Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cancer Res Clin Oncol ; 150(6): 305, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871970

RESUMO

PURPOSE: The copper metabolism MURR1 domain 10 (COMMD10) plays a role in a variety of tumors. Here, we investigated its role in gastric cancer (GC). METHODS: Online prediction tools, quantitative real-time PCR, western blotting and immunohistochemistry were used to evaluate the expression of COMMD10 in GC. The effect of COMMD10 knockdown was investigated in the GC cell lines and in in vivo xenograft tumor experiments. Western blotting and immunofluorescence were used to explore the relationships between COMMD10 and DNA damage. RESULTS: The expression of COMMD10 was upregulated in GC compared to that in para-cancerous tissue and correlated with a higher clinical TNM stage (P = 0.044) and tumor size (P = 0.0366). High COMMD10 expression predicted poor prognosis in GC. Knockdown of COMMD10 resulted in the suppression of cell proliferation, migration, and invasion, accompanied by cell cycle arrest and an elevation in apoptosis rate. Moreover, the protein expression of COMMD10 was decreased in cisplatin-induced DNA-damaged GC cells. Suppression of COMMD10 impeded DNA damage repair, intensified DNA damage, and activated ATM-p53 signaling pathway in GC. Conversely, restoration of COMMD10 levels suppressed DNA damage and activation of the ATM-p53 signaling cascade. Additionally, knockdown of COMMD10 significantly restrained the growth of GC xenograft tumors while inhibiting DNA repair, augmenting DNA damage, and activating the ATM-p53 signaling pathway in xenograft tumor tissue. CONCLUSION: COMMD10 is involved in DNA damage repair and maintains genomic stability in GC; knockdown of COMMD10 impedes the development of GC by exacerbating DNA damage, suggesting that COMMD10 may be new target for GC therapy.


Assuntos
Proliferação de Células , Dano ao DNA , Progressão da Doença , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , Animais , Camundongos , Feminino , Masculino , Camundongos Nus , Linhagem Celular Tumoral , Apoptose , Prognóstico , Pessoa de Meia-Idade , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Movimento Celular , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação Neoplásica da Expressão Gênica
2.
J Dev Biol ; 11(1)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36976102

RESUMO

The COMMD (copper metabolism MURR1 domain containing) family includes ten structurally conserved proteins (COMMD1 to COMMD10) in eukaryotic multicellular organisms that are involved in a diverse array of cellular and physiological processes, including endosomal trafficking, copper homeostasis, and cholesterol metabolism, among others. To understand the role of COMMD10 in embryonic development, we used Commd10Tg(Vav1-icre)A2Kio/J mice, where the Vav1-cre transgene is integrated into an intron of the Commd10 gene, creating a functional knockout of Commd10 in homozygous mice. Breeding heterozygous mice produced no COMMD10-deficient (Commd10Null) offspring, suggesting that COMMD10 is required for embryogenesis. Analysis of Commd10Null embryos demonstrated that they displayed stalled development by embryonic day 8.5 (E8.5). Transcriptome analysis revealed that numerous neural crest-specific gene markers had lower expression in mutant versus wild-type (WT) embryos. Specifically, Commd10Null embryos displayed significantly lower expression levels of a number of transcription factors, including a major regulator of the neural crest, Sox10. Moreover, several cytokines/growth factors involved in early embryonic neurogenesis were also lower in mutant embryos. On the other hand, Commd10Null embryos demonstrated higher expression of genes involved in tissue remodeling and regression processes. Taken together, our findings show that Commd10Null embryos die by day E8.5 due to COMMD10-dependent neural crest failure, revealing a new and critical role for COMMD10 in neural development.

3.
PeerJ ; 11: e14645, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36919165

RESUMO

Background: COMMD10 has an important role in the development of certain tumors, but its relevance to gastric cancer (GC) is unclear. The purpose of this study is to investigate the difference of COMMD10 expression in gastric adenocarcinoma (STAD) and analyze the correlation between COMMD10 expression and prognosis of STAD patients. Methods: The expression levels of COMMD10 between STAD and normal tissues were explored using the The Cancer Genome Atlas (TCGA) database. In addition, the expression of COMMD10 in GC was further validated by immunohistochemistry (IHC) staining, qRT-PCR and Western blot. Dot blot experiments were used for exploring m6A expression levels in tissues with high and low COMMD10 expression. Kaplan-Meier analysis and COX regression analysis were used to explore the relationship between COMMD10 and STAD prognosis. A nomogram was constructed to predict the survival probability of STAD patients. GO and KEGG functional enrichment of COMMD10-related genes were performed. The Corrlot software package was used to analyze the correlation between COMMD10 expression levels and m6A modifications in STAD. An analysis of immune infiltration based on the CIBERSOFT and the single-sample GSEA (ssGSEA) method was performed. Results: COMMD10 expression was significantly associated with multiple cancers, including STAD in TCGA. COMMD10 expression was elevated in STAD cancer tissues compared to paracancerous tissues. COMMD10 upregulation was associated with poorer overall survival (OS), clinical stage, N stage, and primary treatment outcome in STAD. Functional enrichment of COMMD10-related genes was mainly involved in biological processes such as RNA localization, RNA splicing, RNA transport, mRNA surveillance pathways, and spliceosomes. The dot blot experiment showed that m6A levels were higher in cancer tissues with high COMMD10 expression compared with paracancerous tissues. COMMD10 was significantly correlated with most m6A-related genes. COMMD10 was involved in STAD immune cells infiltration, correlated with macrophage cells expression. Conclusion: High COMMD10 expression was significantly associated with poor prognosis in STAD patients, and its functional realization was related to m6A modification. COMMD10 involved in STAD immune infiltration.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Adenocarcinoma/genética , Biomarcadores , Western Blotting , Prognóstico , Neoplasias Gástricas/genética
4.
J Hepatol ; 76(5): 1138-1150, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35101526

RESUMO

BACKGROUND & AIMS: Copper (Cu) is an essential trace element whose serum levels have been reported to act as an effective indicator of the efficacy of radiotherapy. However, little is known about the role of Cu in radiotherapy. In this study we aimed to determine this role and investigate the precise mechanism by which Cu or Cu-related proteins regulate the radiosensitivity of hepatocellular carcinoma (HCC). METHODS: The expression and function of Cu and copper metabolism MURR1 domain 10 (COMMD10) were assessed via a Cu detection assay, immunostaining, real-time PCR, western blot, a radiation clonogenic assay and a 5-ethynyl-2'-deoxyuridine assay. Ferroptosis was determined by detecting glutathione, lipid peroxidation, malondialdehyde and ferrous ion (Fe) levels. The in vivo effects of Cu and COMMD10 were examined with Cu/Cu chelator treatment or lentivirus modification of COMMD10 expression in radiated mouse models. RESULTS: We identified a novel role of Cu in promoting the radioresistance of HCC cells. Ionizing radiation (IR) induced a reduction of COMMD10, which increased intracellular Cu and led to radioresistance of HCC. COMMD10 enhanced ferroptosis and radiosensitivity in vitro and in vivo. Mechanistically, low expression of COMMD10 induced by IR inhibited the ubiquitin degradation of HIF1α (by inducing Cu accumulation) and simultaneously impaired its combination with HIF1α, promoting HIF1α nuclear translocation and the transcription of ceruloplasmin (CP) and SLC7A11, which jointly inhibited ferroptosis in HCC cells. In addition, elevated CP promoted HIF1α expression by reducing Fe, forming a positive feedback loop. CONCLUSIONS: COMMD10 inhibits the HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe homeostasis in HCC. This work provides new targets and treatment strategies for overcoming radioresistance in HCC. LAY SUMMARY: Radiotherapy benefits patients with unresectable or advanced hepatocellular carcinoma (HCC), but its effectiveness is hampered by radioresistance. Herein, we uncovered a novel role for copper in promoting the radioresistance of HCCs. This work has revealed new targets and potential treatment strategies that could be used to sensitize HCC to radiotherapy.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/radioterapia , Linhagem Celular Tumoral , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Cobre/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ferro/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/radioterapia , Camundongos , Tolerância a Radiação/genética
5.
Cell Rep ; 37(7): 110026, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34788631

RESUMO

Liver-resident macrophages Kupffer cells (KCs) and infiltrating Ly6Chi monocytes both contribute to liver tissue regeneration in various pathologies but also to disease progression upon disruption of orderly consecutive regeneration cascades. Little is known about molecular pathways that regulate their differentiation, maintenance, or inflammatory behavior during injury. Here, we show that copper metabolism MURR1 domain (COMMD)10-deficient KCs adopt liver-specific identity. Strikingly, COMMD10 deficiency in KCs and in other tissue-resident macrophages impedes their homeostatic survival, leading to their continuous replacement by Ly6Chi monocytes. While COMMD10 deficiency in KCs mildly worsens acetaminophen-induced liver injury (AILI), its deficiency in Ly6Chi monocytes results in exacerbated and sustained hepatic damage. Monocytes display unleashed inflammasome activation and a reduced type I interferon response and acquire "neutrophil-like" and lipid-associated macrophage differentiation fates. Collectively, COMMD10 appears indispensable for KC and other tissue-resident macrophage survival and is an important regulator of Ly6Chi monocyte fate decisions and reparative behavior in the diseased liver.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células de Kupffer/metabolismo , Animais , Antígenos Ly/imunologia , Antígenos Ly/metabolismo , Diferenciação Celular/genética , Sobrevivência Celular , Hematopoese , Inflamassomos/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células de Kupffer/fisiologia , Fígado/citologia , Fígado/lesões , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo
6.
Clin Transl Med ; 11(5): e403, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34047468

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide. Currently, there is limited knowledge of dysregulation of cellular proliferation and apoptosis that contribute to the malignant phenotype in HCC. Copper metabolism gene MURR1 domain 10 (COMMD10) is initially identified as a suppressor gene in the pathogenesis of HCC in our observations. Here we aimed to explore its function and prognostic value in the progression of HCC. METHODS: Functional experiments were performed to explore the role of COMMD10 in HCC. The molecular mechanisms of COMMD10 were determined by luciferase assay, immunofluorescence, and immunoprecipitation. The nomogram was based on a retrospective and multicenter study of 516 patients who were pathologically diagnosed with HCC from three Chinese hospitals. The predictive accuracy and discriminative ability of the nomogram were determined by a C-index and calibration curve and were compared with COMMD10 and the Barcelona Clinic Liver Cancer (BCLC) staging system. The primary endpoint was overall survival (OS). RESULTS: COMMD10 expression was significantly lower in HCC than that in normal liver tissues. In vitro and in vivo experiments revealed that COMMD10 suppressed cell proliferation and induced apoptosis in HCC. Mechanistically, COMMD10 inhibits TNFα mediated ubiquitination of IκBα and p65 nuclear translocation through the combination of COMMD10-N terminal to the Rel homology domain of p65, which inhibited NF-κB activity and increased expression of cleaved caspase9/3 in HCC. Clinically, COMMD10 stratifies early-stage HCC patients into two risk groups with significantly different OS. Additionally, the nomogram based on COMMD10 and BCLC stage yielded more accuracy than BCLC stage alone for predicting OS of HCC patients in three cohorts. CONCLUSIONS: COMMD10 suppresses proliferation and promotes apoptosis by inhibiting NF-κB signaling and values up BCLC staging in predicting OS, which provides evidence for the identification of potential therapeutic targets and the accurate prediction of prognosis for patients with HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neoplasias Hepáticas/patologia , NF-kappa B/antagonistas & inibidores , Transdução de Sinais/fisiologia , Apoptose/fisiologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Progressão da Doença , Humanos , Neoplasias Hepáticas/metabolismo , NF-kappa B/metabolismo , Prognóstico , Ligação Proteica , Estudos Retrospectivos , Análise de Sobrevida , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinação
7.
Front Immunol ; 9: 2623, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30487795

RESUMO

Ly6Chi monocyte tissue infiltrates play important roles in mediating local inflammation, bacterial elimination and resolution during sepsis and inflammatory bowel disease (IBD). Yet, the immunoregulatory pathways dictating their activity remain poorly understood. COMMD family proteins are emerging as key regulators of signaling and protein trafficking events during inflammation, but the specific role of COMMD10 in governing Ly6Chi monocyte-driven inflammation is unknown. Here we report that COMMD10 curbs canonical and non-canonical inflammasome activity in Ly6Chi monocytes in a model of LPS-induced systemic inflammation. Accordingly, its deficiency in myeloid cells, but not in tissue resident macrophages, resulted in increased Ly6Chi monocyte liver and colonic infiltrates, elevated systemic cytokine storm, increased activation of caspase-1 and-11 in the liver and colon, and augmented IL-1ß production systemically and specifically in LPS-challenged circulating Ly6Chi monocytes. These inflammatory manifestations were accompanied by impaired intestinal barrier function with ensuing bacterial dissemination to the mesenteric lymph nodes and liver leading to increased mortality. The increased inflammasome activity and intestinal barrier leakage were ameliorated by the inducible ablation of COMMD10-deficient Ly6Chi monocytes. In consistence with these results, COMMD10-deficiency in Ly6Chi monocytes, but not in intestinal-resident lamina propria macrophages, led to increased IL-1ß production and aggravated colonic inflammation in a model of DSS-induced colitis. Finally, COMMD10 expression was reduced in Ly6Chi monocytes and their corresponding human CD14hi monocytes sorted from mice subjected to DSS-induced colitis or from IBD patients, respectively. Collectively, these results highlight COMMD10 as a negative regulator of Ly6Chi monocyte inflammasome activity during systemic inflammation and IBD.


Assuntos
Colite/imunologia , Inflamassomos/metabolismo , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Monócitos/imunologia , Animais , Antígenos Ly/metabolismo , Colite/induzido quimicamente , Sulfato de Dextrana , Modelos Animais de Doenças , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Junções Íntimas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA