Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Pestic Biochem Physiol ; 198: 105708, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225062

RESUMO

Descurainia sophia (flixweed) is a troublesome weed in winter wheat fields in North China. Resistant D. sophia populations with different acetolactate synthetase (ALS) mutations have been reported in recent years. In addition, metabolic resistance to ALS-inhibiting herbicides has also been identified. In this study, we collected and purified two resistant D. sophia populations (R1 and R2), which were collected from winter wheat fields where tribenuron-methyl provided no control of D. sophia at 30 g a.i. ha-1. Whole plant bioassay and ALS activity assay results showed the R1 and R2 populations had evolved high-level resistance to tribenuron-methyl and florasulam and cross-resistance to imazethapyr and pyrithiobac­sodium. The two ALS genes were cloned from the leaves of R1 and R2 populations, ALS1 (2004 bp) and ALS2 (1998 bp). A mutation of Trp 574 to Leu in ALS1 was present in both R1 and R2. ALS1 and ALS2 were cloned from R1 and R2 populations respectively and transferred into Arabidopsis thaliana. Homozygous T3 transgenic seedlings with ALS1 of R1 or R2 were resistant to ALS-inhibiting herbicides and the resistant levels were the same. Transgenic seedlings with ALS2 from R1 or R2 were susceptible to ALS-inhibiting herbicides. Treatment with cytochrome P450 inhibitor malathion decreased the resistant levels to tribenuron-methyl in R1 and R2. RNA-Seq was used to identify target cytochrome P450 genes possibly involved in resistance to ALS-inhibiting herbicides. There were five up-regulated differentially expressed cytochrome P450 genes: CYP72A15, CYP83B1, CYP81D8, CYP72A13 and CYP71A12. Among of them, CYP72A15 had the highest expression level in R1 and R2 populations. The R1 and R2 populations of D. sophia have evolved resistance to ALS-inhibiting herbicides due to Trp 574 Leu mutation in ALS1 and possibly other mechanisms. The resistant function of CYP72A15 needs further research.


Assuntos
Acetolactato Sintase , Sulfonatos de Arila , Brassicaceae , Herbicidas , Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/metabolismo , Brassicaceae/efeitos dos fármacos , Brassicaceae/genética , Sistema Enzimático do Citocromo P-450/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Mutação
2.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176134

RESUMO

Dioscorea zingiberensis is a perennial herb famous for the production of diosgenin, which is a valuable initial material for the industrial synthesis of steroid drugs. Sterol C26-hydroxylases, such as TfCYP72A616 and PpCYP72A613, play an important role in the diosgenin biosynthesis pathway. In the present study, a novel gene, DzCYP72A12-4, was identified as C26-hydroxylase and was found to be involved in diosgenin biosynthesis, for the first time in D. zingiberensis, using comprehensive methods. Then, the diosgenin heterogenous biosynthesis pathway starting from cholesterol was created in stable transgenic tobacco (Nicotiana tabacum L.) harboring DzCYP90B71(QPZ88854), DzCYP90G6(QPZ88855) and DzCYP72A12-4. Meanwhile, diosgenin was detected in the transgenic tobacco using an ultra-performance liquid chromatography system (Vanquish UPLC 689, Thermo Fisher Scientific, Bremen, Germany) tandem MS (Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer, Thermo Fisher Scientific, Bremen, Germany). Further RT-qPCR analysis showed that DzCYP72A12-4 was highly expressed in both rhizomes and leaves and was upregulated under 15% polyethylene glycol (PEG) treatment, indicating that DzCYP72A12-4 may be related to drought resistance. In addition, the germination rate of the diosgenin-producing tobacco seeds was higher than that of the negative controls under 15% PEG pressure. In addition, the concentration of malonaldehyde (MDA) was lower in the diosgenin-producing tobacco seedlings than those of the control, indicating higher drought adaptability. The results of this study provide valuable information for further research on diosgenin biosynthesis in D. zingiberensis and its functions related to drought adaptability.


Assuntos
Dioscorea , Diosgenina , Animais , Diosgenina/química , Dioscorea/química , Secas , Espectrometria de Massas , Cromatografia Líquida de Alta Pressão , Animais Geneticamente Modificados , Oxigenases de Função Mista/metabolismo
3.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34681613

RESUMO

Dioscorea zingiberensis is a medicinal herb containing a large amount of steroidal saponins, which are the major bioactive compounds and the primary storage form of diosgenin. The CYP72A gene family, belonging to cytochromes P450, exerts indispensable effects on the biosynthesis of numerous bioactive compounds. In this work, a total of 25 CYP72A genes were identified in D. zingiberensis and categorized into two groups according to the homology of protein sequences. The characteristics of their phylogenetic relationship, intron-exon organization, conserved motifs and cis-regulatory elements were performed by bioinformatics methods. The transcriptome data demonstrated that expression patterns of DzCYP72As varied by tissues. Moreover, qRT-PCR results displayed diverse expression profiles of DzCYP72As under different concentrations of jasmonic acid (JA). Likewise, eight metabolites in the biosynthesis pathway of steroidal saponins (four phytosterols, diosgenin, parvifloside, protodeltonin and dioscin) exhibited different contents under different concentrations of JA, and the content of total steroidal saponin was largest at the dose of 100 µmol/L of JA. The redundant analysis showed that 12 DzCYP72As had a strong correlation with specialized metabolites. Those genes were negatively correlated with stigmasterol and cholesterol but positively correlated with six other specialized metabolites. Among all DzCYP72As evaluated, DzCYP72A6, DzCYP72A16 and DzCYP72A17 contributed the most to the variation of specialized metabolites in the biosynthesis pathway of steroidal saponins. This study provides valuable information for further research on the biological functions related to steroidal saponin biosynthesis.


Assuntos
Ciclopentanos/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Dioscorea/efeitos dos fármacos , Oxilipinas/farmacologia , Proteínas de Plantas/genética , Saponinas/metabolismo , Sequência de Aminoácidos , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/metabolismo , Dioscorea/química , Dioscorea/genética , Dioscorea/metabolismo , Diosgenina/metabolismo , Filogenia , Fitosteróis/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência
4.
Metabolomics ; 15(6): 85, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31144047

RESUMO

INTRODUCTION: Triterpene saponins are important bioactive plant natural products found in many plant families including the Leguminosae. OBJECTIVES: We characterize two Medicago truncatula cytochrome P450 enzymes, MtCYP72A67 and MtCYP72A68, involved in saponin biosynthesis including both in vitro and in planta evidence. METHODS: UHPLC-(-)ESI-QToF-MS was used to profile saponin accumulation across a collection of 106 M. truncatula ecotypes. The profiling results identified numerous ecotypes with high and low saponin accumulation in root and aerial tissues. Four ecotypes with significant differential saponin content in the root and/or aerial tissues were selected, and correlated gene expression profiling was performed. RESULTS: Correlation analyses between gene expression and saponin accumulation revealed high correlations between saponin content with gene expression of ß-amyrin synthase, MtCYP716A12, and two cytochromes P450 genes, MtCYP72A67 and MtCYP72A68. In vivo and in vitro biochemical assays using yeast microsomes containing MtCYP72A67 revealed hydroxylase activity for carbon 2 of oleanolic acid and hederagenin. This finding was supported by functional characterization of MtCYP72A67 using RNAi-mediated gene silencing in M. truncatula hairy roots, which revealed a significant reduction of 2ß-hydroxylated sapogenins. In vivo and in vitro assays with MtCYP72A68 produced in yeast showed multifunctional oxidase activity for carbon 23 of oleanolic acid and hederagenin. These findings were supported by overexpression of MtCYP72A68 in M. truncatula hairy roots, which revealed significant increases of oleanolic acid, 2ß-hydroxyoleanolic acid, hederagenin and total saponin levels. CONCLUSIONS: The cumulative data support that MtCYP72A68 is a multisubstrate, multifunctional oxidase and MtCYP72A67 is a 2ß-hydroxylase, both of which function during the early steps of triterpene-oleanate sapogenin biosynthesis.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Sapogeninas/metabolismo , Vias Biossintéticas , Cromatografia Líquida de Alta Pressão/métodos , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Metabolômica/métodos , Proteínas de Plantas/genética , Espectrometria de Massas por Ionização por Electrospray/métodos
5.
Plant Sci ; 267: 148-156, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29362093

RESUMO

Triterpenoid saponins are one of the most highly accumulated groups of functional components in soybean (Glycine max) and the oxidative reactions during their biosynthesis are required for their aglycone diversity. Natural mutants of soyasaponins in wild soybean (Glycine soja) are valuable resources for establishing the soyasaponin biosynthesis pathway and breeding new soybean varieties. In this study, we investigated the genetic mechanism behind the absence of group A saponins in a Korean wild soybean mutant, CWS5095. Whole genome sequencing (WGS) of CWS5095 identified four point mutations [Val6 → Asp, Ile231 → Thr, His294 → Gln, and Arg376 → Lys] in CYP72A69 (Glyma15g39090), which oxygenate the C-21 position of soyasapogenol B or other intermediates to produce soyasapogenol A, leading to group A saponin production. An in vitro enzyme activity assay of single-sited mutated clones indicated that the Arg376 > Lys mutation (a highly conserved mutation based on a nucleotide change from G → A at the 1,127th position) may lead to loss of gene function in the sg-5 mutant. A very high normalized expression value of 377 reads per kilo base per million (RPKM) of Glyma15g39090 in the hypocotyl axis at the early maturation seed-development stage confirmed their abundant presence in seed hypocotyls. A molecular dynamics analysis of the Arg376 > Lys mutation based on the CYP3A4 (a human CYP450) protein structure found that it was responsible for the increase in axis length toward the heme (active site), which is critically important for biological activity and ligand binding. Our results provide important information on how to eradicate bitter and astringent saponins in soybean by utilizing the reported mutation in Glyma15g39090, and its importance for seed hypocotyl development based on transcript abundance.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Glycine max/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Saponinas/metabolismo , Alinhamento de Sequência , Glycine max/metabolismo , Paladar , Sequenciamento Completo do Genoma
6.
Phytochemistry ; 136: 46-55, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28057327

RESUMO

Endogenous brassinosteroids (BRs) in non-flowering land plants were analyzed. BRs were found in a liverwort (Marchantia polymorpha), a moss (Physcomitrella patens), lycophytes (Selaginella moellendorffii and S. uncinata) and 13 fern species. A biologically active BR, castasterone (CS), was identified in most of these non-flowering plants but another biologically active BR, brassinolide, was not. It may be distinctive that levels of CS in non-flowering plants were orders of magnitude lower than those in flowering plants. 22-Hydroxycampesterol and its metabolites were identified in most of the non-flowering plants suggesting that the biosynthesis of BRs via 22-hydroxylation of campesterol occurs as in flowering plants. Phylogenetic analyses indicated that M. polymorpha, P. patens and S. moellendorffii have cytochrome P450s in the CYP85 clans which harbors BR biosynthesis enzymes, although the P450 profiles are simpler as compared with Arabidopsis and rice. Furthermore, these basal land plants were found to have multiple P450s in the CYP72 clan which harbors enzymes to catabolize BRs. These findings indicate that green plants were able to synthesize and inactivate BRs from the land-transition stage.


Assuntos
Brassinosteroides/isolamento & purificação , Cycadopsida/química , Arabidopsis/química , Brassinosteroides/química , Brassinosteroides/metabolismo , Briófitas/química , Bryopsida/química , Sistema Enzimático do Citocromo P-450/metabolismo , Gleiquênias/química , Hepatófitas/química , Marchantia/química , Oryza/química , Filogenia , Selaginellaceae/química , Esteroides Heterocíclicos
7.
Mol Plant ; 8(10): 1493-506, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26079384

RESUMO

In the Medicago genus, triterpenic saponins are bioactive secondary metabolites constitutively synthesized in the aerial and subterranean parts of plants via the isoprenoid pathway. Exploitation of saponins as pharmaceutics, agrochemicals and in the food and cosmetic industries has raised interest in identifying the enzymes involved in their synthesis. We have identified a cytochrome P450 (CYP72A67) involved in hemolytic sapogenin biosynthesis by a reverse genetic TILLING approach in a Medicago truncatula ethylmethanesulfonate (EMS) mutagenized collection. Genetic and biochemical analyses, mutant complementation, and expression of the gene in a microsome yeast system showed that CYP72A67 is responsible for hydroxylation at the C-2 position downstream of oleanolic acid synthesis. The affinity of CYP72A67 for substrates with different substitutions at multiple carbon positions was investigated in the same in vitro yeast system, and in relation to two other CYP450s (CYP72A68) responsible for the production of medicagenic acid, the main sapogenin in M. truncatula leaves and roots. Full sib mutant and wild-type plants were compared for their sapogenin profile, expression patterns of the genes involved in sapogenin synthesis, and response to inoculation with Sinorhizobium meliloti. The results obtained allowed us to revise the hemolytic sapogenin pathway in M. truncatula and contribute to highlighting the tissue specificities (leaves/roots) of sapogenin synthesis.


Assuntos
Medicago truncatula/metabolismo , Saponinas/biossíntese , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Oleanólico/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Triterpenos/metabolismo
8.
Plant Cell Physiol ; 54(5): 740-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23378447

RESUMO

Triterpenoid saponins are a diverse group of specialized (secondary) metabolites with many biological properties. The model legume Medicago truncatula has an interesting profile of triterpenoid saponins from which sapogenins are differentiated into hemolytic and non-hemolytic types according to the position of their functional groups and hemolytic properties. Gene co-expression analysis confirmed the presence of candidate P450s whose gene expression correlated highly with that of ß-amyrin synthase (bAS). Among these, we identified CYP716A12 and CYP93E2 as key enzymes in hemolytic and non-hemolytic sapogenin biosynthetic pathways. The other candidate P450s showed no ß-amyrin oxidation activity. However, among the remaining candidate P450s, CYP72A61v2 expression highly correlated with that of CYP93E2, and CYP72A68v2 expression highly correlated with that of CYP716A12. These correlation values were higher than occurred with bAS expression. We generated yeast strains expressing bAS, CPR, CYP93E2 and CYP72A61v2, and bAS, CPR, CYP716A12 and CYP72A68v2. These transgenic yeast strains produced soyasapogenol B and gypsogenic acid, respectively. We were therefore able to identify two CYP72A subfamily enzymes: CYP72A61v2, which modifies 24-OH-ß-amyrin, and CYP72A68v2, which modifies oleanolic acid. Additionally, P450s that seemed not to work together in planta were combinatorially expressed in transgenic yeast. The yeast strains (expressing bAS, CPR, CYP72A63 and CYP93E2 or CYP716A12) produced rare triterpenoids that do not occur in M. truncatula. These results show the potential for combinatorial synthesis of diverse triterpenoid structures and enable identification of the enzymes involved in their biosynthesis.


Assuntos
Medicago truncatula/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Triterpenos/metabolismo , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Medicago truncatula/genética , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/biossíntese , Ácido Oleanólico/química , Filogenia , Saccharomyces cerevisiae/genética , Saponinas/biossíntese , Saponinas/química , Triterpenos/química
9.
G3 (Bethesda) ; 2(12): 1585-93, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23275881

RESUMO

Plants use light as a source of information via a suite of photomorphogenic photoreceptors to optimize growth in response to their light environment. Growth-promoting hormones such as brassinosteroids also can modulate many of these responses. BAS1 and SOB7 are brassinosteroid-catabolizing P450s in Arabidopsis thaliana that synergistically/redundantly modulate photomorphogenic traits such as flowering time. The role of BAS1 and SOB7 in photomorphogenesis has been investigated by studying null-mutant genetic interactions with the photoreceptors phyA, phyB, and cry1 with regard to seed germination and flowering time. The removal of BAS1 and/or SOB7 rescued the low germination rate of the phyA-211 phyB-9 double-null mutant. With regard to floral induction, bas1-2 and sob7-1 showed a complex set of genetic interactions with photoreceptor-null mutants. Histochemical analysis of transgenic plants harboring BAS1:BAS1-GUS and SOB7:SOB7-GUS translational fusions under the control of their endogenous promoters revealed overlapping and distinct expression patterns. BAS1's expression in the shoot apex increases during the phase transition from short-to-long-day growth conditions and requires phyB in red light. In summary, BAS1 and SOB7 displayed both simple and complex genetic interactions with the phytochromes in a plant-stage specific manner.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Brassinosteroides/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Genes de Plantas , Peroxirredoxinas/genética , Fotorreceptores de Plantas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/genética , Germinação/genética , Peroxirredoxinas/metabolismo , Fotorreceptores de Plantas/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA