Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Mol Divers ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014146

RESUMO

Pyrazole heterocycle is regarded as an extremely significant agent for the therapy of inflammation. Celecoxib, lonazolac, deracoxib, and phenylbutazone are examples of commercially approved pyrazole drugs with COX-2 inhibitory potential for curing inflammation. There have been recently many reviews for the biological significance of pyrazole derivatives. This review talks about pyrazole derivatives with anti-inflammatory activity and also sheds the light on the recent updates on pyrazole research with an emphasis on some synthetic pathways utilized to construct this privileged scaffold and structure activity relationship that accounts for the anti-inflammatory activity in an attempt to pave the opportunity for medicinal chemists to develop novel anti-inflammatory agents with better COX-2 selectivity.

2.
Expert Opin Ther Pat ; : 1-25, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958471

RESUMO

INTRODUCTION: COX-2 is a crucial enzyme in the manufacture of prostaglandins. The enzyme's metabolites might have an important function as regulators of the inflammatory response and other medical conditions such as cancer. Selective COX-2 inhibitors are believed to enhance or reverse the response of cancer chemotherapeutics. AREAS COVERED: This study addresses the chemical structures as well as the antitumor activity of new COX-2 inhibitors produced in the recent five years, aiming to provide an insight into the mechanism of COX-2 induced PGE2 powerful signal in cancer development. EXPERT OPINION: The significance of selective COX-2 inhibitors as an efficient superfamily of compounds with anti-inflammatory, anti-Alzheimer's, anti-Parkinson's disease, and anticancer properties has piqued the passion of academics in the field of drug development. Long-term usage of selective COX-2 inhibitors, such as celecoxib has been proven in clinical trials to lower the incidence of several human malignancies. Furthermore, celecoxib has the potential to greatly increase the effectiveness of chemotherapy. Our extensive understanding of selective COX-2 inhibitor SAR may aid in the development of safer and more effective selective COX-2 inhibitors as cancer chemopreventive agents. This review focuses on the different structural classes of selective COX-2 inhibitors, with a particular emphasis on their SAR.

3.
Bioorg Chem ; 150: 107623, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002251

RESUMO

Five new pyridazine scaffolds were synthesized and assessed for their inhibitory potential against both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) compared with indomethacin and celecoxib. The majority of the synthesized compounds demonstrated a definite preference for COX-2 over COX-1 inhibition. Compounds 4c and 6b exhibited enhanced potency towards COX-2 enzyme with IC50 values of 0.26 and 0.18 µM, respectively, compared to celecoxib with IC50 = 0.35 µM. The selectivity index (SI) of compound 6b was 6.33, more than that of indomethacin (SI = 0.50), indicating the most predominant COX-2 inhibitory activity. Consequently, the in vivo anti-inflammatory activity of compound 6b was comparable to that of indomethacin and celecoxib and no ulcerative effect was detected upon the oral administration of compound 6b, as indicated by the histopathological examination. Moreover, compound 6b decreased serum plasma PEG2 and IL-1ß. To rationalize the selectivity and potency of COX-2 inhibition, a molecular docking study of compound 6b into the COX-2 active site was carried out. The COX-2 inhibition and selectivity of compound 6b can be attributed to its ability to enter the side pocket of the COX-2 enzyme and interact with the essential amino acid His90. Together, these findings suggested that compound 6b is a promising lead for the possible design of COX-2 inhibitors that could be employed as safe and effective anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios não Esteroides , Inibidores de Ciclo-Oxigenase 2 , Ciclo-Oxigenase 2 , Simulação de Acoplamento Molecular , Piridazinas , Piridazinas/farmacologia , Piridazinas/química , Piridazinas/síntese química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Animais , Ciclo-Oxigenase 2/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Humanos , Relação Dose-Resposta a Droga , Edema/tratamento farmacológico , Edema/induzido quimicamente , Ratos , Masculino , Ciclo-Oxigenase 1/metabolismo , Camundongos
4.
JIMD Rep ; 65(4): 212-225, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974613

RESUMO

Background: NAXE-encephalopathy or early-onset progressive encephalopathy with brain edema and/or leukoencephalopathy-1 (PEBEL-1) and NAXD-encephalopathy (PEBEL-2) have been described recently as mitochondrial disorders causing psychomotor regression, hypotonia, ataxia, quadriparesis, ophthalmoparesis, respiratory insufficiency, encephalopathy, and seizures with the onset being usually within the first three years of life. It usually leads to rapid disease progression and death in early childhood. Anecdotal reports suggest that niacin, through its role in nicotinamide adenine dinucleotinde (NAD) de novo synthesis, corrects biochemical derangement, and slows down disease progression. Reports so far have supported this observation. Methods: We describe a patient with a confirmed PEBEL-1 diagnosis and report his clinical response to niacin therapy. Moreover, we systematically searched the literature for PEBEL-1 and PEBEL-2 patients treated with niacin and details about response to treatment and clinical data were reviewed. Furthermore, we are describing off-label use of a COX2 inhibitor to treat niacin-related urticaria in NAXE-encephalopathy. Results: So far, seven patients with PEBEL-1 and PEBEL-2 treated with niacin were reported, and all patients showed a good response for therapy or stabilization of symptoms. We report a patient exhibiting PEBEL-1 with an unfavorable outcome despite showing initial stabilization and receiving the highest dose of niacin reported to date. Niacin therapy failed to halt disease progression or attain stabilization of the disease in this patient. Conclusion: Despite previous positive results for niacin supplementation in patients with PEBEL-1 and PEBEL-2, this is the first report of a patient with PEBEL-1 who deteriorated to fatal outcome despite being started on the highest dose of niacin therapy reported to date.

5.
Chem Biodivers ; : e202401309, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011809

RESUMO

Acetaminophen, a centrally-acting old analgesic drug, is a weak inhibitor of cyclooxygenase (COX) isoforms with some selectivity toward COX-2. This compound was used in this work as a precursor to create nine acetaminophen based coumarins (ACFs). To satisfy the aim of this work, which states the synthesis of acetaminophen-based coumarins as selective COX-2 inhibitors, the ACFs were subjected to two types of investigation: in vitro and in silico. Given the former type, the ACFs capacity to block COX-1 and COX-2 was investigated in lab settings. On the other hand, the in silico investigation included docking the chemical structures of ACFs into the active sites of these enzymes, predicting their anticipated toxicities, and determining the ADME characteristics. The results of the in vitro study revealed that the ACFs demonstrated good-to-excellent inhibitory properties against the enzymes under study. Also, these ACFs exhibited a high level of COX-2 selectivity, which improved as the capacity of  aromatic substitute for withdrawing electrons was enhanced. Results of docking were comparable to the in vitro investigation in case of COX-2. On the other hand, the in silico investigations indicated that the synthesized ACFs are safer than their precursor, acetaminophen, with a high potential to consider oral-administrated candidates.

6.
Int J Biol Macromol ; : 132721, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38815949

RESUMO

Alkaline phosphatases (APs, EC 3.1.3.1) belong to a superfamily of biological macromolecules that dephosphorylate many phosphometabolites and phosphoproteins and their overexpression is intricated in the spread of cancer to liver and bones, neuronal disorders including Alzheimer's disease (AD), inflammation and others. It was hypothesized that cyclooxygenase-2 (COX-2) selective inhibitors may possess anti-APs potential and may be involved in anticancer proceedings. Three COX-2 inhibitors including nimesulide, piroxicam and lornoxicam were evaluated for the inhibition of APs using in silico and in vitro methods. Molecular docking studies against tissue nonspecific alkaline phosphatase (TNAP) offered the best binding affinities for nimesulide (-11.14 kcal/mol) supported with conventional hydrogen bonding and hydrophobic interactions. MD simulations against TNAP for 200 ns and principal component analysis (PCA) reiterated the stability of ligand-receptor complexes. Molecular expression analysis of TNAP enzyme in the breast cancer cell line MCF-7 exhibited 0.24-fold downregulation with 5 µM nimesulide as compared with 0.26-fold standard 10 µM levamisole. In vitro assays against human placental AP (hPAP) displayed potent inhibitions of these drugs with IC50 values of 0.52 ±â€¯0.02 µM to 3.46 ±â€¯0.13 µM and similar results were obtained for bovine intestinal AP (bIAP). The data when generalized collectively emphasizes that the inhibition of APs by COX-2 inhibitors provides another target to work on the development of anticancer drugs.

7.
Future Med Chem ; 16(10): 963-981, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38639393

RESUMO

Aim: Over the last few decades, therapeutic needs have led to a search for safer COX-2 inhibitors with potential anti-inflammatory and analgesic activity. Materials & methods: A new series of oxazolone and imidazolone derivatives 3a-c and 4a-r were synthesized and evaluated as anti-inflammatory and analgesic agents. COX-1/COX-2 isozyme selectivity testing and molecular docking were performed. Results: All compounds showed good activities comparable to those of the reference, celecoxib. The most active compounds 3a, 4a, 4c, 4e and 4f showed promising gastric tolerability with an ulcer index lower than that of celecoxib. The molecular docking of p-methoxyphenyl derivative 4c showed alkyl interaction with the side pocket His75 of COX-2 and achieved the best anti-inflammatory activity, with a COX-2 selectivity index better than that of celecoxib.


[Box: see text].


Assuntos
Analgésicos , Ciclo-Oxigenase 1 , Ciclo-Oxigenase 2 , Imidazóis , Simulação de Acoplamento Molecular , Oxazolona , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/síntese química , Animais , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 1/metabolismo , Relação Estrutura-Atividade , Oxazolona/química , Oxazolona/farmacologia , Edema/tratamento farmacológico , Edema/induzido quimicamente , Humanos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/síntese química , Camundongos , Ratos , Masculino , Estrutura Molecular , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/síntese química , Carragenina
8.
Front Pharmacol ; 15: 1358640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384290

RESUMO

Moutan Cortex (MC) has been used in treating inflammation-associated diseases and conditions in China and other Southeast Asian countries. However, the active components of its anti-inflammatory effect are still unclear. The study aimed to screen and identify potential cyclooxygenase-2 (COX-2) inhibitors in MC extract. The effect of MC on COX-2 was determined in vitro by COX-2 inhibitory assays, followed by bio-affinity ultrafiltration in combination with ultra-performance liquid chromatography-mass spectrometry (BAUF-UPLC-MS). To verify the reliability of the constructed approach, celecoxib was applied as the positive control, in contrast to adenosine which served as the negative control in this study. The bioactivity of the MC components was validated in vitro by COX-2 inhibitor assay and RAW264.7 cells. Their in vivo anti-inflammatory activity was also evaluated using LPS-induced zebrafish inflammation models. Finally, molecular docking was hired to further explore the internal interactions between the components and COX-2 residues. The MC extract showed an evident COX-2-inhibitory effect in a concentration-dependent manner. A total of 11 potential COX-2 inhibitors were eventually identified in MC extract. The COX-2 inhibitory activity of five components, namely, gallic acid (GA), methyl gallate (MG), galloylpaeoniflorin (GP), 1,2,3,6-Tetra-O-galloyl-ß-D-glucose (TGG), and 1,2,3,4,6-Penta-O-galloyl-ß-D-glucopyranose (PGG), were validated through both in vitro assays and experiments using zebrafish models. Besides, the molecular docking analysis revealed that the potential inhibitors in MC could effectively inhibit COX-2 by interacting with specific residues, similar to the mechanism of action exhibited by celecoxib. In conclusion, BAUF-UPLC-MS combining the molecular docking is an efficient approach to discover enzyme inhibitors from traditional herbs and understand the mechanism of action.

9.
Mol Divers ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200203

RESUMO

Cyclooxygenase-2 (COX-2) inhibitors are nonsteroidal anti-inflammatory drugs that treat inflammation, pain and fever. This study determined the interaction mechanisms of COX-2 inhibitors and the molecular properties needed to design new drug candidates. Using machine learning and explainable AI methods, the inhibition activity of 1488 molecules was modelled, and essential properties were identified. These properties included aromatic rings, nitrogen-containing functional groups and aliphatic hydrocarbons. They affected the water solubility, hydrophobicity and binding affinity of COX-2 inhibitors. The binding mode, stability and ADME properties of 16 ligands bound to the Cyclooxygenase active site of COX-2 were investigated by molecular docking, molecular dynamics simulation and MM-GBSA analysis. The results showed that ligand 339,222 was the most stable and effective COX-2 inhibitor. It inhibited prostaglandin synthesis by disrupting the protein conformation of COX-2. It had good ADME properties and high clinical potential. This study demonstrated the potential of machine learning and bioinformatics methods in discovering COX-2 inhibitors.

10.
Molecules ; 29(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276568

RESUMO

Extensive research has been dedicated to develop compounds that can target multiple aspects of Alzheimer's disease (AD) treatment due to a growing understanding of AD's complex multifaceted nature and various interconnected pathological pathways. In the present study, a series of biological assays were performed to evaluate the potential of the tryptamine analogues synthesized earlier in our lab as multi-target-directed ligands (MTDLs) for AD. To assess the inhibitory effects of the compounds, various in vitro assays were employed. Three compounds, SR42, SR25, and SR10, displayed significant AChE inhibitory activity, with IC50 values of 0.70 µM, 0.17 µM, and 1.00 µM, respectively. These values superseded the standard drug donepezil (1.96 µM). In the MAO-B inhibition assay, SR42 (IC50 = 43.21 µM) demonstrated superior inhibitory effects as compared to tryptamine and other derivatives. Moreover, SR22 (84.08%), SR24 (79.30%), and SR42 (75.16%) exhibited notable percent inhibition against the COX-2 enzyme at a tested concentration of 100 µM. To gain insights into their binding mode and to validate the biological results, molecular docking studies were conducted. Overall, the results suggest that SR42, a 4,5 nitro-benzoyl derivative of tryptamine, exhibited significant potential as a MTDL and warrants further investigation for the development of anti-Alzheimer agents.


Assuntos
Doença de Alzheimer , Monoaminoxidase , Humanos , Monoaminoxidase/metabolismo , Doença de Alzheimer/metabolismo , Inibidores da Monoaminoxidase/química , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Relação Estrutura-Atividade , Triptaminas/farmacologia , Acetilcolinesterase/metabolismo , Ligantes
11.
Curr Drug Res Rev ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38284719

RESUMO

Osteoarthritis (OA) is a disease characterized by degeneration of cartilage or wear and tear. OA is a cause of disability and health issues. It is a disease that affects more than 500 million adults annually worldwide, of which India accounts for about 22 to 39% of OA patients. The most common type of osteoarthritis is knee OA. Pathogenesis of OA requires evolution in basic science and clinical research to enhance our understanding of the pathogenesis and as well as different treatment options. It is mainly classified as primary and secondary OA. The treatment for OA can only reduce the symptoms and cannot cure the disease itself, including pharmacological treatment, like non-steroidal anti-inflammatory drugs (NSAIDs), acting on COX1 (cyclooxygenase 1) and COX2 (cyclooxygenase 2) enzymes. Non-pharmacological treatments for OA include exercise like walking, and aerobic exercise, diet, weight loss, hot and cold therapy, as well as electrotherapy, which improves muscle strength and decreases joint pain. Surgical treatment is the last treatment option for OA patients, which includes arthroscopy and joint replacement therapy. Thus, necessary precautions should be taken for joints to be healthy and disease-free.

12.
Med Chem ; 20(1): 78-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37594099

RESUMO

INTRODUCTION: Inflammation can be defined as a complex biological response that is produced by body tissues to harmful agents like pathogens, irritants, and damaged cells and thereby acts as a protective response incorporating immune cells, blood vessels, and molecular mediators. Histamine, serotonin, bradykinin, leukotrienes (LTB4), prostaglandins (PGE2), prostacyclins, reactive oxygen species, proinflammatory cytokines like IL-1, IL-11, TNF- anti-inflammatory cytokines like IL-4, IL-10, IL-11, IL-6 and IL-13, etc. all have different effects on both pro and anti-inflammatory mediators. Incorporation of combinatorial chemistry and computational studies have helped the researchers to design xanthones moieties with high selectivity that can serve as a lead compound and help develop potential compounds that can act as effective COX-2 inhibitors. The study aims to design and develop different series of substituted hydroxyxanthone derivatives with anti-inflammatory potential. METHODS: The partially purified synthetic xanthone derivatives were orally administered to the carrageenan induced paw oedemic rat models at the dose of 100 mg/kg, and their effect in controlling the degree of inflammation was measured at the time interval of 30 min, 1, 2, 3, 4 and 6 hrs. respectively. Further, these compounds were also subjected to modern analytical studies like UV, IR, NMR and mass spectrometry or their characterization. RESULTS: The results drawn out of the in silico, in vitro, in vivo and analytical studies concluded that the hydroxyxanthone derivatives can obstruct the enzyme COX-2 and produce anti-inflammatory action potentially. CONCLUSION: With the aim to evaluate the compounds for their anti-inflammatory activity, it was observed that the newly designed xanthonic compounds also possess a safe toxicity margin and hence can be utilized by the researchers to develop hybrid xanthonic moieties that can specifically target the enzyme COX-2.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Xantonas , Animais , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Carragenina/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Citocinas , Edema/induzido quimicamente , Edema/tratamento farmacológico , Inflamação/tratamento farmacológico , Interleucina-11/metabolismo , Relação Quantitativa Estrutura-Atividade , Xantonas/farmacologia
13.
J Biomol Struct Dyn ; 42(5): 2437-2448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37160705

RESUMO

Matrix metalloproteinases (MMPs) are proteolytic enzymes that play a role in healing, including reducing inflammation, promoting fibroblast and keratinocyte migration, and modifying scar tissue. Due to their pleiotropic functions in the wound-healing process in diabetic wounds, MMPs constitute a significant cause of delayed wound closure. COX-2 inhibitors are proven to inhibit inflammation. The present study aims to repurpose celecoxib against MMP-2, MMP-8 and MMP-9 through in silico approaches, such as molecular docking, molecular dynamics, and MMPB/SA analysis. We considered five selective COX-2 inhibitors (celecoxib, etoricoxib, lumiracoxib, rofecoxib and valdecoxib) for our study against MMPs. Based on molecular docking study and hydrogen bonding pattern, celecoxib in complex with three MMPs was further analyzed using 1 µs (1000 ns) molecular dynamics simulation and MMPB/SA techniques. These studies identified that celecoxib exhibited significant binding affinity -8.8, -7.9 and -8.3 kcal/mol, respectively, against MMP-2, MMP-8 and MMP-9. Celecoxib formed hydrogen bonding and hydrophobic (π-π) interactions with crucial substrate pocket amino acids, which may be accountable for their inhibitory nature. The MMPB/SA studies showed that electrostatic and van der Waal energy terms favoured the total free binding energy component, while polar solvation terms were highly disfavored. The in silico analysis of the secondary structures showed that the celecoxib binding conformation maintains relatively stable along the simulation trajectories. These findings provide some key clues regarding the accommodation of celecoxib in the substrate binding S1' pocket and also provide structural insights and challenges in repurposing drugs as new MMP inhibitors with anti-inflammatory and anti-inflammatory wound-healing properties.Communicated by Ramaswamy H. Sarma.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Inibidores de Metaloproteinases de Matriz , Simulação de Dinâmica Molecular , Humanos , Celecoxib/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Reposicionamento de Medicamentos , Inflamação , Metaloproteinase 2 da Matriz , Metaloproteinase 8 da Matriz , Metaloproteinase 9 da Matriz , Simulação de Acoplamento Molecular , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia
14.
J Biomol Struct Dyn ; 42(6): 2793-2808, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37184132

RESUMO

The chromone derivatives are playing a prominent role in many plant cycles, for instance, the regulation of growth, stimulation of oxygen uptake in plants, and essential food constituents with valuable pro-health properties. Determination of the antioxidant activity of these compounds is an interesting approach to drug design and development. The antioxidant activity of the novel fifteen chromone compounds was estimated by using a spectrophotometric Dichloro-5,6-dicyano 1,4-benzoquinone (DDQ) assay method and the mechanism of antioxidant activity was discussed based on the Density functional theory (DFT) calculations. The compounds showed significant antioxidant activity which was correlated to their molecular structure by considering various molecular descriptors. Further, by using regression analysis QSAR-modeled equation was proposed and it has shown a high correlation coefficient value (0.946. We perform molecular docking and molecular dynamics simulations against the cyclooxygenase (COX2) enzyme to investigate the molecule's anti-inflammatory activity and stability of protein-ligand complexes. Molecular docking and dynamics simulations revealed the compounds B3 and B8 were interacting with essential residues TYR385, HIS386, ASN382, TRP387, and HIS388 in the binding site that were crucial for optimizing heme and the resultant peroxidase and cyclooxygenase activities. The root mean square displacement and root mean square fluctuation plots revealed the stability of the B3-COX2 and B8-COX2 complexes. Based on our results, B3 and B8 compounds are considered as best antioxidants as well as COX2 inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Antioxidantes , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2 , Relação Quantitativa Estrutura-Atividade
15.
Anticancer Agents Med Chem ; 24(2): 77-95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37962049

RESUMO

Cyclooxygenases (COXs) play a pivotal role in inflammation, a complex phenomenon required in human defense, but also involved in the emergence of insidious human disorders. Currently-used COX-1 inhibitors (Non-Steroidal Anti-Inflammatory Drugs-NSAIDs), as the most frequent choices for the treatment of chronic inflammatory diseases, have been identified to be associated with a variety of adverse drug reactions, especially dyspepsia, as well as peptic ulcer, which lead to diminished output. Moreover, the structural similarities of COX- 1 and -2, along with the availability of comprehensive information about the three-dimensional structure of COX- 2, co-crystallized with various inhibitors, search selective COX-2 inhibitors a formidable challenge. COX-2 inhibitors were shown to minimize the incidence of metastasis in cancer patients when administered preoperatively. Developing selective COX-2 inhibitors to tackle both cancer and chronic inflammatory illnesses has been identified as a promising research direction in recent decades. Identifying innovative scaffolds to integrate as the major component of future COX-2 inhibitors is critical in this regard. The presence of a central, α, ß-unsaturated carbonyl- containing scaffold, as a characteristic structural pattern in many selective COX-2 inhibitors, along with a huge count of chalcone-based anticancer agents representing the basic idea of this review; providing a survey of the most recently published literature concerning development of chalcone analogs as novel COX-2 inhibitors until 2022 with efficient anticancer activity. A brief overview of the most recent developments concerning structure- activity relationship insights and mechanisms is also reported, helping pave the road for additional investigation.


Assuntos
Chalconas , Neoplasias , Humanos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Ciclo-Oxigenase 2 , Neoplasias/tratamento farmacológico
16.
Tuberculosis (Edinb) ; 143: 102418, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37813014

RESUMO

Pulmonary tuberculosis (TB) inflammation is an underestimated disease complication which anti-inflammatory drugs may alleviate. This study explored the potential use of the COX-2 inhibitors acetylsalicylic acid (ASA) and celecoxib in 12 TB patients and 12 healthy controls using a whole-blood ex vivo model where TNFα, PGE2, and LTB4 plasma levels were quantitated by ELISA; we also measured COX-2, 5-LOX, 12-LOX, and 15-LOX gene expression. We observed a significant TNFα production in response to stimulation with LPS or M. tuberculosis (Mtb). Celecoxib, but not ASA, reduced TNFα and PGE2 production, while increasing LTB4 in patients after infection with Mtb. Gene expression of COX-2 and 5-LOX was higher in controls, while 12-LOX was significantly higher in patients. 15-LOX expression was similar in both groups. We concluded that COX-2 inhibitors downregulate inflammation after Mtb infection, and our methodology offers a straightforward time-efficient approach for evaluating different drugs in this context. Further research is warranted to elucidate the underlying mechanisms and assess the potential clinical benefit.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Dinoprostona , Imunidade , Inflamação/metabolismo , Leucotrieno B4/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculose/tratamento farmacológico , Fator de Necrose Tumoral alfa
17.
Inflammopharmacology ; 31(6): 3227-3241, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806984

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes cartilage damage. Anti-inflammatories are widely used in the management of RA, but they can have side effects such as gastrointestinal and/or cardiovascular disorders. Studies published by our group showed that the synthesis of hybrid triazole analogs neolignan-celecoxib containing the substituent groups sulfonamide (L15) or carboxylic acid (L18) exhibited anti-inflammatory activity in an acute model of inflammation, inhibited expression of P-selectin related to platelet activation and did not induce gastric ulcer, minimizing the related side effects. In continuation, the present study evaluated the anti-inflammatory effects of these analogs in an experimental model of arthritis and on the functions of one of the important cells in this process, macrophages. Mechanical hyperalgesia, joint edema, leukocyte recruitment to the joint and damage to cartilage in experimental arthritis and cytotoxicity, spread of disease, phagocytic activity and nitric oxide (NO) and hydrogen peroxide production by macrophages were evaluated. Pre-treatment with L15 and L18 reduced mechanical hyperalgesia, joint edema and the influx of leukocytes into the joint cavity after different periods of the stimulus. The histological evaluation of the joint showed that L15 and L18 reduced cartilage damage and there was no formation of rheumatoid pannus. Furthermore, L15 and L18 were non-cytotoxic. The analogs inhibited the spreading, the production of NO and hydrogen peroxide. L15 decreased the phagocytosis. Therefore, L15 and L18 may be potential therapeutic prototypes to treat chronic inflammatory diseases such as RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Lignanas , Animais , Celecoxib/efeitos adversos , Zimosan , Lignanas/uso terapêutico , Hiperalgesia/tratamento farmacológico , Peróxido de Hidrogênio , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Edema/tratamento farmacológico
18.
Cureus ; 15(7): e41939, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37588311

RESUMO

Colorectal cancer (CRC) is a major global health concern, accounting for significant cancer-related morbidity and mortality worldwide. Despite advancements in early detection and treatment modalities, the prevention of CRC remains a critical goal. Cyclo-oxygenase-2 (COX-2) is an inducible enzyme involved in the production of pro-inflammatory prostaglandins, which play a crucial role in various cellular processes, including inflammation, cell proliferation, apoptosis, and angiogenesis. Elevated COX-2 expression has been consistently observed in colorectal tumors, indicating their role in the pathogenesis of cancer. COX-2 inhibitors, such as celecoxib and rofecoxib, have been studied as potentially effective treatment modalities due to their ability to decrease prostaglandin levels, which are generally higher in cancer patients. Aberrant prostaglandin production is linked to the adenoma-carcinoma sequence, during which adenomas turn dysplastic and accumulate enough damage to become malignant. COX-2 inhibitors have also been shown to modulate various signaling pathways involved in CRC development, such as wingless-related integration site/ß-catenin (Wnt/ß-catenin), mitogen-activated protein kinase (MAPK), and phosphoinositide-3-kinase-protein kinase B/Akt (PI3K/Akt) pathways. This systematic review aimed to evaluate the protective effects of long-term usage of COX-2 inhibitors on CRC in genetically predisposed individuals and their overall effect on the prognosis of the disease. The researchers conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines and collected data from several databases, including PubMed, PubMed Central, Cochrane Library, and Web of Science. The search strategy combined keywords related to CRC, COX-2 inhibitors, protective effects, and prognosis. They identified 1189 articles and shortlisted 26 full-text articles that met the eligibility criteria. Quality assessment tools, such as the Assessment of Multiple Systematic Review (AMSTAR) for systematic reviews, the Cochrane bias assessment tool for randomized control trials, the scale for the assessment of narrative review articles (SANRA) checklist for narrative reviews, and the Joanna Briggs Institute (JBI) tool for cross-sectional studies and case reports, are used. This review's conclusions will assist in determining the effectiveness of COX-2 inhibitors to prevent CRC. This review may also contribute to developing guidelines for clinicians to manage genetically predisposed individuals with CRC. Furthermore, the results of this review will shed light on the potential of COX-2 inhibitors as a preventive measure against CRC in genetically predisposed individuals.

19.
Phytochem Anal ; 34(6): 692-704, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37431174

RESUMO

INTRODUCTION: Screening of novel cyclooxygenase-2 (COX-2) inhibitors from complex natural products is not an easy task. OBJECTIVES: To establish an efficient and feasible strategy for screening COX-2 inhibitors from triterpenoid saponins (TPSs) in Clematis tangutica. METHODS: Taking TPSs in C. tangutica as example, an optimized macroporous resin (MR) method was established for the enrichment of TPSs. High-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) was performed to establish the phytochemical profiling of TPSs. Molecular docking was performed to predict the ligand-target interactions and discover the active substances. Chemometric techniques were performed to visualize the structure-effect relationships. High-speed countercurrent chromatography and preparative HPLC were performed to prepare the targets. In vitro activity experiment of COX-2 was performed to verify the virtual screening results. RESULTS: TPSs in C. tangutica were well enriched with the recovery rate of (80.22 ± 2.37)%. Thirty-four kinds of TPSs of oleanane type were deduced by HPLC-QTOFMS. Five TPSs of clematangoside C, clematangoside D, clematangoticoside J, hederoside H1 , and hederasaponin B showed stronger binding abilities with COX-2. The structure with more sugar groups at C-28 may be more conducive to the combination with COX-2. Targets were prepared with purities all above 98%. The IC50 values of target TPSs were 6.03 ± 0.24, 12.44 ± 0.15, 9.36 ± 0.19, 4.78 ± 0.13, and 2.59 ± 0.11 µmol/L, respectively. CONCLUSION: The integrated strategy using MR, HPLC-QTOFMS, molecular docking, chemometrics, target preparation, and in vitro verification was feasible for rapidly screening COX-2 inhibitors from TPSs in C. tangutica.


Assuntos
Clematis , Saponinas , Triterpenos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Clematis/química , Saponinas/química , Ciclo-Oxigenase 2 , Simulação de Acoplamento Molecular , Cromatografia Líquida de Alta Pressão , Triterpenos/análise
20.
Assay Drug Dev Technol ; 21(4): 166-179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37318837

RESUMO

A series of oxadiazole-based five-membered heterocyclic derivatives was designed and synthesized with the intent of exclusive cyclo-oxygenase-2 (COX-2) inhibition to acquire anti-inflammatory activity without the presence of gastric toxicity. Oxadiazole-based novel analogs were designed by using bioisosteric substitutions and were screened against the macromolecular target by using docking-based virtual screening to identify their potential inhibitors. These selective COX-2 inhibitors were further evaluated for their stability within the binding cavity of macromolecular complex by performing molecular dynamic simulation for 100 ns. Selected compounds were synthesized by using Naphthalene-2-yl-acetic acid as a starting material based on the fundamental structure of naphthalene. The naphthalene ring and methylene bridge of naphthalene-2-yl-acetic acid were retained in the rational molecular design by replacing the carboxyl group with biologically significant groups like 1,3,4-oxadiazoles, with the goal of obtaining a novel, superior, and relatively safe anti-inflammatory molecule with better efficacy and optimized pharmacokinetics. Anti-inflammatory as well as analgesic properties of the compounds were evaluated experimentally for their pharmacological efficiency.


Assuntos
Anti-Inflamatórios , Oxidiazóis , Ciclo-Oxigenase 2/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Oxidiazóis/farmacologia , Oxidiazóis/química , Anti-Inflamatórios/farmacologia , Ácido Acético , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA