flavonol consumed in the leaves and fruits of plants of the Myrtaceae family, presents anti-proliferative, anti-inflammatory, anti-diabetic, and antioxidant properties in humans. However, there are few studies regarding the cyto-genotoxicity and the chemopreventive potential of MYR. Using the in vitro Micronucleus test, the cytostasis, mutagenicity, and modulatory effect of MYR in CHO-K1 cells were assessed. The concentrations of 39 and 78 µg/mL (p < 0.001.) of MYR decrease the cytokinesis-block proliferation index (CBPI) in the short exposure treatment (4 h), while in the extended treatment (24 h), concentrations of 4.8, 9.7, 19.5, 39 and 78 µg/mL (p < 0.001.) decreased the CBPI. MYR associated with oxaliplatin decreased CBPI at all tested concentrations in the pre-(p < 0.001) and post-treatments (p < 0.001), but there was no decrease when associated with bleomycin. As for chromosome instability, MYR did not increase the frequency of micronuclei (MNi), nucleoplasmic bridges (NPBs), or nuclear buds (NBUDs) in the 4 h exposure time, however, in the 24 h treatment, MYR increased the frequency of MNi and NPBs at concentration 19.5 µg/mL (p < 0.001). As for the modulatory effect, MYR associated with bleomycin decreased the frequency of MNi, NPBs, and NBUDs at all concentrations in the pretreatment (MNi and NPBs p < 0.001, NBUDs p < 0.05) and simultaneously (MNi, NPBs and NBUDs p < 0.001). When associated with oxaliplatin, the simultaneous treatment decreased the frequency of MNi (p < 0.001) and NBUDs (p < 0.01) at all concentrations, however, in the post-treatment, MYR increased MNi (p < 0.001) and NPBs p < 0.05) in CHO-K1 cells, when compared to oxaliplatin alone. The results demonstrated that MYR could modulate the mutagenic and cytostatic actions of bleomycin and oxaliplatin, demonstrating distinct behaviors, depending on the mechanism of action of the chemotherapeutic agent.


Assuntos
Citostáticos , Humanos , Oxaliplatina , Testes para Micronúcleos/métodos , Bleomicina/toxicidade , Instabilidade Cromossômica , Dano ao DNA
6.
Bioprocess Biosyst Eng ; 45(11): 1889-1904, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36245012

RESUMO

Flux balance analysis (FBA) is currently the standard method to compute metabolic fluxes in genome-scale networks. Several FBA extensions employing diverse objective functions and/or constraints have been published. Here we propose a hybrid semi-parametric FBA extension that combines mechanistic-level constraints (parametric) with empirical constraints (non-parametric) in the same linear program. A CHO dataset with 27 measured exchange fluxes obtained from 21 reactor experiments served to evaluate the method. The mechanistic constraints were deduced from a reduced CHO-K1 genome-scale network with 686 metabolites, 788 reactions and 210 degrees of freedom. The non-parametric constraints were obtained by principal component analysis of the flux dataset. The two types of constraints were integrated in the same linear program showing comparable computational cost to standard FBA. The hybrid FBA is shown to significantly improve the specific growth rate prediction under different constraints scenarios. A metabolically efficient cell growth feed targeting minimal byproducts accumulation was designed by hybrid FBA. It is concluded that integrating parametric and nonparametric constraints in the same linear program may be an efficient approach to reduce the solution space and to improve the predictive power of FBA methods when critical mechanistic information is missing.


Assuntos
Redes e Vias Metabólicas , Modelos Biológicos , Cricetinae , Animais , Cricetulus , Células CHO
7.
Dev Reprod ; 26(1): 1-12, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35528321

RESUMO

This study aimed to investigate the signal transduction of phosphorylation sites at the carboxyl (C)-terminal region of equine luteinizing hormone/chorionic gonadotropin receptor (eLH/ CGR). The eLH/CGR has a large extracellular domain of glycoprotein hormone receptors within the G protein-coupled receptors. We constructed a mutant (eLH/CGR-t656) of eLH/ CGR, in which the C-terminal cytoplasmic tail was truncated at the Phe656 residue, through polymerase chain reaction. The eLH/CGR-t656 removed 14 potential phosphorylation sites in the intracellular C-terminal region. The plasmids were transfected into Chinese hamster ovary (CHO)-K1 and PathHunter Parental cells expressing ß-arrestin, and agonist-induced cAMP responsiveness was analyzed. In CHO-K1 cells, those expressing eLH/CGR-t656 were lower than those expressing eLH/CGR wild-type (eLH/CGR-wt). The EC50 of the eLH/ CGR-t656 mutant was approximately 72.2% of the expression observed in eLH/CGR-wt. The maximal response in eLH/CGR-t656 also decreased to approximately 43% of that observed in eLH/CGR-wt. However, in PathHunter Parental cells, cAMP activity and maximal response of the eLH/CGR-t656 mutant were approximately 173.5% and 100.8%, respectively, of that of eLH/CGR-wt. These results provide evidence that the signal transduction of C-terminal phosphorylation in eLH/CGR plays a pivotal role in CHO-K1 cells. The cAMP level was recovered in PathHunter Parental cells expressing ß-arrestin. We suggest that the signal transduction of the C-terminal region phosphorylation sites is remarkably different depending on the cells expressing ß-arrestin in CHO-K1 cells.

9.
J Neuroimmunol ; 360: 577706, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507014

RESUMO

BACKGROUND: Diagnosis of neuromyelitis optica spectrum disorders (NMOSD) in India is hindered by limited access to cost effective and sensitive assays for detection of aquaporin-4 antibody (AQP4-IgG) in India. OBJECTIVE: To develop a cost effective, sensitive, cell based assay (CBA) for detection of AQP4-IgG and to evaluate the serological status in patients with NMOSD diagnosed by 2015 diagnostic criteria. METHOD: Stably transfected Chinese hamster ovary (CHO) cell line expressing aquaporin M23 isomer was established. A fixed CBA was developed and validated in 381 samples including clinically definite NMOSD (n = 87), high risk NMOSD (n = 51), other demyelinating disorders (n = 92), other neurological disorders (n = 51) and healthy volunteers (n = 100). We tested the same samples again using a commercially available CBA and compared the results. All assays were performed by 2 independent investigators blinded to clinical and serological status. RESULTS: Our "in house"(Mangalore) assay showed sensitivity of 81.6% (95% CI 71.86-89.11%) for clinically definite NMOSD and 29.41% (95% CI 17.50-43.8%) for high risk NMOSD. Specificity was 100% for both groups. Both assays showed similar results for 67/ 87 (77.01%) patients with definite NMOSD while 4 samples tested positive by our assay alone (Cohen's kappa coefficient [K] - 0.86). Among the high risk group 14/51 (27.5%) samples showed similar results, one patient additionally was positive by the Mangalore assay (K - 0.95).


Assuntos
Aquaporina 4/imunologia , Autoanticorpos/sangue , Autoantígenos/imunologia , Técnica Indireta de Fluorescência para Anticorpo/métodos , Imunoglobulina G/sangue , Neuromielite Óptica/diagnóstico , Adulto , Animais , Células CHO , Análise Custo-Benefício , Cricetulus , Doenças Desmielinizantes/diagnóstico , Países em Desenvolvimento , Diagnóstico Diferencial , Feminino , Técnica Indireta de Fluorescência para Anticorpo/economia , Recursos em Saúde/economia , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/diagnóstico , Neuromielite Óptica/epidemiologia , Neuromielite Óptica/imunologia , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade , Adulto Jovem
10.
Biochim Biophys Acta Biomembr ; 1863(12): 183730, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34419486

RESUMO

The specific structure and composition of the cell plasma membrane (PM) is crucial for many cellular processes and can be targeted by various substances with potential medical applications. In this context, biosurfactants (BS) constitute a promising group of natural compounds that possess several biological functions, including anticancer activity. Despite the efficiency of BS, their mode of action had never been elucidated before. Here, we demonstrate the influence of cyclic lipopeptide surfactin (SU) on the PM of CHO-K1 cells. Both FLIM and svFCS experiments show that even a low concentration of SU causes significant changes in the membrane fluidity and dynamic molecular organization. Further, we demonstrate that SU causes a relevant dose-dependent reduction of cellular cholesterol by extracting it from the PM. Finally, we show that CHO-25RA cells characterized by increased cholesterol levels are more sensitive to SU treatment than CHO-K1 cells. We propose that sterols organizing the PM raft nanodomains, constitute a potential target for SU and other biosurfactants. In our opinion, the anticancer activity of biosurfactants is directly related with the higher cholesterol content found in many cancer cells.


Assuntos
Lipopeptídeos/química , Peptídeos Cíclicos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Células CHO , Membrana Celular/efeitos dos fármacos , Colesterol/química , Cricetulus , Humanos , Lipopeptídeos/farmacologia , Fluidez de Membrana/efeitos dos fármacos , Simulação de Dinâmica Molecular , Peptídeos Cíclicos/farmacologia
11.
Saudi J Biol Sci ; 28(11): 6653-6673, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34305428

RESUMO

Several plants have traditionally been used since antiquity to treat various gastroenteritis and respiratory symptoms similar to COVID-19 outcomes. The common symptoms of COVID-19 include fever or chills, cold, cough, flu, headache, diarrhoea, tiredness/fatigue, sore throat, loss of taste or smell, asthma, shortness of breath, or difficulty breathing, etc. This study aims to find out the plants and plant-derived products which are being used by the COVID-19 infected patients in Bangladesh and how those plants are being used for the management of COVID-19 symptoms. In this study, online and partially in-person survey interviews were carried out among Bangladeshi respondents. We selected Bangladeshi COVID-19 patients who were detected Coronavirus positive (+) by RT-PCR nucleic acid test and later recovered. Furthermore, identified plant species from the surveys were thoroughly investigated for safety and efficacy based on the previous ethnomedicinal usage reports. Based on the published data, they were also reviewed for their significant potentialities as antiviral, anti-inflammatory, and immunomodulatory agents. We explored comprehensive information about a total of 26 plant species, belonging to 23 genera and 17 different botanical families, used in COVID-19 treatment as home remedies by the respondents. Most of the plants and plant-derived products were collected directly from the local marketplace. According to our survey results, greatly top 5 cited plant species measured as per the highest RFC value are Camellia sinensis (1.0) > Allium sativum (0.984) > Azadirachta indica (0.966) > Zingiber officinale (0.966) > Syzygium aromaticum (0.943). Previously published ethnomedicinal usage reports, antiviral, anti-inflammatory, and immunomodulatory activity of the concerned plant species also support our results. Thus, the survey and review analysis simultaneously reveals that these reported plants and plant-derived products might be promising candidates for the treatment of COVID-19. Moreover, this study clarifies the reported plants for their safety during COVID-19 management and thereby supporting them to include in any future pre-clinical and clinical investigation for developing herbal COVID-19 therapeutics.

12.
J Biotechnol ; 331: 1-13, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33689865

RESUMO

Despite the essential role secretory IgAs play in the defense against pathogenic invasion and the proposed value of recombinant secretory IgAs as novel therapeutics, currently there are no IgA-based therapies in clinics. Secretory IgAs are complex molecules and the major bottleneck limiting their therapeutic potential is a reliable recombinant production system. In this report, we addressed this issue and established a fast and robust production method for secretory IgAs in CHO-K1 cells using BAC-based expression vectors. As a proof of principle, we produced IgAs against Clostridium difficile toxins TcdA and TcdB. Recombinant secretory IgAs produced using our expression system showed comparable titers to IgGs, widely used as therapeutic biologicals. Importantly, secretory IgAs produced using our method were functional and could efficiently neutralize Clostridium difficile toxins TcdA and TcdB. These results show that recombinant secretory IgAs can be efficiently produced, thus opening the possibility to use them as therapeutic agents in clinics.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Animais , Proteínas de Bactérias , Toxinas Bacterianas/genética , Clostridioides difficile/genética , Cricetinae , Enterotoxinas/genética , Imunoglobulina A Secretora
13.
AMB Express ; 11(1): 1, 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389203

RESUMO

The high prices of biopharmaceuticals or biologics used in the treatment of many diseases limit the access of patients to these novel therapies. One example is the monoclonal antibody trastuzumab, successfully used for breast cancer treatment. An economic alternative is the generation of biosimilars to these expensive biopharmaceuticals. Since antibody therapies may require large doses over a long period of time, robust platforms and strategies for cell line development are essential for the generation of recombinant cell lines with higher levels of expression. Here, we obtained trastuzumab-expressing CHO-K1 cells through a screening and selection strategy that combined the use of host cells pre-adapted to protein-free media and suspension culture and lentiviral vectors. The results demonstrated that the early screening strategy obtained recombinant CHO-K1 cell populations with higher enrichment of IgG-expressing cells. Moreover, the measurement of intracellular heavy chain polypeptide by flow cytometry was a useful metric to characterize the homogeneity of cell population, and our results suggest this could be used to predict the expression levels of monoclonal antibodies in early stages of cell line development. Additionally, we propose an approach using 25 cm2 T-flasks in suspension and shaking culture conditions as a screening tool to identify high producing cell lines. Finally, trastuzumab-expressing CHO-K1 clones were generated and characterized by batch culture, and preliminary results related to HER2-recognition capacity were successful. Further optimization of elements such as gene optimization, vector selection, type of amplification/selection system, cell culture media composition, in combination with this strategy will allow obtaining high producing clones.

14.
Neuropeptides ; 83: 102072, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32690313

RESUMO

Spatial memory performance declines in both normal aging and Alzheimer's disease. This cognitive deficit is related to hippocampus dysfunction. Gene therapy using neurotrophic factors like Glial cell line-derived neurotrophic factor (GDNF) emerges as a promising approach to ameliorate age-related cognitive deficits. We constructed a two vector regulatable system (2VRS) which consists of a recombinant adenoviral vector (RAd) harboring a Tet-Off bidirectional promoter flanked by GDNF and Green Fluorescent Protein (GFP) genes. A second adenovector, RAd-tTA, constitutively expresses the regulatory protein tTA. When cells are cotransduced by the 2VRS, tTA activates the bidirectional promoter and both transgenes are expressed. In the presence of the antibiotic doxycycline (DOX) transgene expression is silenced. We tested the 2VRS in CHO-K1 cells where we observed a dose-dependent GFP expression that was completely inhibited by DOX (1 mg/ml). The 2VRS injected in the hippocampal CA1 region transduced both neurons and astrocytes and was efficiently inhibited by DOX added to the drinking water. In order to assess GDNF biological activity we injected 2VRS and its Control (CTRL) vector in the hypothalamus and monitored body weight for one month. The results showed that GDNF retards weight recovery 6 days more than CTRL. In conclusion, our 2VRS demonstrated optimal GFP expression and showed a bioactive effect of transgenic GDNF in the brain.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Proteínas de Fluorescência Verde/administração & dosagem , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Adenoviridae , Animais , Células CHO , Cricetinae , Cricetulus , Vetores Genéticos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Ratos
15.
Molecules ; 25(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138280

RESUMO

A current trend within photo-dynamic therapy (PDT) is the development of molecular systems targeting hypoxic tumors. Thus, type I PDT sensitizers could here overcome traditional type II molecular systems that rely on the photo-initiated production of toxic singlet oxygen. Here, we investigate the cell localization properties and toxicity of two polymeric anthracene-based fluorescent probes (neutral Ant-PHEA and cationic Ant-PIm). The cell death and DNA damage of Chinese hamster ovary cancer cells (CHO-K1) were characterized as combining PDT, cell survival studies (MTT-assay), and comet assay. Confocal microscopy was utilized on samples incubated together with either DRAQ5, Lyso Tracker Red, or Mito Tracker Deep Red in order to map the localization of the sensitizer into the nucleus and other cell compartments. While Ant-PHEA did not cause significant damage to the cell, Ant-PIm showed increased cell death upon illumination, at the cost of a significant dark toxicity. Both anthracene chromophores localized in cell compartments of the cytosol. Ant-PIm showed a markedly improved selectivity toward lysosomes and mitochondria, two important biological compartments for the cell's survival. None of the two anthracene chromophores showed singlet oxygen formation upon excitation in solvents such as deuterium oxide or methanol. Conclusively, the significant photo-induced cell death that could be observed with Ant-PIm suggests a possible type I PDT mechanism rather than the usual type II mechanism.


Assuntos
Fármacos Fotossensibilizantes/química , Polímeros/química , Animais , Antracenos/química , Linhagem Celular Tumoral , Cricetulus , Feminino , Neoplasias Ovarianas , Fotoquimioterapia , Oxigênio Singlete/química
16.
Int J Radiat Biol ; 96(4): 469-481, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31976789

RESUMO

Purpose: The aim of the study was to determine the concentration of elements using the two methods: total reflection X-ray fluorescence (TXRF) and wavelength dispersive X-ray fluorescence (WD-XRF) in two media, DMEM + and PBS+.Materials and methods: Tests were carried out at 37 and 0 °C, irradiated by gamma radiation doses of 0, 0.25, 0.5, 5 Gy, both with and without contact with CHO-K1 cells. The survival of non-irradiated CHO-K1 cells was determined after transmission of media from irradiated CHO-K1.Results: Normalized concentrations of elements as a percentage of control data (i.e. 0 Gy dose) for Al, P, S, Cl, K, Ca, Zn, Br, were determined using the TXRF method and for Na, P, S, Cl, K, Ca determined using the WD-XRF method in DMEM + and PBS + without and with contact with cells at two temperatures, 37 and 0 °C, and three absorbed doses of 0.25, 0.5 and 5 Gy. Concentration of elements, presented on the coordinates of the two principal components (PC) for media without contact with cells, determined by the TXRF method and in contact with cells, determined by the TXRF and WD-XRF methods were presented. Treatments to which the media were subjected, presented as co-ordinates determined by the first two PC when media were without and in contact with cells (TXRF method) and for media in contact with cells (WD-XRF method) were shown.Conclusions: The results showed that a statistically significant difference occurred in elemental concentrations for media in contact with the cells at the temperatures used. From principal component analysis (PCA), it was observed that the concentrations of elements such as Al, K, Ca, Zn, Br were similar to each other, in contrast to the concentrations of P, Cl, S, both with contact and without contact with cells. A high correlation between the treatment of media within the group at doses of 0.25 Gy and for the group with 0.5 and 5 Gy doses was confirmed. Numerous correlations were observed between the concentrations of elements for media that were in contact with cells, which were not observed in media without contact with cells. The survival of non-irradiated CHO-K1 cells, was determined after transmission of media from irradiated CHO-K1 cells showing no statistically significant differences.


Assuntos
Elementos Químicos , Raios gama , Animais , Células CHO , Sobrevivência Celular/efeitos da radiação , Cricetulus , Relação Dose-Resposta à Radiação , Análise de Componente Principal , Espectrometria por Raios X
17.
Toxicol In Vitro ; 65: 104783, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31987841

RESUMO

A combined approach employing alkaline single cell gel electrophoresis (SCGE) and cytokinesis-blocked micronucleus (MNs) cytome bioassays was adopted to assess the deleterious properties of the auxinic 2,4-dichlorophenoxyacetic acid (2,4-D) and its microparticulated low volatility product Dedalo Elite (30% a.i.) on Chinese hamster ovary (CHO-K1) cells. Cytotoxicity was estimated by neutral red uptake (NRU), succinic dehydrogenase activity (MTT) and apoptosis assessment. Both compounds were assayed at 0.1-10 µg/ml concentration range. Whereas exposed CHO-K1 cells revealed a statistically significant enhancement of MNs when 10 µg 2,4-D/ml was assayed, MNs were only achieved in cells treated with 2 µg Dedalo Elite/ml. A diminution in the nuclear division index was only achieved after exposure to Dedalo Elite within the 1-10 µg/ml concentration range. Whereas increased genetic damage index was achieved when 6 and 10 µg 2,4-D/ml were assayed, GDI induction was observed in treatments employing 4 µg Dedalo Elite/ml. Both compounds induced cytotoxicity by inhibition of both lysosomal and MTT activities by enhancing the frequencies of early and late apoptotic cells. Our results not only indicate the genotoxic and cytotoxic potential of 2,4-D and its microparticulated marketplace formulation, but also highlight the risk of these agrochemicals present towards the biota and human health.


Assuntos
Ácido 2,4-Diclorofenoxiacético/toxicidade , Herbicidas/toxicidade , Mutagênicos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Testes de Mutagenicidade
18.
Electromagn Biol Med ; 39(1): 1-8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31884821

RESUMO

Measurement of cell transmembrane potential (TMP) is a complex methodology involving patch-clamp methods or fluorescence-based potentiometric markers, which have limited to no applicability during ultrafast charging and relaxation phenomena. In such a case, analytical methods are applied for evaluation of the voltage potential changes in biological cells. In this work, the TMP-based electrotransfer mechanism during ultra-high frequency (≥1 MHz) electric fields is studied and the phenomenon of rapid membrane charge accumulation, which is non-occurrent during conventional low-frequency electroporation is simulated using finite element method (FEM). The influence of extracellular medium conductivity (0.1, 1.5 S/m) and pulse rise/fall times (10-50 ns) TMP generation are presented. It is shown that the medium conductivity has a dramatic influence on the electroporation process in the high-frequency range of applied pulsed electric fields (PEF). The applied model allowed to grasp the differences in polarization between 100 and 900 ns PEF and enabled successful prediction of the experimental outcome of propidium iodide electrotransfer into CHO-K1 cells and the conductivity-dependent patterns of MHz range PEF-triggered electroporation were determined. The results of this study form recommendations for development and pre-evaluation of future PEF protocols and generators based on ultra-high frequency electroporation for anticancer and gene therapies.


Assuntos
Eletroporação , Análise de Elementos Finitos , Micro-Ondas , Animais , Transporte Biológico/efeitos da radiação , Células CHO , Cricetulus , Espaço Extracelular/metabolismo , Espaço Extracelular/efeitos da radiação , Potenciais da Membrana/efeitos da radiação , Propídio/metabolismo
19.
Pharmaceutics ; 11(8)2019 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405247

RESUMO

In the present study, we examined properties of poly(lactide-co-glycolide) (PLGA)-based nanocarriers (NCs) with various functional or "smart" properties, i.e., coated with PLGA, polyethylene glycolated PLGA (PEG-PLGA), or folic acid-functionalized PLGA (FA-PLGA). NCs were obtained by double emulsion (water-in-oil-in-water) evaporation process, which is one of the most suitable approaches in nanoemulsion structural design. Nanoemulsion surface engineering allowed us to co-encapsulate a hydrophobic porphyrin photosensitizing dye-verteporfin (VP) in combination with low-dose cisplatin (CisPt)-a hydrophilic cytostatic drug. The composition was tested as a multifunctional and synergistic hybrid agent for bioimaging and anticancer treatment assisted by electroporation on human ovarian cancer SKOV-3 and control hamster ovarian fibroblastoid CHO-K1 cell lines. The diameter of PLGA NCs with different coatings was on average 200 nm, as shown by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. We analyzed the effect of the nanocarrier charge and the polymeric shield variation on the colloidal stability using microelectrophoretic and turbidimetric methods. The cellular internalization and anticancer activity following the electro-photodynamic treatment (EP-PDT) were assessed with confocal microscopy and flow cytometry. Our data show that functionalized PLGA NCs are biocompatible and enable efficient delivery of the hybrid cargo to cancer cells, followed by enhanced killing of cells when supported by EP-PDT.

20.
Cytotechnology ; 71(2): 583-597, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30783819

RESUMO

Low intensity (< 2 Vpp/cm (peak to peak voltage/cm)), high frequency (10-30 MHz), and 10 min alternating electric fields (sine wave with no DC component) induce non-contact and enzyme-free cell detachment of anchorage-dependent cells directly from commercially available cell culture flasks and stack plates. 0.25 Vpp/cm, 20 MHz alternating electric field for 10 min at room temperature (RT) induced maximum detachment and separated 99.5 ± 0.1% (mean ± SEM, n = 6) of CHO-K1 and 99.8 ± 0.2% of BALB/3T3 cells from the culture flasks. Both vertical and lateral alternating electric field applications for 10 min at RT detach the CHO-K1 cells from 25 cm2 culture flasks. The alternating electric field application induced cell detachment is almost noncytotoxic, and over 90% of the detached cells remained alive. The alternating electric field applied CHO-K1 cells for 90 min showed little or no lag phase and immediately enter exponential phase in cell growth. Combination of the 20 MHz alternating electric field and enzymatic treatment for 4 min at 37 °C showed synergetic effect and quickly detached human induced pluripotent stem cells from a laminin-coated culture flask compared with the only enzymatic treatment. These results indicate that the rapid cell detachment with both the electric field application and the enzymatic treatment could be applied to subcultures of cells that are susceptible to prolonged enzymatic digestion damage for mass culture of sustainable clinical use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA