Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Cell Rep ; 43(10): 114851, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39392750

RESUMO

During periods of nutrient scarcity, many animals undergo germline quiescence to preserve reproductive capacity, and neurons are often necessary for this adaptation. We show here that starvation causes the release of neuronal microRNA (miRNA)/Argonaute-loaded exosomes following AMP kinase-regulated trafficking changes within serotonergic neurons. This neuron-to-germline communication is independent of classical neurotransmission but instead relies on endosome-derived vesicles that carry a pro-quiescent small RNA cargo to modify germline gene expression. Using an miRNA activity sensor, we show that neuronally expressed miRNAs can extinguish the expression of germline mRNA targets in an exosome-dependent manner. Our findings demonstrate how an adaptive neuronal response can change gene expression at a distance by redirecting intracellular trafficking to release neuronal exosomes with specific miRNA cargoes capable of tracking to their appropriate destinations.

2.
Cell Rep ; 43(10): 114846, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39392751

RESUMO

Serum response factor (SRF) is a transcription factor essential for cell proliferation, differentiation, and migration and is required for primitive streak and mesoderm formation in the embryo. The canonical roles of SRF are mediated by a diverse set of context-dependent cofactors. Here, we show that SRF physically interacts with CTCF and cohesin subunits at topologically associating domain (TAD) boundaries and loop anchors. SRF promotes long-range chromatin loop formation and contributes to TAD insulation. In embryonic stem cells (ESCs), SRF associates with SOX2 and NANOG and contributes to the formation of three-dimensional (3D) pluripotency hubs. Our findings reveal additional roles of SRF in higher-order chromatin organization.

3.
Cell Rep ; 43(10): 114862, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39395167

RESUMO

The contribution of progenitor subtypes to generating the billions of neurons produced during human cortical neurogenesis is not well understood. We developed the cortical organoid lineage-tracing (COR-LT) system for human cortical organoids. Differential fluorescent reporter activation in distinct progenitor cells leads to permanent reporter expression, enabling the progenitor cell lineage of neurons to be determined. Surprisingly, nearly all excitatory neurons produced in cortical organoids were generated indirectly from intermediate progenitor cells. Additionally, neurons of different progenitor lineages were transcriptionally distinct. Isogenic lines made from an autistic individual with and without a likely pathogenic CTNNB1 variant demonstrated that the variant substantially altered the proportion of neurons derived from specific progenitor cell lineages, as well as the lineage-specific transcriptional profiles of these neurons, suggesting a pathogenic mechanism for this mutation. These results suggest individual progenitor subtypes play roles in generating the diverse neurons of the human cerebral cortex.

4.
Cell Rep ; 43(9): 114762, 2024 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-39321020

RESUMO

Adult mammary stem cells (aMaSCs) are vital to tissue expansion and remodeling during the process of postnatal mammary development. The protein C receptor (Procr) is one of the well-identified surface markers of multipotent aMaSCs. However, an understanding of the regulatory mechanisms governing Procr's protein stability remains incomplete. In this study, we identified Glycoprotein m6a (Gpm6a) as a critical protein for aMaSC activity modulation by using the Gpm6a knockout mouse model. Interestingly, we determined that Gpm6a depletion results in a reduction of Procr protein stability. Mechanistically, Gpm6a regulates Procr protein stability by mediating the formation of lipid rafts, a process requiring Zdhhc1 and Zdhhc2 to palmitate Gpm6a at Cys17,18 and Cys246 sites. Our findings highlight an important mechanism involving Zdhhc1- and Zdhhc2-mediated Gpm6a palmitoylation for the regulation of Procr stability, aMaSC activity, and postnatal mammary development.


Assuntos
Aciltransferases , Lipoilação , Glândulas Mamárias Animais , Animais , Aciltransferases/metabolismo , Aciltransferases/genética , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Camundongos , Feminino , Camundongos Knockout , Humanos , Microdomínios da Membrana/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Estabilidade Proteica
5.
Cell Rep ; 43(10): 114742, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39306847

RESUMO

Mammals typically heal with fibrotic scars, and treatments to regenerate human skin and hair without a scar remain elusive. We discovered that mice lacking C-X-C motif chemokine receptor 2 (CXCR2 knockout [KO]) displayed robust and complete tissue regeneration across three different injury models: skin, hair follicle, and cartilage. Remarkably, wild-type mice receiving plasma from CXCR2 KO mice through parabiosis or injections healed wounds scarlessly. A comparison of circulating proteins using multiplex ELISA revealed a 24-fold higher plasma level of granulocyte colony stimulating factor (G-CSF) in CXCR2 KO blood. Local injections of G-CSF into wild-type (WT) mouse wound beds reduced scar formation and increased scarless tissue regeneration. G-CSF directly polarized macrophages into an anti-inflammatory phenotype, and both CXCR2 KO and G-CSF-treated mice recruited more anti-inflammatory macrophages into injured areas. Modulating macrophage activation states at early time points after injury promotes scarless tissue regeneration and may offer a therapeutic approach to improve healing of human skin wounds.

6.
Cell Rep ; 43(8): 114558, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39088321

RESUMO

Chromatin priming promotes cell-type-specific gene expression, lineage differentiation, and development. The mechanism of chromatin priming has not been fully understood. Here, we report that mouse hematopoietic stem and progenitor cells (HSPCs) lacking the Baf155 subunit of the BAF (BRG1/BRM-associated factor) chromatin remodeling complex produce a significantly reduced number of mature blood cells, leading to a failure of hematopoietic regeneration upon transplantation and 5-fluorouracil (5-FU) injury. Baf155-deficient HSPCs generate particularly fewer neutrophils, B cells, and CD8+ T cells at homeostasis, supporting a more immune-suppressive tumor microenvironment and enhanced tumor growth. Single-nucleus multiomics analysis reveals that Baf155-deficient HSPCs fail to establish accessible chromatin in selected regions that are enriched for putative enhancers and binding motifs of hematopoietic lineage transcription factors. Our study provides a fundamental mechanistic understanding of the role of Baf155 in hematopoietic lineage chromatin priming and the functional consequences of Baf155 deficiency in regeneration and tumor immunity.


Assuntos
Diferenciação Celular , Cromatina , Hematopoese , Células-Tronco Hematopoéticas , Animais , Camundongos , Cromatina/metabolismo , Fluoruracila/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Camundongos Endogâmicos C57BL , Regeneração , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
7.
Cell Rep ; 43(8): 114629, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39146183

RESUMO

In mice, the first liver-resident macrophages, known as Kupffer cells (KCs), are thought to derive from yolk sac (YS) hematopoietic progenitors that are specified prior to the emergence of the hematopoietic stem cell (HSC). To investigate human KC development, we recapitulated YS-like hematopoiesis from human pluripotent stem cells (hPSCs) and transplanted derivative macrophage progenitors into NSG mice previously humanized with hPSC-liver sinusoidal endothelial cells (LSECs). We demonstrate that hPSC-LSECs facilitate stable hPSC-YS-macrophage engraftment for at least 7 weeks. Single-cell RNA sequencing (scRNA-seq) of engrafted YS-macrophages revealed a homogeneous MARCO-expressing KC gene signature and low expression of monocyte-like macrophage genes. In contrast, human cord blood (CB)-derived macrophage progenitors generated grafts that contain multiple hematopoietic lineages in addition to KCs. Functional analyses showed that the engrafted KCs actively perform phagocytosis and erythrophagocytosis in vivo. Taken together, these findings demonstrate that it is possible to generate human KCs from hPSC-derived, YS-like progenitors.


Assuntos
Diferenciação Celular , Células Endoteliais , Células de Kupffer , Fígado , Células-Tronco Pluripotentes , Humanos , Células de Kupffer/metabolismo , Células de Kupffer/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Animais , Fígado/citologia , Fígado/metabolismo , Camundongos , Fagocitose , Hematopoese
8.
Cell Rep ; 43(8): 114569, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39088319

RESUMO

Wound healing in response to acute injury is mediated by the coordinated and transient activation of parenchymal, stromal, and immune cells that resolves to homeostasis. Environmental, genetic, and epigenetic factors associated with inflammation and aging can lead to persistent activation of the microenvironment and fibrosis. Here, we identify opposing roles of interleukin-4 (IL-4) cytokine signaling in interstitial macrophages and type II alveolar epithelial cells (ATIIs). We show that IL4Ra signaling in macrophages promotes regeneration of the alveolar epithelium after bleomycin-induced lung injury. Using organoids and mouse models, we show that IL-4 directly acts on a subset of ATIIs to induce the expression of the transcription factor SOX9 and reprograms them toward a progenitor-like state with both airway and alveolar lineage potential. In the contexts of aging and bleomycin-induced lung injury, this leads to aberrant epithelial cell differentiation and bronchiolization, consistent with cellular and histological changes observed in interstitial lung disease.


Assuntos
Bleomicina , Linhagem da Célula , Interleucina-4 , Pulmão , Fatores de Transcrição SOX9 , Animais , Interleucina-4/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Camundongos , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Células-Tronco Adultas/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Envelhecimento/metabolismo , Diferenciação Celular , Transdução de Sinais , Humanos , Macrófagos/metabolismo
9.
Cell Rep ; 43(8): 114647, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39153199

RESUMO

Reproduction is paramount to animals. For it to be successful, a coordination of social behavior, physiology, and gamete production is necessary. How are social cues perceived and how do they affect physiology and gametogenesis? While females, ranging from insects to mammals, have provided multiple insights about this coordination, its existence remains largely unknown in males. Here, by using the Drosophila male as a model, we describe a phenomenon by which the availability of potential mating partners triggers an activation state on the stem cell populations of the testis, boosting spermatogenesis. We reveal its reliance on pheromonal communication, even in the absence of mating or other interactions with females. Finally, we identify the interorgan communication signaling network responsible-muscle-secreted tumor necrosis factor alpha (TNF-α)/Eiger and neuronally secreted octopamine trigger, respectively, the Jun N-terminal kinase (JNK) pathway and a change in calcium dynamics in the cyst stem cells. As a consequence, germ line stem cells increase their proliferation.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Espermatogênese , Células-Tronco , Animais , Masculino , Espermatogênese/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células-Tronco/metabolismo , Feminino , Interação Social , Testículo/metabolismo , Proliferação de Células , Comportamento Sexual Animal/fisiologia , Proteínas de Membrana
10.
Cell Rep ; 43(8): 114582, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39096488

RESUMO

Male infertility is a recognized side effect of chemoradiotherapy. Extant spermatogonial stem cells (SSCs) may act as originators for any subsequent recovery. However, which type of SSCs, the mechanism by which they survive and resist toxicity, and how they act to restart spermatogenesis remain largely unknown. Here, we identify a small population of Set domain-containing protein 4 (Setd4)-expressing SSCs that occur in a relatively dormant state in the mouse seminiferous tubule. Extant beyond high-dose chemoradiotherapy, these cells then activate to recover spermatogenesis. Recovery fails when Setd4+ SSCs are deleted. Confirmed to be of fetal origin, these Setd4+ SSCs are shown to facilitate early testicular development and also contribute to steady-state spermatogenesis in adulthood. Upon activation, chromatin remodeling increases their genome-wide accessibility, enabling Notch1 and Aurora activation with corresponding silencing of p21 and p53. Here, Setd4+ SSCs are presented as the originators of both testicular development and spermatogenesis recovery in chemoradiotherapy-induced infertility.


Assuntos
Infertilidade Masculina , Espermatogênese , Masculino , Animais , Espermatogênese/efeitos dos fármacos , Espermatogênese/efeitos da radiação , Infertilidade Masculina/terapia , Camundongos , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos , Células-Tronco/metabolismo , Células-Tronco/efeitos da radiação , Camundongos Endogâmicos C57BL , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Receptor Notch1/metabolismo , Receptor Notch1/genética
11.
Cell Rep ; 43(8): 114542, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39046877

RESUMO

Granulocyte colony-stimulating factor (G-CSF) is widely used to enhance myeloid recovery after chemotherapy and to mobilize hematopoietic stem cells (HSCs) for transplantation. Unfortunately, through the course of chemotherapy, cancer patients can acquire leukemogenic mutations that cause therapy-related myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). This raises the question of whether therapeutic G-CSF might potentiate therapy-related MDS/AML by disproportionately stimulating mutant HSCs and other myeloid progenitors. A common mutation in therapy-related MDS/AML involves chromosome 7 deletions that inactivate many tumor suppressor genes, including KMT2C. Here, we show that Kmt2c deletions hypersensitize murine HSCs and myeloid progenitors to G-CSF, as evidenced by increased HSC mobilization and enhanced granulocyte production from granulocyte-monocyte progenitors (GMPs). Furthermore, Kmt2c attenuates the G-CSF response independently from its SET methyltransferase function. Altogether, the data raise concerns that monosomy 7 can hypersensitize progenitors to G-CSF, such that clinical use of G-CSF may amplify the risk of therapy-related MDS/AML.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Granulócitos , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Fator Estimulador de Colônias de Granulócitos/metabolismo , Animais , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Camundongos , Granulócitos/metabolismo , Granulócitos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Humanos , Metiltransferases/metabolismo , Metiltransferases/genética
12.
Cell Rep ; 43(7): 114475, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38996072

RESUMO

Endomucin (EMCN) currently represents the only hematopoietic stem cell (HSC) marker expressed by both murine and human HSCs. Here, we report that EMCN+ long-term repopulating HSCs (LT-HSCs; CD150+CD48-LSK) have a higher long-term multi-lineage repopulating capacity compared to EMCN- LT-HSCs. Cell cycle analyses and transcriptional profiling demonstrated that EMCN+ LT-HSCs were more quiescent compared to EMCN- LT-HSCs. Emcn-/- and Emcn+/+ mice displayed comparable steady-state hematopoiesis, as well as frequencies, transcriptional programs, and long-term multi-lineage repopulating capacity of their LT-HSCs. Complementary functional analyses further revealed increased cell cycle entry upon treatment with 5-fluorouracil and reduced granulocyte colony-stimulating factor (GCSF) mobilization of Emcn-/- LT-HSCs, demonstrating that EMCN expression by LT-HSCs associates with quiescence in response to hematopoietic stress and is indispensable for effective LT-HSC mobilization. Transplantation of wild-type bone marrow cells into Emcn-/- or Emcn+/+ recipients demonstrated that EMCN is essential for endothelial cell-dependent maintenance/self-renewal of the LT-HSC pool and sustained blood cell production post-transplant.


Assuntos
Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas , Animais , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Movimento Celular , Fluoruracila/farmacologia , Humanos , Fator Estimulador de Colônias de Granulócitos/metabolismo , Ciclo Celular , Células Endoteliais/metabolismo
13.
Cell Rep ; 43(7): 114388, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38935497

RESUMO

In contrast to most hematopoietic lineages, megakaryocytes (MKs) can derive rapidly and directly from hematopoietic stem cells (HSCs). The underlying mechanism is unclear, however. Here, we show that DNA damage induces MK markers in HSCs and that G2 arrest, an integral part of the DNA damage response, suffices for MK priming followed by irreversible MK differentiation in HSCs, but not in progenitors. We also show that replication stress causes DNA damage in HSCs and is at least in part due to uracil misincorporation in vitro and in vivo. Consistent with this notion, thymidine attenuated DNA damage, improved HSC maintenance, and reduced the generation of CD41+ MK-committed HSCs. Replication stress and concomitant MK differentiation is therefore one of the barriers to HSC maintenance. DNA damage-induced MK priming may allow rapid generation of a lineage essential to immediate organismal survival, while also removing damaged cells from the HSC pool.


Assuntos
Diferenciação Celular , Dano ao DNA , Células-Tronco Hematopoéticas , Megacariócitos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Animais , Camundongos , Megacariócitos/metabolismo , Megacariócitos/citologia , Trombopoese , Pontos de Checagem da Fase G2 do Ciclo Celular , Camundongos Endogâmicos C57BL , Humanos
14.
Cell Rep ; 43(6): 114309, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38848215

RESUMO

Glioblastomas are the most common malignant brain tumors in adults; they are highly aggressive and heterogeneous and show a high degree of plasticity. Here, we show that methyltransferase-like 7B (METTL7B) is an essential regulator of lineage specification in glioblastoma, with an impact on both tumor size and invasiveness. Single-cell transcriptomic analysis of these tumors and of cerebral organoids derived from expanded potential stem cells overexpressing METTL7B reveal a regulatory role for the gene in the neural stem cell-to-astrocyte differentiation trajectory. Mechanistically, METTL7B downregulates the expression of key neuronal differentiation players, including SALL2, via post-translational modifications of histone marks.


Assuntos
Diferenciação Celular , Linhagem da Célula , Glioblastoma , Metiltransferases , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Metiltransferases/metabolismo , Metiltransferases/genética , Linhagem da Célula/genética , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Linhagem Celular Tumoral , Astrócitos/metabolismo , Astrócitos/patologia , Organoides/metabolismo , Organoides/patologia
15.
Cell Rep ; 43(6): 114340, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38865239

RESUMO

Whole salivary gland generation and transplantation offer potential therapies for salivary gland dysfunction. However, the specific lineage required to engineer complete salivary glands has remained elusive. In this study, we identify the Foxa2 lineage as a critical lineage for salivary gland development through conditional blastocyst complementation (CBC). Foxa2 lineage marking begins at the boundary between the endodermal and ectodermal regions of the oral epithelium before the formation of the primordial salivary gland, thereby labeling the entire gland. Ablation of Fgfr2 within the Foxa2 lineage in mice leads to salivary gland agenesis. We reversed this phenotype by injecting donor pluripotent stem cells into the mouse blastocysts, resulting in mice that survived to adulthood with salivary glands of normal size, comparable to those of their littermate controls. These findings demonstrate that CBC-based salivary gland regeneration serves as a foundational experimental approach for future advanced cell-based therapies.


Assuntos
Blastocisto , Fator 3-beta Nuclear de Hepatócito , Células-Tronco Pluripotentes , Glândulas Salivares , Animais , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo , Blastocisto/metabolismo , Blastocisto/citologia , Camundongos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Fator 3-beta Nuclear de Hepatócito/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Linhagem da Célula , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética
16.
Cell Rep ; 43(6): 114372, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38878289

RESUMO

Emerging evidence highlights the regulatory role of paired-like (PRD-like) homeobox transcription factors (TFs) in embryonic genome activation (EGA). However, the majority of PRD-like genes are lost in rodents, thus prompting an investigation into PRD-like TFs in other mammals. Here, we showed that PRD-like TFs were transiently expressed during EGA in human, monkey, and porcine fertilized embryos, yet they exhibited inadequate expression in their cloned embryos. This study, using pig as the research model, identified LEUTX as a key PRD-like activator of porcine EGA through genomic profiling and found that LEUTX overexpression restored EGA failure and improved preimplantation development and cloning efficiency in porcine cloned embryos. Mechanistically, LEUTX opened EGA-related genomic regions and established histone acetylation via recruiting acetyltransferases p300 and KAT2A. These findings reveal the regulatory mechanism of LEUTX to govern EGA in pigs, which may provide valuable insights into the study of early embryo development for other non-rodent mammals.


Assuntos
Genoma , Técnicas de Transferência Nuclear , Animais , Suínos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Desenvolvimento Embrionário/genética , Embrião de Mamíferos/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Acetilação , Clonagem de Organismos/métodos , Histonas/metabolismo , Blastocisto/metabolismo
17.
Cell Rep ; 43(7): 114247, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38907996

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived intestinal organoids are valuable tools for researching developmental biology and personalized therapies, but their closed topology and relative immature state limit applications. Here, we use organ-on-chip technology to develop a hiPSC-derived intestinal barrier with apical and basolateral access in a more physiological in vitro microenvironment. To replicate growth factor gradients along the crypt-villus axis, we locally expose the cells to expansion and differentiation media. In these conditions, intestinal epithelial cells self-organize into villus-like folds with physiological barrier integrity, and myofibroblasts and neurons emerge and form a subepithelial tissue in the bottom channel. The growth factor gradients efficiently balance dividing and mature cell types and induce an intestinal epithelial composition, including absorptive and secretory lineages, resembling the composition of the human small intestine. This well-characterized hiPSC-derived intestine-on-chip system can facilitate personalized studies on physiological processes and therapy development in the human small intestine.


Assuntos
Diferenciação Celular , Células Epiteliais , Células-Tronco Pluripotentes Induzidas , Intestino Delgado , Neurônios , Organoides , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Neurônios/metabolismo , Neurônios/citologia , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Organoides/metabolismo , Organoides/citologia , Dispositivos Lab-On-A-Chip , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia
18.
Cell Rep ; 43(5): 114177, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38691453

RESUMO

Muscle stem cells (MuSCs) contribute to a robust muscle regeneration process after injury, which is highly orchestrated by the sequential expression of multiple key transcription factors. However, it remains unclear how key transcription factors and cofactors such as the Mediator complex cooperate to regulate myogenesis. Here, we show that the Mediator Med23 is critically important for MuSC-mediated muscle regeneration. Med23 is increasingly expressed in activated/proliferating MuSCs on isolated myofibers or in response to muscle injury. Med23 deficiency reduced MuSC proliferation and enhanced its precocious differentiation, ultimately compromising muscle regeneration. Integrative analysis revealed that Med23 oppositely impacts Ternary complex factor (TCF)-targeted MuSC proliferation genes and myocardin-related transcription factor (MRTF)-targeted myogenic differentiation genes. Consistently, Med23 deficiency decreases the ETS-like transcription factor 1 (Elk1)/serum response factor (SRF) binding at proliferation gene promoters but promotes MRTF-A/SRF binding at myogenic gene promoters. Overall, our study reveals the important transcriptional control mechanism of Med23 in balancing MuSC proliferation and differentiation in muscle regeneration.


Assuntos
Diferenciação Celular , Proliferação de Células , Complexo Mediador , Desenvolvimento Muscular , Regeneração , Células-Tronco , Animais , Camundongos , Complexo Mediador/metabolismo , Complexo Mediador/genética , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Transativadores/metabolismo , Transativadores/genética , Transcrição Gênica
19.
Cell Rep ; 43(5): 114227, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38735044

RESUMO

CUX1 is a homeodomain-containing transcription factor that is essential for the development and differentiation of multiple tissues. CUX1 is recurrently mutated or deleted in cancer, particularly in myeloid malignancies. However, the mechanism by which CUX1 regulates gene expression and differentiation remains poorly understood, creating a barrier to understanding the tumor-suppressive functions of CUX1. Here, we demonstrate that CUX1 directs the BAF chromatin remodeling complex to DNA to increase chromatin accessibility in hematopoietic cells. CUX1 preferentially regulates lineage-specific enhancers, and CUX1 target genes are predictive of cell fate in vivo. These data indicate that CUX1 regulates hematopoietic lineage commitment and homeostasis via pioneer factor activity, and CUX1 deficiency disrupts these processes in stem and progenitor cells, facilitating transformation.


Assuntos
Cromatina , Células-Tronco Hematopoéticas , Proteínas de Homeodomínio , Proteínas Repressoras , Humanos , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Cromatina/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Animais , Camundongos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Linhagem da Célula , Montagem e Desmontagem da Cromatina , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos/genética
20.
Cell Rep ; 43(5): 114170, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38700983

RESUMO

During cell fate transitions, cells remodel their transcriptome, chromatin, and epigenome; however, it has been difficult to determine the temporal dynamics and cause-effect relationship between these changes at the single-cell level. Here, we employ the heterokaryon-mediated reprogramming system as a single-cell model to dissect key temporal events during early stages of pluripotency conversion using super-resolution imaging. We reveal that, following heterokaryon formation, the somatic nucleus undergoes global chromatin decompaction and removal of repressive histone modifications H3K9me3 and H3K27me3 without acquisition of active modifications H3K4me3 and H3K9ac. The pluripotency gene OCT4 (POU5F1) shows nascent and mature RNA transcription within the first 24 h after cell fusion without requiring an initial open chromatin configuration at its locus. NANOG, conversely, has significant nascent RNA transcription only at 48 h after cell fusion but, strikingly, exhibits genomic reopening early on. These findings suggest that the temporal relationship between chromatin compaction and gene activation during cellular reprogramming is gene context dependent.


Assuntos
Reprogramação Celular , Montagem e Desmontagem da Cromatina , Histonas , Humanos , Reprogramação Celular/genética , Histonas/metabolismo , Análise de Célula Única , Ativação Transcricional , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Cromatina/metabolismo , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA