Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mol Carcinog ; 63(8): 1588-1598, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38780151

RESUMO

Triple-negative breast cancer (TNBC) is a malignant tumor with high degree of malignancy and lack of effective target treatment. The research aims to explore the role and mechanism of X collagen alpha-1 chain protein (COL10A1 gene) in TNBC. UALCAN and Kaplan-Meier were used to detect the expression of COL10A1 and its role in the prognosis of breast cancer patients. The cells with stably expressing high levels of COL10A1 were obtained by recombinant lentivirus infection. The expression of COL10A1 in cells was temporarily downregulated by siRNA interference fragments. Real-time quantitative polymerase chain reaction and western blot analysis were utilized to detect the changes of COL10A1 mRNA and protein expression. The biological functions of the cells were evaluated by colony formation, cell counting kit-8, cell invasion and wound healing experiments. In addition, the effect of COL10A1 on angiogenesis was investigated by tube formation assay. Xenograft tumor model was used to confirm the effect of COL10A1 on tumorigenicity in vivo and multiplex fluorescent immunohistochemistry to detect multiple proteins simultaneously. The possible molecular mechanism of the function of COL10A1 was speculated through the detection of proteins in functionally related pathways. COL10A1 is highly expressed and is significantly associated with worse overall survival (OS) and recurrence-free survival (RFS) in TNBC. Overexpression of COL10A1 increased the clone formation rate and cell migration capacity of TNBC cells. In the COL10A1 overexpression group, the clone formation rates of MD-MB-231 and BT-549 cells (21.5 ± 0.62, 27.83 ± 3.72)% were significantly higher than those in the control group(15.23 ± 2.79, 19.4 ± 1.47)%, and the relative migration ratio (47.40 ± 3.09, 41.26 ± 4.33)% were higher than those in the control group (34.48 ± 2.03, 21.80 ± 1.03)%. When the expression of COL10A1 was downregulated, the ability of clone formation and wound-healing migration capacity in TNBC cells was weakened. Upregulated COL10A1 in TNBC cells generated more junctions and longer total segments between vascular endothelial cells, and promoted angiogenesis of the cells, and thus enhanced the tumorigenesis. In TNBC, it was found that COL10A1 might affect epithelial-mesenchymal transition (EMT) of the cells through Wnt/ß-catenin signaling pathway by the detection of the related pathway proteins. COL10A1 is highly expressed in TNBC, and its high expression leads to poor OS and RFS. COL10A1 may enhance TNBC cell proliferation, migration and tumor-related angiogenesis, and promote tumorigenesis in vivo via Wnt/ß-catenin signaling.


Assuntos
Movimento Celular , Proliferação de Células , Colágeno Tipo X , Regulação Neoplásica da Expressão Gênica , Neoplasias de Mama Triplo Negativas , Via de Sinalização Wnt , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Humanos , Feminino , Via de Sinalização Wnt/genética , Animais , Camundongos , Movimento Celular/genética , Linhagem Celular Tumoral , Colágeno Tipo X/genética , Colágeno Tipo X/metabolismo , Prognóstico , Regulação para Cima , Camundongos Nus , beta Catenina/metabolismo , beta Catenina/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Pessoa de Meia-Idade , Camundongos Endogâmicos BALB C
2.
Am J Cancer Res ; 14(4): 1784-1801, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726262

RESUMO

Chondrocyte hypertrophy and the expression of its specific marker, the collagen type X gene (COL10A1), constitute key terminal differentiation stages during endochondral ossification in long bone development. Mutations in the COL10A1 gene are known to cause schmid type metaphyseal chondrodysplasia (SMCD) and spondyloepiphyseal dyschondrodysplasia (SMD). Moreover, abnormal COL10A1 expression and aberrant chondrocyte hypertrophy are strongly correlated with skeletal diseases, notably osteoarthritis (OA) and osteosarcoma (OS). Throughout the progression of OA, articular chondrocytes undergo substantial changes in gene expression and phenotype, including a transition to a hypertrophic-like state characterized by the expression of collagen type X, matrix metalloproteinase-13, and alkaline phosphatase. This state is similar to the process of endochondral ossification during cartilage development. OS, the most common pediatric bone cancer, exhibits characteristics of abnormal bone formation alongside the presence of tumor tissue containing cartilaginous components. This observation suggests a potential role for chondrogenesis in the development of OS. A deeper understanding of the shifts in collagen X expression and chondrocyte hypertrophy phenotypes in OA or OS may offer novel insights into their pathogenesis, thereby paving the way for potential therapeutic interventions. This review systematically summarizes the findings from multiple OA models (e.g., transgenic, surgically-induced, mechanically-loaded, and chemically-induced OA models), with a particular focus on their chondrogenic and/or hypertrophic phenotypes and possible signaling pathways. The OS phenotypes and pathogenesis in relation to chondrogenesis, collagen X expression, chondrocyte (hypertrophic) differentiation, and their regulatory mechanisms were also discussed. Together, this review provides novel insights into OA and OS therapeutics, possibly by intervening the process of abnormal endochondral-like pathway with altered collagen type X expression.

3.
Am J Transl Res ; 16(4): 1454-1467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715834

RESUMO

BACKGROUND AND AIMS: The type X collagen gene (Col10a1), is a specific molecular marker of hypertrophic chondrocytes during endochondral ossification. Col10a1 expression is known to be influenced by many regulators. In this study, we aim to investigate how DEAD-box helicase 5 (DDX5), a potential binding factor for Col10a1 enhancer, may play a role in Col10a1 expression and chondrocyte hypertrophic differentiation in vitro. METHODS: The potential binding factors of the 150-bp Col10a1 cis-enhancer were identified with the hTFtarget database. The expression of DDX5 and COL10A1 was detected by quantitative real-time PCR (qRT-PCR) and Western blot in chondrogenic ATDC5 and MCT cell models with or without Ddx5 knockdown or overexpression. Dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) were performed to determine the interaction between DDX5 and the Col10a1 enhancer. The effect and mechanism of DDX5 on chondrocyte differentiation and maturation was evaluated by alcian blue, alkaline phosphatase (ALP), and alizarin red staining in ATDC5 cell lines with stable knockdown of Ddx5. RESULTS: DDX5 was identified as a potential binding factor for the Col10a1 enhancer. The expression of DDX5 in hypertrophic chondrocytes was higher than that in proliferative chondrocytes. Knockdown of Ddx5 decreased, while overexpression of Ddx5 slightly increased COL10A1 expression. DDX5 promotes the enhancer activity of Col10a1 as demonstrated by dual-luciferase reporter assay, and the ChIP experiment suggests a direct interaction between DDX5 and the Col10a1 enhancer. Compared to the control (NC) group, we observed weaker alcian blue and ALP staining intensity in the Ddx5 knockdown group of ATDC5 cells cultured both for 7 and 14 days. Whereas weaker alizarin red staining intensity was only found in the Ddx5 knockdown group of cells cultured for 7 days. Meanwhile, knockdown of Ddx5 significantly reduced the level of runt-related transcription factor 2 (RUNX2) in related ATDC5 cells examined. CONCLUSIONS: Our results suggest that DDX5 acts as a positive regulator for Col10a1 expression and may cooperate with RUNX2 together to control Col10a1 expression and promote the proliferation and maturation of chondrocytes.

4.
Biomolecules ; 14(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397376

RESUMO

Zebrafish are now widely used to study skeletal development and bone-related diseases. To that end, understanding osteoblast differentiation and function, the expression of essential transcription factors, signaling molecules, and extracellular matrix proteins is crucial. We isolated Sp7-expressing osteoblasts from 4-day-old larvae using a fluorescent reporter. We identified two distinct subpopulations and characterized their specific transcriptome as well as their structural, regulatory, and signaling profile. Based on their differential expression in these subpopulations, we generated mutants for the extracellular matrix protein genes col10a1a and fbln1 to study their functions. The col10a1a-/- mutant larvae display reduced chondrocranium size and decreased bone mineralization, while in adults a reduced vertebral thickness and tissue mineral density, and fusion of the caudal fin vertebrae were observed. In contrast, fbln1-/- mutants showed an increased mineralization of cranial elements and a reduced ceratohyal angle in larvae, while in adults a significantly increased vertebral centra thickness, length, volume, surface area, and tissue mineral density was observed. In addition, absence of the opercle specifically on the right side was observed. Transcriptomic analysis reveals up-regulation of genes involved in collagen biosynthesis and down-regulation of Fgf8 signaling in fbln1-/- mutants. Taken together, our results highlight the importance of bone extracellular matrix protein genes col10a1a and fbln1 in skeletal development and homeostasis.


Assuntos
Colágeno Tipo X , Proteínas da Matriz Extracelular , Osteoblastos , Peixe-Zebra , Animais , Diferenciação Celular , Matriz Extracelular/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Homeostase/genética , Minerais/metabolismo , Osteoblastos/metabolismo , Transcriptoma/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Colágeno Tipo X/genética , Colágeno Tipo X/fisiologia
5.
Ren Fail ; 46(1): 2316259, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38345033

RESUMO

Acute kidney injury (AKI) can progress to renal fibrosis and chronic kidney disease (CKD), which reduces quality of life and increases the economic burden on patients. However, the molecular mechanisms underlying renal fibrosis following AKI remain unclear. This study tested the hypothesis that the Krüppel-like factor 4 (KLF4)/miR-101/Collagen alpha-1X (COL10A1) axis could inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis after AKI in a mouse model of ischemia-reperfusion (I/R)-induced renal fibrosis and HK-2 cells by gene silencing, overexpression, immunofluorescence, immunohistochemistry, real-time quantitative PCR, Western blotting, dual-luciferase reporter assay, fluorescence in situ hybridization (FISH) and ELISA. Compared with the Sham group, I/R induced renal tubular and glomerular injury and fibrosis, and increased the levels of BUN, serum Scr and neutrophil gelatinase-associated lipocalin (NGAL), Col10a1 and Vimentin expression, but decreased E-cadherin expression in the kidney tissues of mice at 42 days post-I/R. Similarly, hypoxia promoted fibroblastic morphological changes in HK-2 cells and enhanced NGAL, COL10A1, Vimentin, and α-SMA expression, but reduced E-cadherin expression in HK-2 cells. These pathological changes were significantly mitigated in COL10A1-silenced renal tissues and HK-2 cells. KLF4 induces miR-101 transcription. More importantly, hypoxia upregulated Vimentin and COL10A1 expression, but decreased miR-101, KLF4, and E-cadherin expression in HK-2 cells. These hypoxic effects were significantly mitigated or abrogated by KLF4 over-expression in the HK-2 cells. Our data indicate that KLF4 up-regulates miR-101 expression, leading to the downregulation of COL10A1 expression, inhibition of EMT and renal fibrosis during the pathogenic process of I/R-related renal fibrosis.


Assuntos
Injúria Renal Aguda , MicroRNAs , Humanos , Camundongos , Animais , MicroRNAs/metabolismo , Lipocalina-2 , Vimentina/metabolismo , Fator 4 Semelhante a Kruppel , Hibridização in Situ Fluorescente , Qualidade de Vida , Caderinas/metabolismo , Injúria Renal Aguda/genética , Transição Epitelial-Mesenquimal , Colágeno/metabolismo , Fibrose , Hipóxia
6.
Curr Cancer Drug Targets ; 24(3): 340-353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37592784

RESUMO

BACKGROUND: The collagen type X alpha 1 (COL10A1) has recently been found to play an important role in the development and progression of cancer. However, the link between COL10A1 and the tumor immune microenvironment remains understood scantily. METHODS: In the current study, the pan-cancer data of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were used to investigate the expression mode, the clinical prognostic and diagnostic value of COL10A1 in different tumors. We used TCGA data to assess the correlations between COL10A1 and clinical symptoms of prostate cancer. The R packages "edgR" and "clusterProfiler" were used for differential expression gene and enrichment analysis of COL10A1. Immunohistochemistry was further employed to corroborate the expression of COL10A1 gene in prostate cancer. After that, we used TIMER to evaluate the pertinence of COL10A1 expression to immune infiltration level in prostate cancer. RESULTS: On the whole, COL10A1 was expressed at significantly higher levels in a variety of tumor tissues than in the corresponding normal tissues. Besides, significant correlations with tumor prognosis and relative exactitude in predicting tumors show that COL10A1 may be a probable prognostic and diagnostic biomarker of prostate cancer. In addition, the evidence indicates a significant correlation between COL10A1 and clinical symptoms of prostate cancer. Furthermore, the main molecular functions of COL10A1 included humoral immune response, complement activation, immunoglobulin, regulation of complement activation, and regulation of humoral immune response. Finally, we found that COL10A1 expression is positively correlated with enhanced macrophage and M2 macrophage infiltration in prostate cancer. CONCLUSION: The study indicates that COL10A1 might participate in M2 macrophage polarization in prostate cancer. COL10A1 might be an innovative biomarker to evaluate tumor microenvironment immune cell infiltration and prognosis in prostate cancer.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Prognóstico , Neoplasias da Próstata/genética , Macrófagos , Microambiente Tumoral
7.
Aging (Albany NY) ; 15(24): 15134-15160, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38147021

RESUMO

BACKGROUND: Type X collagen (COL10) is a homologous trimeric non-fibrillar collagen found in the extracellular matrix of human tissues, and it exhibits a distinctive white appearance. Type X collagen α1 chain (COL10A1) is a specific cleaved fragment of type X collagen. However, the expression, prognostic significance, clinicopathological attributes and immune-related associations of COL10A1 in prostate cancer as well as in pan-cancer contexts remain poorly understood. METHODS: Using bioinformatic analysis of data from the most recent databases (TCGA, GTEx and GEO databases), we have extensively elucidated the role played by COL10A1 in terms of its expression patterns, prognostic implications, and immune efficacy across a pan-cancer spectrum. Subsequently, the biological functions of COL10A1 in prostate cancer were elucidated by experimental validation. RESULTS: Our findings have confirmed that COL10A1 was highly expressed in most cancers and was associated with poorer prognosis in cancer patients. Immune correlation analysis of COL10A1 in various cancers showed its significant correlation with Tumor mutational burden (TMB), microsatellite instability (MSI) and immune cell infiltration. In addition, knockdown of COL10A1 in prostate cancer resulted in a substantial reduction in the proliferation, migration, and invasive potential of prostate cancer cells. CONCLUSION: Our pan-cancer analysis of COL10A1 gene provided novel insights into its pivotal role in cancer initiation, progression, and therapeutic implications, underscoring its potential significance in prognosis and immunotherapeutic interventions for cancer, particularly prostate cancer.


Assuntos
Colágeno Tipo X , Neoplasias da Próstata , Humanos , Masculino , Colágeno Tipo X/genética , Oncogenes/genética , Prognóstico , Próstata , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia
8.
BMC Gastroenterol ; 23(1): 397, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974070

RESUMO

BACKGROUND: Pancreatic adenocarcinoma (PAAD) is a lethal malignant tumour. Further study is needed to determine the molecular mechanism and identify novel biomarkers of PAAD. METHODS: Gene expression data from the GSE62165 microarray were analysed with the online software Morpheus to identify differentially expressed genes (DEGs). The STRING database was used to generate a protein‒protein interaction (PPI) network for these DEGs. Hub genes were identified with Cytoscape. COL10A1 expression in PAAD was analysed via the GEPIA database. COL10A1 expression in pancreatic cancer cell lines was measured by using qRT‒PCR. The LinkedOmics database was utilized to perform survival analysis of pancreatic adenocarcinoma patients grouped based on COL10A1 expression level. CCK-8, wound healing, and Transwell assays were used to study the role of COL10A1 in pancreatic cancer cell viability, migration, and invasion. Differentially expressed genes that were related to COL10A1 in PAAD were analysed via the LinkedOmics portal. After COL10A1 was knocked down, CD276 expression was assessed by western blotting. RESULTS: COL10A1 was identified as one of the hub genes in PAAD by bioinformatics analysis of the GSE62165 microarray with Morpheus, the STRING database and Cytoscape. GEPIA revealed elevated expression of COL10A1 in PAAD samples vs. normal samples. COL10A1 expression was also increased in pancreatic cancer cells vs. control cells. Survival analysis of PAAD patients via LinkedOmics revealed that high expression of COL10A1 was associated with a poorer prognosis. Knockdown of COL10A1 inhibited the proliferation, migration, and invasion of cells in functional assays. Furthermore, mechanistic studies indicated that CD276 was a target of COL10A1 and that knockdown of COL10A1 decreased CD276 expression. Overexpression of CD276 in cells reversed COL10A1 knockdown-induced repression of proliferation and migration. CONCLUSIONS: Our research suggests that COL10A1 promotes pancreatic adenocarcinoma tumorigenesis by regulating CD276. This study provides new insight into biomarkers and possible targets for pancreatic cancer treatment.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/genética , Antígenos B7 , Biomarcadores , Carcinogênese/genética , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , Prognóstico , Fatores de Transcrição , Neoplasias Pancreáticas
9.
Immunotherapy ; 15(15): 1293-1308, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37585671

RESUMO

Aim: Our study aimed to identify the role of COL10A1 in colon cancer, including interaction with immune infiltrates and somatic mutations. Methods: COL10A1 expression and prognostic value were assessed. Correlations between COL10A1 and various immune parameters were conducted by bioinformatic analysis. Results: Our study demonstrated that COL10A1 is overexpressed in colon cancer and correlates with poor patient survival. The expression level of COL10A1 is significantly associated with mismatch repair deficiency and immune infiltration. High expression of COL10A1 may confer greater sensitivity to anti-PD-1 treatment in colon cancer patients. Conclusion: COL10A1 is a potential diagnostic biomarker associated with deficient mismatch repair and immune infiltration in colon cancer.


Colorectal cancer (CRC) is a deadly disease and we do not have a cure. Immunotherapy is a new method that can help CRC patients to live longer, but it only works for some people. To find out who will get good results with immunotherapy, we looked at a protein named COL10A1. We found more COL10A1 in colon cancer tissues than in healthy tissues. CRC patients with a lot of COL10A1 are more likely to die than those patients with low levels of this protein. COL10A1 can interact with some immune cells and by looking at how much COL10A1 is in different CRC patients, we may be able to choose the right patients to treat with immunotherapy.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Biomarcadores Tumorais/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/terapia , Neoplasias Colorretais/terapia , Reparo de Erro de Pareamento de DNA , Imunoterapia
10.
Genes Dis ; 10(5): 2097-2108, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37492739

RESUMO

Osteoarthritis (OA) has been considered non-reversible as articular cartilage wears down with limited repair capacity. Enhanced chondrocyte hypertrophy and increased type X collagen gene (COL10A1) expression have been associated with OA. Therefore, regulators controlling collagen X expression and chondrocyte hypertrophy may play a role in OA intervention. Here, we investigated how Distal-less homeobox 5 (DLX5), the distal-less homeobox family member, controls murine Col10a1 gene expression and chondrocyte hypertrophy in chondrogenic cell models and its role in a murine OA model. Through qRT-PCR and Western blot analyses, we detected significantly increased levels of COL10A1 and DLX5 in hypertrophic MCT and ATDC5 cells compared to their proliferative stage. Forced expression of Dlx5 further increases, while knockdown of Dlx5 decreases COL10A1 expression in hypertrophic MCT cells. We have performed dual-luciferase reporter and ChIP assays and demonstrated that DLX5 promotes reporter activity through direct interaction with Col10a1 cis-enhancer. We established a murine OA model and detected markedly increased COL10A1 and DLX5 in the articular cartilage and subchondral bone of the OA mice compared with the controls. Notably, forced overexpression of DLX5 in hypertrophic MCT cells up-regulates RUNX2, and adjacent DLX5 and RUNX2 binding sites have previously been found within the Col10a1 cis-enhancer. Together, our data suggest that DLX5 may cooperate with RUNX2 to control cell-specific Col10a1 expression and chondrocyte hypertrophy and is involved in OA pathogenesis.

11.
Am J Transl Res ; 15(6): 4006-4019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434818

RESUMO

OBJECTIVES: Multiple transcription factors (TFs) have previously been shown to control hypertrophic chondrocyte-specific mouse type X collagen gene (Col10a1) expression via interaction with Col10a1 promoters. This study aims to investigate the role and mechanism of the potential binding factor signal transduction and transcription activator 5a (Stat5a) of Col10a1 cis-enhancer, in controlling Col10a1 gene expression and chondrocyte hypertrophic differentiation. METHODS: The potential Col10a1 regulator was predicted by the transcription factor affinity prediction (TRAP) analysis of the 150-bp Col10a1 cis enhancer. Stat5a was screened and verified by qRT-PCR, western blot and IHC analyses. Transfection of Stat5a siRNA or expression plasmid into MCT and ATDC5 cells was performed to either knockdown or over-express Stat5a and to investigate the influence of Stat5a on Col10a1 gene expression during the chondrocyte hypertrophy. Dual-luciferase reporter assay was performed to explore the mechanism of Stat5a affecting Col10a1 transcription. Alcian blue, alkaline phosphatase, and alizarin red staining, as well as qRT-PCR analyses of related marker genes were performed to investigate the effect and possible mechanism of Stat5a on chondrocyte differentiation. RESULTS: The potential binding factor of Col10a1 cis-enhancer Stat5a and Col10a1 were both highly expressed and positively correlated within hypertrophic chondrocytes in vitro and in situ. Knockdown of Stat5a reduced Col10a1 expression, while overexpression of Stat5a enhanced Col10a1 expression in hypertrophic chondrocytes, suggesting Stat5a as a positive Col10a1 regulator. Mechanistically, Stat5a was shown to potentiate the reporter activity mediated by Col10a1 promoter/enhancer. In addition, Stat5a increased the intensity of alkaline phosphatase staining of ATDC5 cells and the expression of relevant hypertrophic marker genes including Runx2, which was consistent with the expression of Stat5a and Col10a1. CONCLUSIONS: Our results support that Stat5a promoted Col10a1 expression and chondrocyte hypertrophic differentiation, possibly via interaction with the 150-bp Col10a1 cis-enhancer.

12.
Am J Transl Res ; 15(6): 4020-4032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434855

RESUMO

BACKGROUND: The type X collagen gene (Col10a1) is a signature gene of hypertrophic chondrocytes that are known as the main engine of long bone growth. Multiple transcription factors (TFs), including myocyte enhancer factor 2A (Mef2a), have previously been identified by in silico analysis as potential Col10al gene regulators. OBJECTIVES: In this study, we aimed to investigate the correlation between Mef2a and Col10a1 expression and the possible effects on chondrocyte proliferation and hypertrophic differentiation in vitro. METHODS: First, Mef2a expression in proliferating and hypertrophic chondrocytes were detected by quantitative real-time PCR (qRT-PCR) and Western blotting in two chondrocytic models, ATDC5 and MCT cells, as well as in mouse chondrocytes in situ. Transfection with Mef2a small interfering fragments or Mef2a overexpression plasmids in the above chondrocytic models were performed to determine how Mef2a knockdown or overexpression may influence Col10a1 expression. The binding between Mef2a and its putative binding site within the 150 bp Col10a1 cis-enhancer which was evaluated by the dual luciferase reporter assay. The effect of Mef2a on chondrocyte differentiation was determined by examining the chondrogenic marker gene expression by qRT-PCR and by alcian blue, alkaline phosphatase (ALP), and alizarin red staining of the ATDC5 cells stably knocked down by Mef2a. RESULTS: The expression of Mef2a in hypertrophic chondrocytes was significantly higher than that in proliferative chondrocytes in both chondrocytic models as well as in mouse chondrocytes in situ. Interference with Mef2a caused decreased Col10a1 expression, while overexpression of Mef2a upregulated Col10a1. The result of the dual luciferase reporter assay showed that Mef2a enhanced Col10a1 gene enhancer activity via its putative Mef2a binding site. For the staining of ATDC5 stable cell lines, although no significant differences were seen in ALP staining, significantly weaker alcian blue staining intensity was noticed in Mef2a knockdown stable cell lines compared to the control cells at day 21, while slightly weaker alizarin red staining was seen in the stable cell lines at days 14 and 21. Correspondingly, we detected decreased runt-related transcription factor 2 (Runx2), increased SRY-box transcription factor 9 (Sox9), as well as differential expression of other chondrogenic markers in ATDC5 stable cell lines compared with the controls. CONCLUSIONS: In conclusion, our results support that Mef2a upregulates Col10a1 expression possibly by interaction with its cis-enhancer. Altered levels of Mef2a affects the expression of chondrogenic marker genes, such as Runx2 and Sox9, but may only play an insignificant role during chondrocyte proliferation and maturation.

13.
Front Immunol ; 14: 955949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006317

RESUMO

Introduction: Bladder cancer (BLCA) is one of the most lethal diseases. COL10A1 is secreted small-chain collagen in the extracellular matrix associated with various tumors, including gastric, colon, breast, and lung cancer. However, the role of COL10A1 in BLCA remains unclear. This is the first research focusing on the prognostic value of COL10A1 in BLCA. In this research, we aimed to uncover the association between COL10A1 and the prognosis, as well as other clinicopathological parameters in BLCA. Methods: We obtained gene expression profiles of BLCA and normal tissues from the TCGA, GEO, and ArrayExpress databases. Immunohistochemistry staining was performed to investigate the protein expression and prognostic value of COL10A1 in BLCA patients. GO and KEGG enrichment along with GSEA analyses were performed to reveal the biological functions and potential regulatory mechanisms of COL10A1 based on the gene co-expression network. We used the "maftools" R package to display the mutation profiles between the high and low COL10A1 groups. GIPIA2, TIMER, and CIBERSORT algorithms were utilized to explore the effect of COL10A1 on the tumor immune microenvironment. Results: We found that COL10A1 was upregulated in the BLCA samples, and increased COL10A1 expression was related to poor overall survival. Functional annotation of 200 co-expressed genes positively correlated with COL10A1 expression, including GO, KEGG, and GSEA enrichment analyses, indicated that COL10A1 was basically involved in the extracellular matrix, protein modification, molecular binding, ECM-receptor interaction, protein digestion and absorption, focal adhesion, and PI3K-Akt signaling pathway. The most commonly mutated genes of BLCA were different between high and low COL10A1 groups. Tumor immune infiltrating analyses showed that COL10A1 might have an essential role in recruiting infiltrating immune cells and regulating immunity in BLCA, thus affecting prognosis. Finally, external datasets and biospecimens were used, and the results further validated the aberrant expression of COL10A1 in BLCA samples. Conclusions: In conclusion, our study demonstrates that COL10A1 is an underlying prognostic and predictive biomarker in BLCA.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Prognóstico , Fosfatidilinositol 3-Quinases , Neoplasias da Bexiga Urinária/genética , Biologia Computacional , Microambiente Tumoral/genética
14.
Bone ; 167: 116614, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36400164

RESUMO

BACKGROUND: Metaphyseal chondrodysplasias are a heterogeneous group of diseases characterized by short and bowed long bones and metaphyseal abnormality. The aim of this study is to investigate the genetic etiology and prognostic findings in patients with metaphyseal dysplasia. METHODS: Twenty-four Turkish patients were included in this study and 13 of them were followed for 2-21 years. COL10A1, RMRP sequencing and whole exome sequencing were performed. RESULTS: Results: Seven heterozygous pathogenic variants in COL10A1 were detected in 17 patients with Schmid type metaphyseal chondrodysplasia(MCDS). The phenotype was more severe in patients with heterozygous missense variants (one in signal peptide domain at the N-terminus of the protein, the other, class-1 group mutation at NC1 domain) compared to the patients with truncating variants. Short stature and coxa vara deformity appeared after 3 and 5 years of age, respectively, while large femoral head resolved after the age of 13 years in MCDS group. Interestingly, one patient with severe phenotype also had a biallelic missense variant in NC1 domain of COL10A1. Three patients with biallelic mutations in RMRP had prenatal onset short stature with short limb, and typical findings of cartilage hair hypoplasia (CHH). While immunodeficiency or recurrent infections were not observed, resistant congenital anemia was detected in one. Biallelic mutation in LBR was described in a patient with prenatal onset short stature, short and curved limb and metaphyseal abnormalities. Unlike previously reported patients, this patient had ectodermal findings, similar to CHH. A biallelic COL2A1 mutation was also found in the patient with lower limb deformities and metaphyseal involvement without vertebral and epiphyseal changes. CONCLUSION: Long-term clinical characteristics are presented in a metaphyseal dysplasia cohort, including rare types caused by biallelic COL10A1, COL2A1, and LBR variants. We also point out that the domains where mutations on COL10A1 take place are important in the genotype-phenotype relationship.


Assuntos
Doenças Ósseas , Osteocondrodisplasias , Humanos , Colágeno Tipo II/genética , Mutação/genética , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Receptor de Lamina B
15.
Front Oncol ; 12: 1049345, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530986

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant tumors with a poor prognosis. Type X collagen α 1 chain (COL10A1), a member of the collagen family, is a gene associated with the progression of a variety of human tumors, but the specific function and molecular mechanism of COL10A1 in pancreatic cancer remain unclear. Our study found that COL10A1 is highly expressed in pancreatic cancer cells and tissues, and its high expression is related to poor prognosis and some clinicopathological features, such as tumor size and differentiation. Biological functional experiments showed that overexpression of COL10A1 enhanced the proliferation and migration of PDAC cells. Interestingly, discoid protein domain receptor 2 (DDR2), the receptor of COL10A1, is regulated by COL10A1. We found that the COL10A1-DDR2 axis activates the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, which leads to epithelial-mesenchymal transformation (EMT) and accelerates the progression of pancreatic cancer. In summary, COL10A1 regulates PDAC cell proliferation and MEK/ERK signaling pathways by binding to DDR2 to promote migration, invasion and EMT. Our study suggested that COL10A1 might be a critical factor in promoting PDAC progression. More research is needed to confirm COL10A1 as a potential biomarker and therapeutic target for PDAC.

16.
J Clin Lab Anal ; 36(9): e24612, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35929139

RESUMO

BACKGROUND: COL10A1 is a secreted, short-chain collagen found in several types of cancer. Studies have shown that COL10A1 aberrant expression is considered an oncogenic factor. However, its underlying mechanisms and regulation of gastric cancer remain undefined. METHODS: The data on the expression of COL10A1, clinicopathological characteristics, and outcome of patients with GC were obtained from The Cancer Genome Atlas. The ALGGEN-PROMO database defined the related transcription factors. Quantitative real-time reverse transcription-polymerase chain reaction and western blotting analysis were used to identify the differential expression levels of COL10A1 and related transcription factors. RESULTS: We found that high COL10A1 expression is an independent risk factor for gastric cancer. Upregulation of LEF1 and Wnt2 was also observed in gastric cancer, suggesting a potential correlation between LEF1/COL10A1 regulation in the Wnt2 signaling pathway. CONCLUSION: High COL10A1 expression may contribute to poor outcomes via upregulation of LEF1 and Wnt2 in gastric cancer.


Assuntos
Colágeno Tipo X/metabolismo , Neoplasias Gástricas , Carcinogênese , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Fatores de Transcrição/genética , Regulação para Cima/genética , Proteína Wnt2/genética , Proteína Wnt2/metabolismo
17.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35593425

RESUMO

During bone development and repair, osteoblasts are recruited to bone deposition sites. To identify the origin of recruited osteoblasts, cell lineage tracing using Cre/loxP recombination is commonly used. However, a confounding factor is the use of transgenic Cre drivers that do not accurately recapitulate endogenous gene expression or the use of knock-in Cre drivers that alter endogenous protein activity or levels. Here, we describe a CRISPR/Cas9 homology-directed repair knock-in approach that allows efficient generation of Cre drivers controlled by the endogenous gene promoter. In addition, a self-cleaving peptide preserves the reading frame of the endogenous protein. Using this approach, we generated col10a1p2a-CreERT2 knock-in medaka and show that tamoxifen-inducible CreERT2 efficiently recombined loxP sites in col10a1 cells. Similar knock-in efficiencies were obtained when two unrelated loci (osr1 and col2a1a) were targeted. Using live imaging, we traced the fate of col10a1 osteoblast progenitors during bone lesion repair in the medaka vertebral column. We show that col10a1 cells at neural arches represent a mobilizable cellular source for bone repair. Together, our study describes a previously unreported strategy for precise cell lineage tracing via efficient and non-disruptive knock-in of Cre.


Assuntos
Oryzias , Animais , Animais Geneticamente Modificados , Desenvolvimento Ósseo , Linhagem da Célula/genética , Oryzias/genética , Osteoblastos/metabolismo
18.
Ann Clin Lab Sci ; 52(1): 60-72, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35181619

RESUMO

OBJECTIVE: The study aimed to explore the role of VSNL1/COL10A1 axis in colorectal cancer. METHODS: The differential-expressed mRNA in colorectal cancer tissues and adjacent tissues were analyzed through GEO database and GEPIA database. The target genes of mRNA were predicted through the Starbase database, and the targeting relationship of mRNA was verified by co-IP assay. The expressions of VSNL1 and COL10A1 were detected by RT-PCR and immunohistochemistry. Cell viability and proliferation were detected by CCK8 assay and EdU assay, respectively. Cell migration and invasion were detected by transwell assay. The expression of related proteins was detected by western blot. RESULTS: VSNL1 was significantly overexpressed in colorectal cancer tissues compared with adjacent tissues. In addition, downregulation of VSNL1 could inhibit the proliferation, migration, and invasion of colorectal cancer cells. The co-IP experiment indicated that VSNL1 could bind with COL10A1. Further studies demonstrated that upregulation of COL10A1 could promote colorectal cells proliferation, migration, invasion, and reverse the effect of sh-VSNL1 on colorectal cancer cells. CONCLUSION: VSNL1 could promote the proliferation, migration, and invasion of colorectal cancer by targeting COL10A1. VSNL1 might be a potential target for colorectal cancer treatment.


Assuntos
Colágeno Tipo X , Neoplasias Colorretais , Neurocalcina , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Colágeno Tipo X/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Invasividade Neoplásica , Neurocalcina/genética , Neurocalcina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima
19.
J Biomol Struct Dyn ; 40(22): 11533-11544, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34380365

RESUMO

Gastric cancer (GC) has limited effective treatment options and is followed up with biomarkers that have insufficient sensitivity and specificity. Recent studies on Collagen Type X Alpha 1 Chain (COL10A1) show that the COL10A1 gene may be a diagnostic and/or prognostic biomarker for different cancer types. Moreover, its relationship with the Sex determining Region Y (SRY)-related High-Mobility Group (HMG) box (SOX9) gene which is also a transcription factor, was discovered recently, and co-expression of these two genes are associated with the development of GC. However, to the best of our knowledge, there is no study in the literature on how potential damaging mutations in the SOX9 and COL10A1 genes can affect their interactions. The aim of this study is to investigate the interactions of wild-type and potentially damaging mutated structures of COL10A1 and SOX9 genes. Thus, outputs for drug development and therapeutic strategies for GC can be obtained. For this purpose, structure validation and energy minimization analyses as well as docking and binding affinity calculations were performed. As a result, it was found that all investigated mutations (P563S, I588L, T624A, H165R and N110T) increased the binding affinity between the COL10A1-SOX9 complex, especially the N110T and H165R mutants in SOX9. As a conclusion, the N110T and H165R mutants in SOX9 may contribute to tumor progression. Therefore, it is important to consider these mutations for future therapeutic strategies.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica , Mutação , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
20.
Microvasc Res ; 139: 104239, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520774

RESUMO

With the dramatic rise in the aging population, researching age-related macular degeneration (AMD), especially the severe form neovascular AMD (nAMD), has become more important than ever. In this study, we found that collagen type X was increased in retina-choroid tissue of mice with laser-induced choroidal neovascularization (CNV) based on immunohistofluorescence. RNA sequencing and bioinformatic analyses were performed to compare the retina-choroid tissue complex of the CNV mouse model to normal controls. Collagen type X alpha 1 chain (Col10a1) was among the most significantly upregulated genes, and the results were validated with an animal model at the mRNA and protein levels by quantitative real-time polymerase chain reaction (qPCR) and western blotting, respectively. COL10A1 was also upregulated in human retinal microvascular endothelial cells (HRMECs), human umbilical vein endothelial cells (HUVECs), RPE19 cells and RF/6A cells under hypoxic conditions. Next, in vitro and in vivo experiments were performed to study the effect of COL10A1 on neovascularization. siRNA knockdown of COL10A1 suppressed the proliferation and tube formation ability of HRMECs under hypoxic conditions. Snail family transcriptional repressor 1 (SNAIL1) and angiopoietin-2 (ANGPT2) were downregulated in COL10A1 knockdown HRMECs under hypoxic conditions and thus were potential downstream genes. Significant decreases in CNV leakage and CNV lesion area, as assessed by fundus fluorescein angiography (FFA) and immunofluorescence of choroidal flat mounts, respectively, were observed in a mouse model intravitreally injected with anti-collagen X monoclonal antibody (mAb) compared to the controls. In conclusion, COL10A1 promotes CNV formation and may represent a new candidate target for the treatment and diagnosis of nAMD and other neovascular diseases.


Assuntos
Corioide/irrigação sanguínea , Neovascularização de Coroide/metabolismo , Colágeno Tipo X/metabolismo , Células Endoteliais/metabolismo , Degeneração Macular/metabolismo , Neovascularização Fisiológica , Angiopoietina-2/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Hipóxia Celular , Linhagem Celular , Neovascularização de Coroide/genética , Neovascularização de Coroide/patologia , Neovascularização de Coroide/prevenção & controle , Colágeno Tipo X/antagonistas & inibidores , Colágeno Tipo X/genética , Colágeno Tipo X/imunologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Degeneração Macular/genética , Degeneração Macular/patologia , Degeneração Macular/prevenção & controle , Masculino , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA