Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.244
Filtrar
1.
Antonie Van Leeuwenhoek ; 117(1): 100, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001997

RESUMO

An isolate of a Gram-positive, strictly aerobic, motile, rod-shaped, endospore forming bacterium was originally isolated from soil when screening and bioprospecting for plant beneficial microorganisms. Phylogenetic analysis of the 16S rRNA gene sequences indicated that this strain was closely related to Lysinibacillus fusiformis NRRL NRS-350T (99.7%) and Lysinibacillus sphaericus NRRL B-23268T (99.2%). In phenotypic characterization, the novel strain was found to grow between 10 and 45 °C and tolerate up to 8% (w/v) NaCl. Furthermore, the strain grew in media with pH 5 to 10 (optimal growth at pH 7.0). The predominant cellular fatty acids were observed to be iso-C15: 0 (52.3%), anteiso-C15: 0 (14.8%), C16:1ω7C alcohol (11.2%), and C16: 0 (9.5%). The cell-wall peptidoglycan contained lysine-aspartic acid, the same as congeners. A draft genome was assembled and the DNA G+C content was determined to be 37.1% (mol content). A phylogenomic analysis on the core genome of the new strain and 5 closest type strains of Lysinibacillus revealed this strain formed a distinct monophyletic clade with the nearest neighbor being Lysinibacillus fusiformis. DNA-DNA relatedness studies using in silico DNA-DNA hybridizations (DDH) showed this species was below the species threshold of 70%. Based upon the consensus of phylogenetic and phenotypic analyses, we conclude that this strain represents a novel species within the genus Lysinibacillus, for which the name Lysinibacillus pinottii sp. nov. is proposed, with type strain PB211T (= NRRL B-65672T, = CCUG 77181T).


Assuntos
Bacillaceae , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Bacillaceae/genética , Bacillaceae/classificação , Bacillaceae/isolamento & purificação , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Peptidoglicano , Animais , Genoma Bacteriano , Análise de Sequência de DNA , Parede Celular/química
2.
Biochem Biophys Res Commun ; 732: 150359, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39032409

RESUMO

We have previously developed a 3D video tracking system which enables us to analyze long-term quantitative analysis of gene expression in freely moving mice. In the present study, we improved 3D video tracking and developed a system that analyzes more detailed behavioral data. We succeeded in simultaneously analyzing sleep-wake, feeding, and drinking behavior rhythms in the same individual using our tracking system. This system will make it possible to measure gene expression in each tissue in vivo in real time in relation to the various behavioral rhythms mentioned above.

3.
Structure ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39032487

RESUMO

Intracellular tau aggregation requires a local protein concentration increase, referred to as "droplets". However, the cellular mechanism for droplet formation is poorly understood. Here, we expressed OptoTau, a P301L mutant tau fused with CRY2olig, a light-sensitive protein that can form homo-oligomers. Under blue light exposure, OptoTau increased tau phosphorylation and was sequestered in aggresomes. Suppressing aggresome formation by nocodazole formed tau granular clusters in the cytoplasm. The granular clusters disappeared by discontinuing blue light exposure or 1,6-hexanediol treatment suggesting that intracellular tau droplet formation requires microtubule collapse. Expressing OptoTau-ΔN, a species of N-terminal cleaved tau observed in the Alzheimer's disease brain, formed 1,6-hexanediol and detergent-resistant tau clusters in the cytoplasm with blue light stimulation. These intracellular stable tau clusters acted as a seed for tau fibrils in vitro. These results suggest that tau droplet formation and N-terminal cleavage are necessary for neurofibrillary tangles formation in neurodegenerative diseases.

4.
Gene ; : 148753, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972556

RESUMO

BACKGROUND: Transgenic insect-resistant rice offers an environmentally friendly approach to mitigate yield losses caused by lepidopteran pests, such as stem borers. Bt (Bacillus thuringiensis) genes encode insecticidal proteins and are widely used to confer insect resistance to genetically modified crops. This study investigated the integration, inheritance, and expression characteristics of codon-optimised synthetic Bt genes, cry1C* and cry2A*, in transgenic early japonica rice lines. METHODS: The early japonica rice cultivar, Songgeng 9 (Oryza sativa), was transformed with cry1C* or cry2A*, which are driven by the ubi promoter via Agrobacterium tumefaciens-mediated transformation. Molecular analyses, including quantitative PCR (qPCR), enzyme-linked immunosorbent assay (ELISA), and Southern blot analysis were performed to confirm transgene integration, inheritance, transcriptional levels, and protein expression patterns across different tissues and developmental stages. RESULTS: Stable transgenic early japonica lines exhibiting single-copy transgene integration were established. Transcriptional analysis revealed variations in Bt gene expression among lines, tissues, and growth stages, with higher expression levels observed in leaves than in other organs. Notably, cry2A* exhibited consistently higher mRNA and protein levels than cry1C* across all examined tissues and developmental time points. Bt protein accumulation followed the trend of leaves > stem sheaths > young panicles > brown rice, with peak expression during the filling stage in the vegetative tissues. CONCLUSIONS: Synthetic cry2A* displayed markedly elevated transcription and translation compared to cry1C* in the transgenic early japonica rice lines examined. Distinct spatiotemporal patterns of Bt gene expression were elucidated, providing insights into the potential insect resistance conferred by these genes in rice. These findings will contribute to the development of insect-resistant japonica rice varieties and facilitate the rational deployment of Bt crops.

5.
Arch Insect Biochem Physiol ; 116(3): e22131, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39016064

RESUMO

Bacillus thuringiensis (Bt) is widely used as a biopesticide worldwide. To date, at least eight pest species have been found to be resistant to Bt in the field. As the first pest that was reported having resistance to Bt in the field, considerable research has been done on the mechanisms of Bt resistance in Plutella xylostella. However, whether the acquisition of Bt resistance by P. xylostella comes at a fitness cost is also a valuable question. In this study, Aminopeptidase-N 2 (APN2), a Cry toxin receptor gene of P. xylostella, was knocked down by RNA interference, resulting in improved resistance to Cry1Ac. It was also found that larval mortality of APN2 knockdown P. xylostella was significantly higher than that of the control, while the pupation rate, pupal weight, eclosion rate, fecundity (egg/female), hatchability, and female adult longevity were significantly lower in APN2 knockdown P. xylostella than in the control. These results illustrate that if Cry1Ac resistance was obtained only through the reduction of APN2 expression, P. xylostella would need to incur some fitness costs for it.


Assuntos
Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Antígenos CD13 , Endotoxinas , Proteínas Hemolisinas , Resistência a Inseticidas , Larva , Mariposas , Animais , Endotoxinas/farmacologia , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Mariposas/enzimologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas/genética , Antígenos CD13/metabolismo , Antígenos CD13/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Larva/crescimento & desenvolvimento , Larva/genética , Feminino , Interferência de RNA , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
6.
Anal Biochem ; 693: 115584, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38843975

RESUMO

Using the amino acid sequences and analysis of selected known structures of Bt Cry toxins, Cry1Ab, Cry1Ac, Cry1Ah, Cry1B, Cry1C and Cry1F we specifically designed immunogens. After antibodies selection, broad-spectrum polyclonal antibodies (pAbs) and monoclonal antibody (namely 1A0-mAb) were obtained from rabbit and mouse, respectively. The produced pAbs displayed broad spectrum activity by recognizing Cry1 toxin, Cry2Aa, Cry2Ab and Cry3Aa with half maximal inhibitory concentration (IC50) values of 0.12-9.86 µg/mL. Similarly, 1A0-mAb showed broad spectrum activity, recognizing all of the above Cry protein (IC50 values of 4.66-20.46 µg/mL) with the exception of Cry2Aa. Using optimizations studies, 1A10-mAb was used as a capture antibody and pAbs as detection antibody. Double antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) were established for Cry1 toxin, Cry2Ab and Cry3Aa with the limit of detection (LOD) values of 2.36-36.37 ng/mL, respectively. The present DAS-ELISAs had good accuracy and precisions for the determination of Cry toxin spiked tap water, corn, rice, soybeans and soil samples. In conclusion, the present study has successfully obtained broad-spectrum pAbs and mAb. Furthermore, the generated pAbs- and mAb-based DAS-ELISAs protocol can potentially be used for the broad-spectrum monitoring of eight common subtypes of Bt Cry toxins residues in food and environmental samples.


Assuntos
Anticorpos Monoclonais , Toxinas de Bacillus thuringiensis , Endotoxinas , Ensaio de Imunoadsorção Enzimática , Proteínas Hemolisinas , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Coelhos , Camundongos , Endotoxinas/análise , Endotoxinas/imunologia , Proteínas Hemolisinas/imunologia , Proteínas Hemolisinas/análise , Proteínas Hemolisinas/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/análise , Bacillus thuringiensis/química , Camundongos Endogâmicos BALB C
7.
Front Neurosci ; 18: 1401721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872947

RESUMO

The sensitivity of the eye at night would lead to complete saturation of the eye during the day. Therefore, the sensitivity of the eye must be down-regulated during the day to maintain visual acuity. In the Drosophila eye, the opening of TRP and TRPL channels leads to an influx of Ca++ that triggers down-regulation of further responses to light, including the movement of the TRPL channel and Gα proteins out of signaling complexes found in actin-mediated microvillar extensions of the photoreceptor cells (the rhabdomere). The eye also exhibits a light entrained-circadian rhythm, and we have recently observed that one component of this rhythm (BDBT) becomes undetectable by antibodies after exposure to light even though immunoblot analyses still detect it in the eye. BDBT is necessary for normal circadian rhythms, and in several circadian and visual mutants this eye-specific oscillation of detection is lost. Many phototransduction signaling proteins (e.g., Rhodopsin, TRP channels and Gα) also become undetectable shortly after light exposure, most likely due to a light-induced compaction of the rhabdomeric microvilli. The circadian protein BDBT might be involved in light-induced changes in the rhabdomere, and if so this could indicate that circadian clocks contribute to the daily adaptations of the eye to light. Likewise, circadian oscillations of clock proteins are observed in photoreceptors of the mammalian eye and produce a circadian oscillation in the ERG. Disruption of circadian rhythms in the eyes of mammals causes neurodegeneration in the eye, demonstrating the importance of the rhythms for normal eye function.

8.
BMC Biotechnol ; 24(1): 37, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825715

RESUMO

BACKGROUND: As part of a publicly funded initiative to develop genetically engineered Brassicas (cabbage, cauliflower, and canola) expressing Bacillus thuringiensis Crystal (Cry)-encoded insecticidal (Bt) toxin for Indian and Australian farmers, we designed several constructs that drive high-level expression of modified Cry1B and Cry1C genes (referred to as Cry1BM and Cry1CM; with M indicating modified). The two main motivations for modifying the DNA sequences of these genes were to minimise any licensing cost associated with the commercial cultivation of transgenic crop plants expressing CryM genes, and to remove or alter sequences that might adversely affect their activity in plants. RESULTS: To assess the insecticidal efficacy of the Cry1BM/Cry1CM genes, constructs were introduced into the model Brassica Arabidopsis thaliana in which Cry1BM/Cry1CM expression was directed from either single (S4/S7) or double (S4S4/S7S7) subterranean clover stunt virus (SCSV) promoters. The resulting transgenic plants displayed a high-level of Cry1BM/Cry1CM expression. Protein accumulation for Cry1CM ranged from 5.18 to 176.88 µg Cry1CM/g dry weight of leaves. Contrary to previous work on stunt promoters, we found no correlation between the use of either single or double stunt promoters and the expression levels of Cry1BM/Cry1CM genes, with a similar range of Cry1CM transcript abundance and protein content observed from both constructs. First instar Diamondback moth (Plutella xylostella) larvae fed on transgenic Arabidopsis leaves expressing the Cry1BM/Cry1CM genes showed 100% mortality, with a mean leaf damage score on a scale of zero to five of 0.125 for transgenic leaves and 4.2 for wild-type leaves. CONCLUSIONS: Our work indicates that the modified Cry1 genes are suitable for the development of insect resistant GM crops. Except for the PAT gene in the USA, our assessment of the intellectual property landscape of components presents within the constructs described here suggest that they can be used without the need for further licensing. This has the capacity to significantly reduce the cost of developing and using these Cry1M genes in GM crop plants in the future.


Assuntos
Arabidopsis , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Plantas Geneticamente Modificadas , Plantas Geneticamente Modificadas/genética , Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/genética , Animais , Endotoxinas/genética , Regiões Promotoras Genéticas/genética , Bacillus thuringiensis/genética , Mariposas/genética , Brassica/genética , Controle Biológico de Vetores/métodos , Inseticidas/farmacologia
9.
Int J Biol Macromol ; 274(Pt 2): 133388, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925193

RESUMO

Traditional chemical pesticide dosage forms and crude application methods have resulted in low pesticide utilization, increased environmental pollution, and the development of resistance. Compared to traditional pesticides, nanopesticides enhance the efficiency of pesticide utilization and reduce the quantity required, thereby decreasing environmental pollution. Herein, Cry1Ac insecticidal crystal protein from Bacillus thuringiensis Subsp. Kurstaki HD-73 was encapsulated in a metal-organic framework (zeolite imidazolate framework-8, ZIF-8) through biomimetic mineralization to obtain Cry1Ac@ZIF-8 nanopesticides. The Cry1Ac@ZIF-8 nanopesticides exhibited a dodecahedral porous structure, and the introduction of Cry1Ac did not affect the intrinsic crystal structure of ZIF-8. The indoor toxicity analysis revealed that the toxicity of Cry1Ac towards Ostrinia furnacalis (Guenée), Helicoverpa armigera Hubner, and Spodoptera litura Fabricius was not affected by ZIF-8 encapsulation. Surprisingly, Cry1Ac@ZIF-8 still exhibited excellent pest management efficacy even after exposure to heat, UV irradiation, and long-term storage. More importantly, the encapsulation of ZIF-8 significantly enhanced the internal absorption performance of Cry1Ac in maize leaves and extended its persistence period. Thus, ZIF-8 could potentially serve as a promising carrier for the preparation of nanopesticides with enhanced applicability, stability, and persistence period, providing a powerful strategy to improve the application of Cry1Ac in future agricultural pest management.

10.
Sci Total Environ ; 945: 174019, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885713

RESUMO

Emerging evidence suggests that plants experiencing abiotic stress actively seek help from soil microbes. However, the empirical evidence supporting this strategy is limited, especially in response to heavy metal stress. We used integrated microbial community profiling and culture-based methods to investigate the interaction between mercury (Hg) stress, the entophytic root microbiome, and maize seedlings. The results of the pot experiment showed that soil Hg (20 mg/kg) strongly inhibited maize growth, indicating its strong phytotoxicity. Furthermore, Hg stress significantly altered the structure of the bacterial and fungal communities and enriched the potentially pathogenic Fusarium sp., suggesting that soil Hg stress may enhance the bio-stress induced by Fusarium species in maize. Additionally, soil Hg also led to the enrichment of beneficial bacterial members of Streptomyces, Lysobacter, and Sphingomonas (defined as differential species), which were also identified as keystone species in the Hg treatment by the analysis of co-occurrence networks. Therefore, it can be postulated that the members of Streptomyces, Lysobacter, and Sphingomonas function as stress-alleviating microbes. We successfully isolated the representatives of these stress-alleviating microbes. As expected, these strains mitigated the detrimental effects of Hg stess for the maize seedlings, suggesting that plants recruit the stress-alleviated microbiota to combat Hg stress. This study provides insights into the potential of manipulating the root microbiome to enhance plant growth in polluted environments.


Assuntos
Mercúrio , Microbiota , Raízes de Plantas , Microbiologia do Solo , Poluentes do Solo , Zea mays , Mercúrio/toxicidade , Zea mays/microbiologia , Zea mays/efeitos dos fármacos , Poluentes do Solo/toxicidade , Raízes de Plantas/microbiologia , Microbiota/efeitos dos fármacos , Endófitos/fisiologia , Estresse Fisiológico
11.
Microbiol Resour Announc ; 13(7): e0022724, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38847518

RESUMO

We report the draft genome of Bacillus thuringiensis strain V-AB8.18, comprising 308 contigs totaling 6,182,614 bp, with 35% G + C content. It contains 6,151 putative protein-coding genes, including App6 and Cry5-like crystal proteins, exhibiting 99% pairwise identity to nematicidal proteins App6Aa2 and Cry5Ba2, active against Meloidogyne incognita and Meloidogyne hapla.

12.
Sci Total Environ ; 946: 174057, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38914340

RESUMO

Root-associated microbiota provide great fitness to hosts under environmental stress. However, the underlying microecological mechanisms controlling the interaction between heavy metal-stressed plants and the microbiota are poorly understood. In this study, we screened and isolated representative amplicon sequence variants (strain M4) from rhizosphere soil samples of Trifolium repens L. growing in areas with high concentrations of heavy metals. To investigate the microecological mechanisms by which T. repens adapts to heavy metal stress in abandoned mining areas, we conducted potting experiments, bacterial growth promotion experiments, biofilm formation experiments, and chemotaxis experiments. The results showed that high concentrations of heavy metals significantly altered the rhizosphere bacterial community structure of T. repens and significantly enriched Microbacterium sp. Strain M4 was demonstrated to significantly increased the biomass and root length of T. repens under heavy metal stress. Additionally, L-proline and stigmasterol could promote bacterial growth and biofilm formation and induce chemotaxis for strain M4, suggesting that they are key rhizosphere secretions of T. repens for Microbacterium sp. recruitment. Our results suggested that T. repens adapted the heavy metal stress by reshaping rhizosphere secretions to modify the rhizosphere microbiota.


Assuntos
Metais Pesados , Microbacterium , Mineração , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Poluentes do Solo , Trifolium , Trifolium/microbiologia , Poluentes do Solo/toxicidade , Raízes de Plantas/microbiologia , Microbacterium/fisiologia , Microbiota/efeitos dos fármacos , Chumbo/toxicidade , Zinco
13.
Artigo em Inglês | MEDLINE | ID: mdl-38833107

RESUMO

Crying is a typical infant behavior that activates parental caregiving behaviors, acting as "human alarms" important for the infant's survival. When living under war-related threat, the auditory system may be sensitized given its importance for survival, potentially impacting maternal cry processing. Children living in armed-conflict zones are at increased risk for behavior problems, which may relate to both direct exposure and indirect effects through their parents' perceptions and behaviors. This hypothesis was examined in a sample of mothers and their first-born children (aged 10-45 months) living in the Gaza vicinity area in Israel, chronically exposed to missile alarms (high-exposure; n = 45), and a comparison group (low-exposure; n = 86). Group differences in child behavior problems and maternal perceptions of and responsiveness to cry were investigated. A moderated indirect-effect of maternal cry perceptions on child behavior problems via maternal responsiveness to cry was examined. In the high-exposure group, children had more externalizing problems and mothers rated cries as more aversive. Maternal cry perception was indirectly related to child behavior problems via responsiveness to cry only in the high-exposure group: higher perceptions of cry as aversive or the child as distressed were related to faster responding to crying, and faster cry responsiveness was linked with fewer behavior problems. Results suggest that in armed-conflict zones with auditory warning signals, the parental caring system may be easily activated by cries due to the strong association between alarms and threat. Furthermore, children may need their mothers to react faster when feeling distressed, possibly because of the surrounding threat.

14.
Adv Sci (Weinh) ; : e2305925, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720476

RESUMO

The circadian clock coordinates the daily rhythmicity of biological processes, and its dysregulation is associated with various human diseases. Despite the direct targeting of rhythmic genes by many prevalent and World Health Organization (WHO) essential drugs, traditional approaches can't satisfy the need of explore multi-timepoint drug administration strategies across a wide range of drugs. Here, droplet-engineered primary liver organoids (DPLOs) are generated with rhythmic characteristics in 4 days, and developed Chronotoxici-plate as an in vitro high-throughput automated rhythmic tool for chronotherapy assessment within 7 days. Cryptochrome 1 (Cry1) is identified as a rhythmic marker in DPLOs, providing insights for rapid assessment of organoid rhythmicity. Using oxaliplatin as a representative drug, time-dependent variations are demonstrated in toxicity on the Chronotoxici-plate, highlighting the importance of considering time-dependent effects. Additionally, the role of chronobiology is underscored in primary organoid modeling. This study may provide tools for both precision chronotherapy and chronotoxicity in drug development by optimizing administration timing.

15.
J Voice ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714440

RESUMO

This paper reviews the research work on the analysis and classification of pathological infant cries in the last 50 years. The literature review mainly covers the need and role of early clinical diagnosis, pathologies detected from cry samples, challenges in pathological cry signal data acquisition, signal processing techniques, and signal classifiers. The signal processing techniques include preprocessing, feature extraction from domains, such as time, spectral, time-frequency, prosodic, wavelet, etc, and feature selection for selecting dominant features. Literature covers traditional machine learning classifiers, such as Bayesian networks, decision trees, K-nearest neighbor, support vector machine, Gaussian mixture model, etc, and recently added neural network models, such as convolutional neural networks, regression neural networks, probabilistic neural networks, graph neural networks, etc. Significant experimental results of pathological cry identification and classification are listed for comparison. Finally, it suggests future research in the direction of database preparation, feature analysis and extraction, neural network classifiers to provide a non-invasive and robust automatic infant cry analysis model.

16.
J Invertebr Pathol ; 205: 108129, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754546

RESUMO

Bacillus thuringiensis (Bt) Cry2Aa is a member of the Cry pore-forming, 3-domain, toxin family with activity against both lepidopteran and dipteran insects. Although domains II and III of the Cry toxins are believed to represent the primary specificity determinant through specific binding to cell receptors, it has been proposed that the pore-forming domain I of Cry2Aa also has such a role. Thus, a greater understanding of the functions of Cry2Aa's different domains could potentially be helpful in the rational design of improved toxins. In this work, cry2Aa and its domain fragments (DI, DII, DIII, DI-II and DII-DIII) were subcloned into the vector pGEX-6P-1 and expressed in Escherichia coli. Each protein was recognized by anti-Cry2Aa antibodies and, except for the DII fragment, could block binding of the antibody to Cry2Aa. Cry2Aa and its DI and DI-II fragments bound to brush border membrane vesicles (BBMV) from H. armigera and also to a ca 150 kDa BBMV protein on a far western (ligand) blot. In contrast the DII, DIII and DII-III fragments bound to neither of these. None of the fragments were stable in H. armigera gut juice nor showed any toxicity towards this insect. Our results indicate that contrary to the general model of Cry toxin activity domain I plays a role in the binding of the toxin to the insect midgut.


Assuntos
Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Mariposas , Animais , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Mariposas/metabolismo , Mariposas/microbiologia , Sítios de Ligação , Bacillus thuringiensis/metabolismo , Controle Biológico de Vetores , Domínios Proteicos , Helicoverpa armigera
17.
Curr Opin Cell Biol ; 88: 102360, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640790

RESUMO

Cells generate a highly diverse microtubule network to carry out different activities. This network is comprised of distinct tubulin isotypes, tubulins with different post-translational modifications, and many microtubule-based structures. Defects in this complex system cause numerous human disorders. However, how different microtubule subtypes in this network regulate cellular architectures and activities remains largely unexplored. Emerging tools such as photosensitive pharmaceuticals, chemogenetics, and optogenetics enable the spatiotemporal manipulation of structures, dynamics, post-translational modifications, and cross-linking with actin filaments in target microtubule subtypes. This review summarizes the design rationale and applications of these new approaches and aims to provide a roadmap for researchers navigating the intricacies of microtubule dynamics and their post-translational modifications in cellular contexts, thereby opening new avenues for therapeutic interventions.


Assuntos
Microtúbulos , Microtúbulos/metabolismo , Microtúbulos/química , Humanos , Animais , Processamento de Proteína Pós-Traducional , Optogenética , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química
18.
Pestic Biochem Physiol ; 201: 105881, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685247

RESUMO

Insect pests cause immense agronomic losses worldwide. One of the most destructive of major crops is the Fall Armyworm (Spodoptera frugiperda, FAW). The ability to migrate long distances, a prodigious appetite, and a demonstrated ability to develop resistance to insecticides, make it a difficult target to control. Insecticidal proteins, for example those produced by the bacterium Bacillus thuringiensis, are among the safest and most effective insect control agents. Genetically modified (GM) crops expressing such proteins are a key part of a successful integrated pest management (IPM) program for FAW. However, due to the development of populations resistant to commercialized GM products, new GM traits are desperately needed. Herein, we describe a further characterization of the newly engineered trait protein eCry1Gb.1Ig. Similar to other well characterized Cry proteins, eCry1Gb.1Ig is shown to bind FAW midgut cells and induce cell-death. Binding competition assays using trait proteins from other FAW-active events show a lack of competition when binding FAW brush border membrane vesicles (BBMVs) and when utilizing non-pore-forming versions as competitors in in vivo bioassays. Similarly, insect cell lines expressing SfABCC2 and SfABCC3 (well characterized receptors of existing commercial Cry proteins) are insensitive to eCry1Gb.1Ig. These findings are consistent with results from our previous work showing that eCry1Gb.1Ig is effective in controlling insects with resistance to existing traits. This underscores the value of eCry1Gb.1Ig as a new GM trait protein with a unique site-of-action and its potential positive impact to global food production.


Assuntos
Proteínas de Bactérias , Spodoptera , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Endotoxinas/farmacologia , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/farmacologia , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Inseticidas/farmacologia , Plantas Geneticamente Modificadas , Controle Biológico de Vetores/métodos
19.
J Invertebr Pathol ; 204: 108100, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561070

RESUMO

It has long been known that while both the Bacillus thuringiensis pesticidal proteins Cry2Aa and Cry2Ab have wide-ranging activities against lepidopteran insects only the former has activity against the mosquito Aedes aegypti. We have previously shown that this differential specificity is influenced by the N-terminal region of these proteins and here demonstrate that this is due to these sections affecting proteolytic activation. Enzymes from the midgut of A. aegypti cleave Cry2Aa at the C-terminal side of amino acid 49 resulting in a 58 kDa fragment whereas these enzymes do not cleave Cry2Ab at this position. The 58 kDa, but not the protoxin, form of Cry2Aa is capable of interacting with brush border membrane vesicles from A. aegypti.


Assuntos
Aedes , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Proteólise , Animais , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Bactérias/metabolismo , Controle Biológico de Vetores , Bacillus thuringiensis
20.
J Invertebr Pathol ; 204: 108101, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574951

RESUMO

The resistance of pest insects to biopesticides based on the bacterium Bacillus thuringiensis (Bt) is normally associated with changes to the receptors involved in the mechanism of action of the pesticidal proteins produced by Bt. In some strains of Plutella xylostella (the diamondback moth) resistance has evolved through a signalling mechanism in which the genes encoding the receptor proteins are downregulated whereas in others it has been linked to structural changes in the receptors themselves. One such well characterized mutation is in the ABCC2 gene indicating that changes to this protein can result in resistance. However other studies have found that knocking out this protein does not result in a significant level of resistance. In this study we wanted to test the hypothesis that constitutive receptor downregulation is the major cause of Bt resistance in P. xylostella and that mutations in the now poorly expressed receptor genes may not contribute significantly to the phenotype. To that end we investigated the expression of a receptor (ABCC2) and the major regulator of the signalling pathway (MAP4K4) in two resistant and four susceptible strains. No correlation was found between expression levels and susceptibility; however, a frameshift mutation was identified in the ABCC2 receptor in a newly characterized resistant strain.


Assuntos
Bacillus thuringiensis , Resistência a Inseticidas , Mariposas , Controle Biológico de Vetores , Animais , Bacillus thuringiensis/genética , Resistência a Inseticidas/genética , Mariposas/microbiologia , Mariposas/genética , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Brasil , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA