Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Front Genet ; 15: 1308737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050257

RESUMO

Background: Stickler syndrome type I (STL1) is an autosomal dominant disorder characterized by ocular, auditory, orofacial, and skeletal anomalies. The main causes of STL1 are variants in the COL2A1 gene, which encodes a type II collagen precursor protein. The specific focus of this study was on a newborn from China diagnosed with STL1, with the aim of providing novel insights into the effects of a newly identified intronic variant in the COL2A1 gene on pre-mRNA splicing. Methods: Trio whole exome sequencing was used to identify the causative variant in the family. The identified variant was validated using Sanger sequencing. Bioinformatics programs were used to predict the pathogenicity of the candidate variant. Additionally, an in vitro minigene assay was used to investigate the effects of the identified variant on RNA splicing. Results: The proband with STL1 had a novel heterozygous splicing variant in the intron nine acceptor donor site of COL2A1 (c.655-2A>G). This splice junction variant resulted in aberrant COL2A1 mRNA splicing, leading to the skipping of exon 10 and the production of a shorter protein that may lack the last 18 native amino acids. Conclusion: The c.655-2A>G variant in the COL2A1 gene leads to STL1 through abnormal splicing. By expanding the spectrum of variants in the COL2A1 gene, this finding improves the clinical understanding of STL1 and provides guidance for early diagnosis and disease counseling.

2.
Calcif Tissue Int ; 113(3): 266-275, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37278761

RESUMO

Rare genetic skeletal disorders (GSDs) remain the major problem in orthopedics and result in significant morbidity in patients, but the causes are highly diverse. Precise molecular diagnosis will benefit management and genetic counseling. This study aims to share the diagnostic experience on a three-generation Chinese family with co-occurrence of spondyloepiphyseal dysplasia (SED) and X-linked hypophosphatemia (XLH), and evaluate the therapeutic effects of two third-generation siblings. The proband, his younger brother, and mother presented with short stature, skeletal problems, and hypophosphatemia. His father, paternal grandfather, and aunt also manifested short stature and skeletal deformities. Whole exome sequencing (WES) of proband-brother-parents initially only found the proband and his younger brother had a pathogenic c.2833G > A(p.G945S) variant in the COL2A1 gene inherited from their father. Re-analysis of WES uncovered the proband and his younger brother also harbored a pathogenic ex.12 del variant in the PHEX gene transmitted from their mother. Sanger sequencing, agarose gel electrophoresis, and quantitative polymerase chain reaction proved these results. The proband and his younger brother were confirmed to have a paternally inherited SED and a maternally inherited XLH. During a 2.8-year follow-up, these two siblings remained short stature and hypophosphatemia, but their radiographic signs and serum bone alkaline phosphatase levels were improved with treatment of oral phosphate and calcitriol. Our study presents the first report of co-occurrence of SED and XLH, shows the possibility that two different rare GSDs co-exist in a single patient, and alerts clinicians and geneticists to be cautious about this condition. Our study also suggests that next-generation sequencing has limit in detecting exon-level large deletions.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Osteocondrodisplasias , Humanos , Masculino , População do Leste Asiático , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Osteocondrodisplasias/genética , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética
3.
J Pediatr Genet ; 12(4): 339-341, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38162154

RESUMO

Spondylometaphyseal dysplasia Algerian type (MIM no.: 184253) is an uncommon autosomal dominant skeletal dysplasia caused by heterozygous mutations in the COL2A1 gene (MIM no.: 120140). In this case based review, we reported a 5-year-old boy with short stature, severe dorsolumbar scoliosis, lumbar hyperlordosis, short trunk, and severe genu valgum . Radiological examination showed platyspondyly, irregular metaphyseal radiolucencies intermingled with radiodensities, and corner fractures. The patient has a c.3275G > A; p.Gly1092Asp mutation in exon 47 of the COL2A1 gene and a variant of unknown significance in c.1366-13C > A in intron 21. This latter sequence variant could partially or completely disrupt the natural splice acceptor site of intron 21/exon 22 in the COL2A1 gene leading to a potential modification of the phenotypic severity.

4.
Genes (Basel) ; 13(1)2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35052477

RESUMO

The significant variability in the clinical manifestations of COL2A1-associated skeletal dysplasias makes it necessary to conduct a clinical and genetic analysis of individual nosological variants, which will contribute to improving our understanding of the pathogenetic mechanisms and prognosis. We presented the clinical and genetic characteristics of 60 Russian pediatric patients with type II collagenopathies caused by previously described and newly identified variants in the COL2A1 gene. Diagnosis confirmation was carried out by new generation sequencing of the target panel with subsequent validation of the identified variants using automated Sanger sequencing. It has been shown that clinical forms of spondyloepiphyseal dysplasias predominate in childhood, both with more severe clinical manifestations (58%) and with unusual phenotypes of mild forms with normal growth (25%). However, Stickler syndrome, type I was less common (17%). In the COL2A1 gene, 28 novel variants were identified, and a total of 63% of the variants were found in the triple helix region resulted in glycine substitution in Gly-XY repeats, which were identified in patients with clinical manifestations of congenital spondyloepiphyseal dysplasia with varying severity, and were not found in Stickler syndrome, type I and Kniest dysplasia. In the C-propeptide region, five novel variants leading to the development of unusual phenotypes of spondyloepiphyseal dysplasia have been identified.


Assuntos
Fissura Palatina/patologia , Doenças do Colágeno/patologia , Colágeno Tipo II/genética , Nanismo/patologia , Face/anormalidades , Doença da Membrana Hialina/patologia , Mutação , Osteocondrodisplasias/congênito , Osteocondrodisplasias/patologia , Adolescente , Criança , Pré-Escolar , Fissura Palatina/epidemiologia , Fissura Palatina/genética , Doenças do Colágeno/epidemiologia , Doenças do Colágeno/genética , Nanismo/epidemiologia , Nanismo/genética , Face/patologia , Feminino , Humanos , Doença da Membrana Hialina/epidemiologia , Doença da Membrana Hialina/genética , Lactente , Masculino , Osteocondrodisplasias/epidemiologia , Osteocondrodisplasias/genética , Fenótipo , Federação Russa/epidemiologia
5.
Taiwan J Ophthalmol ; 12(4): 423-429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36660125

RESUMO

PURPOSE: The purpose of this study was to identify gene mutation and phenotype correlations in a cohort of Taiwanese patients with Stickler syndrome. MATERIALS AND METHODS: Patients clinically diagnosed with Stickler syndrome or suspected Stickler syndrome were enrolled. DNA was extracted from venous blood samples. For the targeted next-generation sequencing (NGS) approach, specific primers were designed for all COL2A1, COL11A1, COL11A2, COL9A1, and COL9A2 exons and flanking intron sequences. RESULTS: Twenty-three patients from 12 families were enrolled in this study. The myopia power in these 23 cases (35 eyes) ranged from -4.625 to -25.625 D, with a median of -10.00 D. Four patients had retinal detachment. Fourteen patients had a cleft palate. These 23 patients and 13 healthy controls were enrolled in the NGS study. Three families had significant single nucleotide variants (SNVs) in COL2A1. The mutation rates in this survey were 25% (3/12 families) and 35% (8/23 cases). The SNV of family #1, located at exon 27, c.1753G >T, p. Gly585Val, was novel and has not yet been reported in the ClinVar database. Families #10 and #11 had the same SNV, located in exon 33, c.2101C >T, p. Arg701X. Both variants were classified as likely pathogenic according to the American College of Medical Genetics and Genomics guidelines. CONCLUSION: Genetic mutations in COL2A1 were found in 25% of Taiwanese families with Stickler syndrome. One novel variant was identified using NGS, which expanded the COL2A1 mutation spectrum. Molecular genetic analysis is helpful to confirm the clinical diagnosis of patients with suspected Stickler syndrome.

6.
BMC Med Genomics ; 14(1): 201, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34380476

RESUMO

BACKGROUND: Type II collagenopathies are a spectrum of diseases and skeletal dysplasia is one of the prominent features of collagenopathies. Molecular defects of the COL2A1 gene cause type II collagenopathies that is mainly an autosomal dominant disease, whereas some rare cases with autosomal recessive inheritance of mode have also been identified. CASE PRESENTATION: The patient was a 5-year-old male with a short neck, flat face, epiphyseal dysplasia, irregular vertebral endplates, and osteochondritis. Sequencing result indicated NM_001844.4: c.3662C > T; p. (Ser1221Phe) a novel missense variant, leading to a serine-to-phenylalanine substitution. Sanger sequencing confirmed the variant compared to his parents and brother. CONCLUSIONS: We identified a novel homozygous variant of the COL2A1 gene as the cause of type II collagenopathies in a Chinese male, enriching the spectrum of genotypes. This is the first case of type II collagenopathies inherited in an autosomal recessive manner in China and East Asia, and it is the first case that resulted from serine substitution in the world.


Assuntos
Osteocondrodisplasias
7.
Taiwan J Obstet Gynecol ; 60(2): 359-362, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33678343

RESUMO

OBJECTIVE: Skeletal dysplasias, caused by genetic mutations, are a heterogenous group of heritable disorders affecting bone development during fetal life. Stickler syndrome, one of the skeletal dysplasias, is an autosomal dominant connective tissue disorder caused by abnormal collagen synthesis owing to a genetic mutation in COL2A1. CASE REPORT: We present the case of a 38-year-old multipara woman whose first trimester screening showed a normal karyotype. However, the bilateral femur and humerus length symmetrically shortened after 20 weeks. Next-generation sequencing for mutations in potential genes leading to skeletal dysplasia detected a novel de novo mutation (c.1438G > A, p.Gly480Arg) in COL2A1, causing Stickler syndrome type 1. This pathogenic mutation might impair or destabilize the collagen structure, leading to collagen type II, IX, and XI dysfunction. CONCLUSION: We identified a novel de novo mutation in COL2A1 related to the STL1 syndrome and delineated the extent of the skeletal dysplasia disease spectrum.


Assuntos
Artrite/diagnóstico , Artrite/genética , Colágeno Tipo II/genética , Doenças do Tecido Conjuntivo/diagnóstico , Doenças do Tecido Conjuntivo/genética , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Descolamento Retiniano/diagnóstico , Descolamento Retiniano/genética , Adulto , Artrite/embriologia , Doenças do Tecido Conjuntivo/embriologia , Feminino , Perda Auditiva Neurossensorial/embriologia , Humanos , Mutação , Gravidez , Descolamento Retiniano/embriologia , Síndrome
8.
Appl Clin Genet ; 12: 235-238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824186

RESUMO

The COL2A1 gene consists of 54 exons spanning over 31.5 kb and encodes for type II collagen. Type II collagen is the main component of hyaline cartilage extracellular matrix, nucleus pulposus of intervertebral discus, vitreous humor of the eye and inner ear structure. Molecular defects in COL2A1 gene cause a wide variety of rare autosomal-dominant conditions known as type II collagenopathies. A clear genotype-phenotype relationship is not yet known. However, some correlations are described. Spondyloephyseal dysplasia congenita was suggested for a short-trunk dwarfing condition affecting primarily the vertebrae and the proximal epiphyses of the long bones.

9.
Mutat Res Rev Mutat Res ; 768: 1-13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27234559

RESUMO

Type II collagen, comprised of three identical alpha-1(II) chains, is the major collagen synthesized by chondrocytes, and is found in articular cartilage, vitreous humour, inner ear and nucleus pulposus. Mutations in the collagen type II alpha-1 gene (COL2A1) have been reported to be responsible for a series of abnormalities, known as type II collagenopathies. To date, 16 definite disorders, inherited in an autosomal dominant or recessive pattern, have been described to be associated with the COL2A1 mutations, and at least 405 mutations ranging from point mutations to complex rearrangements have been reported, though the underlying pathogenesis remains unclear. Significant clinical heterogeneity has been reported in COL2A1-associated type II collagenopathies. In this review, we highlight current knowledge of known mutations in the COL2A1 gene for these disorders, as well as genetic animal models related to the COL2A1 gene, which may help us understand the nature of complex phenotypes and underlying pathogenesis of these conditions.


Assuntos
Colágeno Tipo II/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Animais , Colágeno Tipo II/metabolismo , Modelos Animais de Doenças , Genes Dominantes , Humanos , Fenótipo
10.
Am J Med Genet A ; 167A(12): 3204-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26345137

RESUMO

Constitutive COL2A1 mutations are associated with a wide variety of clinical manifestations known as type II collagenopathies. Among them is Kniest dysplasia, which is phenotypically variable and includes both skeletal (short trunk and limbs, kyphoscoliosis, prominent joints, and osteoarthritis) and craniofacial characteristics. Kniest dysplasia mutations primarily arise in the triple-helicoidal region of the alpha 1 (II) chain in COL2A1 between exons 12 and 24. Somatic COL2A1 mutations have been identified in chondrosarcoma, a rare cartilage forming neoplasm, with a hypermutability of the gene reported in 37% of cases. However, to the best of our knowledge, there is no reported increase in predisposition to chondrosarcoma in human collagenopathies, and no reported clinical association between these congenital diseases and cartilaginous tumors. In the case study presented here, we report the first description of an association between these two rare diseases involving COL2A1, in a child presenting with Kniest dysplasia and a grade I sphenoethmoidal chondrosarcoma. We also describe a new constitutive mutation in COL2A1.


Assuntos
Neoplasias Ósseas/genética , Condrossarcoma/genética , Fissura Palatina/genética , Doenças do Colágeno/genética , Colágeno Tipo II/genética , Nanismo/genética , Face/anormalidades , Doença da Membrana Hialina/genética , Mutação/genética , Osteocondrodisplasias/genética , Neoplasias Ósseas/patologia , Condrossarcoma/patologia , Fissura Palatina/patologia , Doenças do Colágeno/patologia , Nanismo/patologia , Face/patologia , Humanos , Doença da Membrana Hialina/patologia , Recém-Nascido , Masculino , Osteocondrodisplasias/patologia , Prognóstico
11.
J Mol Med (Berl) ; 92(11): 1179-200, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25081415

RESUMO

UNLABELLED: The existence of a link between estrogen deprivation and osteoarthritis (OA) in postmenopausal women suggests that 17ß-estradiol (17ß-E2) may be a modulator of cartilage homeostasis. Here, we demonstrate that 17ß-E2 stimulates, via its receptor human estrogen receptor α 66 (hERα66), type II collagen expression in differentiated and dedifferentiated (reflecting the OA phenotype) articular chondrocytes. Transactivation of type II collagen gene (COL2A1) by ligand-independent transactivation domain (AF-1) of hERα66 was mediated by "GC" binding sites of the -266/-63-bp promoter, through physical interactions between ERα, Sp1/Sp3, Sox9, and p300, as demonstrated in chromatin immunoprecipitation (ChIP) and Re-Chromatin Immuno-Precipitation (Re-ChIP) assays in primary and dedifferentiated cells. 17ß-E2 and hERα66 increased the DNA-binding activities of Sp1/Sp3 and Sox-9 to both COL2A1 promoter and enhancer regions. Besides, Sp1, Sp3, and Sox-9 small interfering RNAs (siRNAs) prevented hERα66-induced transactivation of COL2A1, suggesting that these factors and their respective cis-regions are required for hERα66-mediated COL2A1 up-regulation. Our results highlight the genomic pathway by which 17ß-E2 and hERα66 modulate Sp1/Sp3 heteromer binding activity and simultaneously participate in the recruitment of the essential factors Sox-9 and p300 involved respectively in the chondrocyte-differentiated status and COL2A1 transcriptional activation. These novel findings could therefore be attractive for tissue engineering of cartilage in OA, by the fact that 17ß-E2 could promote chondrocyte redifferentiation. KEY MESSAGES: 17ß-E2 up-regulates type II collagen gene expression in articular chondrocytes. An ERα66/Sp1/Sp3/Sox-9/p300 protein complex mediates this stimulatory effect. This heteromeric complex interacts and binds to Col2a1 promoter and enhancer in vivo. Our findings highlight a new regulatory mechanism for 17ß-E2 action in chondrocytes. 17ß-E2 might be an attractive candidate for cartilage engineering applications.


Assuntos
Condrócitos/citologia , Colágeno Tipo II/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Animais , Sítios de Ligação , Cartilagem Articular/citologia , Diferenciação Celular , Colágeno Tipo II/genética , Humanos , Masculino , Fenótipo , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Coelhos , Ativação Transcricional , Regulação para Cima
12.
Am J Med Genet A ; 164A(3): 769-73, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24357493

RESUMO

Dysspondyloenchondromatosis is a rare form of generalized enchondromatosis associated with spinal involvement. This skeletal dysplasia is characterized by multiple enchondromas present in vertebrae as well as in metaphyseal and diaphyseal parts of the long tubular bones, post-natal short stature, and early development of kyphoscoliosis. A novel heterozygous missense mutation in COL2A1 was recently identified in a patient with dysspondyloenchondromatosis. This suggests that dysspondyloenchondromatosis might expand the already broad spectrum of type II collagenopathies. Here, we report on a young girl with features of dysspondyloenchondromatosis, specifically short stature, thoracoscoliosis, and generalized enchondromas lesions. Sanger sequencing failed to detect a mutation in COL2A1. We therefore suggest that dysspondyloenchondromatosis is a genetically heterogeneous condition.


Assuntos
Encondromatose/diagnóstico , Encondromatose/genética , Heterogeneidade Genética , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Pré-Escolar , Colágeno Tipo II/genética , Fácies , Feminino , Humanos , Mutação , Fenótipo , Radiografia , Coluna Vertebral/patologia
13.
Int J Med Sci ; 10(9): 1250-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935403

RESUMO

OBJECTIVE: To further investigate the underlying pathology of axial and appendicular skeletal abnormalities such as painful spine stiffness, gait abnormalities, early onset osteoarthritis and patellar instability in patients with Stickler syndrome type I. Radiographic and tomographic analyses were organized. METHODS: From a series of Stickler syndrome patients followed from early life to late childhood. Ten patients (6 boys and four girls of different ethnic origins were consistent with the diagnosis of Stickler syndrome type I ). Phenotypic characterization was the baseline tool applied for all patients and genotypic correlation was performed on four families RESULTS: A constellation of axial abnormalities namely; anterolateral ossification of the anterior longitudinal spinal ligament with subsequent fusion of two cervical vertebrae, early onset Forestier disease (progressive spinal hyperostosis with subsequent vertebral fusion on top of bridging osteophytes and "Bamboo-like spine" resembling ankylosing spondylitis) and severe premature spine degeneration were evident. Appendicular abnormalities in connection with generalized epiphyseal dysplasia were the underlying aetiology in patients with Intoeing gait and femoral anteversion, early onset severe osteoarthritis of the weight bearing joint. Remarkable trochleo-patellar dysplasia secondary to severe osteoarthritis causing effectively the development of patellar instability was additional pathology. Mutation of COL2A1 has been confirmed as the causative gene for Stickler syndrome type I CONCLUSION: We concluded that conventional radiographs and the molecular determination of a COL2A1 in patients with (Stickler syndrome type I) are insufficient tools to explain the reasons behind the tremendous magnitude of axial and appendicular skeletal abnormalities. We were able to modify the criteria of the clinical phenotype as designated by Rose et al in accordance with the novel axial and appendicular criteria as emerged from within our current study.


Assuntos
Artrite/diagnóstico por imagem , Doenças do Tecido Conjuntivo/diagnóstico por imagem , Perda Auditiva Neurossensorial/diagnóstico por imagem , Descolamento Retiniano/diagnóstico por imagem , Adolescente , Adulto , Artrite/genética , Artrite/patologia , Criança , Pré-Escolar , Colágeno Tipo II/genética , Doenças do Tecido Conjuntivo/genética , Doenças do Tecido Conjuntivo/patologia , Feminino , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Humanos , Lactente , Masculino , Mutação , Radiografia , Descolamento Retiniano/genética , Descolamento Retiniano/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA