RESUMO
PURPOSE: For the first time, three currently available 360° CZT-SPECT/CT cameras were compared under clinical conditions using phantom-based measurements. METHODS: A 99mTc- and a 177Lu-customized NEMA IEC body phantom were imaged with three different cameras, StarGuide (GE Healthcare), VERITON-CT versions 200 (V200) and 400 (V400) (Spectrum Dynamics Medical) under the same clinical conditions. Energy resolution and volumetric sensitivity were evaluated from energy spectra. Vendors provided the best reconstruction parameters dedicated to visualization and/or quantification, based on their respective software developments. For both 99mTc- and 177Lu-phantoms, noise level, quantification accuracy, and recovery coefficient (RC) were performed with 3DSlicer. Image quality metrics from an approach called "task-based" were computed with iQMetrix-CT on 99mTc visual reconstructions to assess, through spatial frequencies, noise texture in the background (NPS) and contrast restitution of a hot insert (TTF). Spatial resolution indices were calculated from frequencies corresponding to TTF10% and TTF50%. RESULTS: Despite the higher sensitivity of VERITON cameras and the enhanced energy resolution of the V400 (3.2% at 140 keV, 5.2% at 113 keV, and 3.6% at 208 keV), StarGuide presents comparable image quality. This highlights the need to differentiate sensitivity from count quality, which is influenced by hardware design (collimator, detector block) and conditions image quality as well as the reconstruction process (algorithms, scatter correction, noise regulation). For 99mTc imaging, the quantitative image optimization approach based on RCmean for StarGuide versus RCmax for V200 and V400 systems (RCmean/RCmax: 0.9/1.8; 0.5/0.9; 0.5/0.9 respectively-Ø37 mm). SRTB10/50 showed nearly equivalent spatial resolution performances across the different reconstructed images. For 177Lu imaging, the 113 keV imaging of the V200 and V400 systems demonstrated strong performances in both image quality and quantification, while StarGuide and V400 systems offer even better potential due to their ability to exploit signals from both the 113 and 208 keV peaks. 177Lu quantification was optimized according to RCmax for all cameras and reconstructions (1.07 ± 0.09-Ø37 mm). CONCLUSIONS: The three cameras have equivalent potential for 99mTc imaging, while StarGuide and V400 have demonstrated higher potential for 177Lu. Dedicated visual or quantitative reconstructions offer better specific performances compared to the unified visual/quantitative reconstruction. The task-based approach appears to be promising for in-depth comparison of images in the context of system characterization/comparison and protocol optimization.
RESUMO
The introduction of smaller footprint, more sensitive Cadmium-Zinc-Telluride (CZT)-based detectors with improved spatial and energy resolution has enabled the design of innovative full-ring 360° CZT SPECT/CT systems (e.g., VERITON® and StarGuide™). With this transformative technology now aiming to become mainstream in clinical practice, several critical questions need to be addressed. This EANM position paper provides practical recommendations on how to use these devices for routine bone SPECT/CT studies, facilitating the transition from traditional planar whole-body imaging and conventional SPECT/CT to these novel systems. In particular, initial guidance is provided on imaging acquisition and reporting workflows, image reconstruction, and CT acquisition parameters. Given the emerging nature of this technology, the available evidence base is still limited, and the proposed adaptations in workflows and scan protocols will likely evolve before being integrated into definitive guidelines. In the meantime, this EANM position paper serves as a comprehensive guide for integrating these advanced hybrid SPECT/CT imaging systems into clinical practice and outlining areas for further study.
RESUMO
Aims: Non-invasive diagnosis of amyloid transthyretin (ATTR) cardiac amyloidosis using planar scintigraphy and single-photon emission computed tomography-computed tomography (SPECT-CT) with [99mTc]Tc-3,3-diphosphono-1,2-propanodicarboxylic acid ([99mTc]Tc-DPD) has high specificity and sensitivity. However, the introduction of ring-configured cadmium zinc telluride (CZT) gamma cameras warrants an update in the acquisition method since these systems are not able to perform planar scintigraphy. We aimed to verify the use of reprojected planar images from SPECT-CT as a replacement for planar scintigraphy in evaluating ATTR-amyloidosis. Methods and results: The study examined 30 patients referred for clinically indicated [99mTc]Tc-DPD scintigraphy who were scanned with both a conventional gamma camera and a ring-configured CZT gamma camera. Planar scintigraphy from the conventional gamma camera was compared with reprojected planar images from the ring-configured CZT gamma camera. The images were evaluated in regard to image quality and Perugini visual score in a blinded fashion by three nuclear medicine physicians. Heart-to-contralateral (H/CL) ratios were calculated. There were 27 patients who had an identical Perugini score in planar and reprojected planar images, yielding a strong level of agreement and inter-rater reliability among the three readers. The H/CL ratios showed a strong correlation ratio (r = 0.98, P < 0.0001). A shift towards lower image quality was seen for the reprojected images. Conclusion: Reprojected planar images generated from a ring-configured CZT gamma camera combined with SPECT-CT can be used to score ATTR amyloidosis and extract H/CL ratios in the same way as planar images and SPECT-CT from a conventional gamma camera.
RESUMO
BACKGROUND: The application of semi-conductor detectors such as cadmium-zinc-telluride (CZT) in nuclear medicine improves extrinsic energy resolution and count sensitivity due to the direct conversion of gamma photons into electric signals. A 3D-ring pixelated CZT system named StarGuide was recently developed and implemented by GE HealthCare for SPECT acquisition. The system consists of 12 detector columns with seven modules of 16 × 16 CZT pixelated crystals, each with an integrated parallel-hole tungsten collimator. The axial coverage is 27.5 cm. The detector thickness is 7.25 mm, which allows acquisitions in the energy range [40-279] keV. Since there is currently no performance characterization specific to 3D-ring CZT SPECT systems, the National Electrical Manufacturers Association (NEMA) NU 1-2018 clinical standard can be tailored to these cameras. The aim of this study was to evaluate the performance of the SPECT/CT StarGuide system according to the NEMA NU 1-2018 clinical standard specifically adapted to characterize the new 3D-ring CZT. RESULTS: Due to the integrated collimator, the system geometry and the pixelated nature of the detector, some NEMA tests have been adapted to the features of the system. The extrinsic measured energy resolution was about 5-6% for the tested isotopes (99mTc, 123I and 57Co); the maximum count rate was 760 kcps and the observed count rate at 20% loss was 917 kcps. The system spatial resolution in air extrapolated at 10 cm with 99mTc was 7.2 mm, while the SPECT spatial resolutions with scatter were 4.2, 3.7 and 3.6 mm in a central, radial and tangential direction respectively. Single head sensitivity value for 99mTc was 97 cps/MBq; with 12 detector columns, the system volumetric sensitivity reached 520 kcps MBq-1 cc-1. CONCLUSIONS: The performance tests of the StarGuide can be performed according to the NEMA NU 1-2018 standard with some adaptations. The system has shown promising results, particularly in terms of energy resolution, spatial resolution and volumetric sensitivity, potentially leading to higher quality clinical images.
RESUMO
Copper-zinc-tin Cu2ZnSn (CZT) thin films are promising materials for solar cell applications. This thin film was deposited on a fluorine-doped tin oxide (FTO) using an electrochemical deposition hierarchy. X-ray diffraction of thin-film studies confirms the variation in the structural orientation of CZT on the FTO surface. As the pH of the solution is increased, the nature of the CZT thin-film aggregate changes from a fern-like leaf CZT dendrite crystal to a disk pattern. The FE-SEM surface micrograph shows the dendrite fern leaf and sharp edge disks. The 2-D diffusion limitation aggregation under slippery conditions for ternary thin films was performed for the first time. The simulation showed that by changing the diffusing species, the sticking probability was responsible for the pH-dependent morphological change. Convincingly, diffusion-limited aggregation (DLA) simulations confirm that the initial structure of copper is responsible for the final structure of the CZT thin films. An experimental simulation with pH as a controlled parameter revealed phase transition in CZT thin films. The top and back contact of Ag-CZT thin films based on Schottky behavior give a better electronic mechanism in superstrate and substrate solar cells.
RESUMO
Dynamic assessment of myocardial blood flow (MBF) and myocardial flow reserve (MFR) provides additional information that can improve diagnostic accuracy of radionuclide myocardial perfusion imaging in some clinical situations. This study assessed processing repeatability of these parameters calculated using two models-net retention (RET) and one compartment (1CM) in dynamic SPECT studies, using the latest version of Corridor 4DM software (v2024). Data of 107 patients were analyzed retrospectively (57 of whom were assessed in our previous study using 4DM v2015). Dynamic SPECT studies were carried out using a routine two-day rest-dipyridamole protocol. Data was processed in 4DM v2024 twice by one operator and once by another operator. Automatic heart image positioning during post-processing in 4DM v2024 was significantly improved compared to v2015, reducing the number of studies requiring extensive manual corrections from 41 to 12%. This significantly improved interobserver processing repeatability of MFR values in RCA territory compared to our previous study using v2015-from r = 0.67 to 0.85 (p = 0.0034). Interobserver processing repeatability of MBF and MFR in all 107 patients was significantly better in RET model compared to 1CM model. In conclusion, RET model is more reliable for calculating MBF and MFR values based on dynamic SPECT studies.
Assuntos
Imagem de Perfusão do Miocárdio , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Imagem de Perfusão do Miocárdio/métodos , Estudos Retrospectivos , Reprodutibilidade dos Testes , Circulação Coronária/fisiologia , Reserva Fracionada de Fluxo Miocárdico , Software , Processamento de Imagem Assistida por Computador/métodosRESUMO
PURPOSE: This study proposes a practical method for evaluating 2D spatial resolution with scatter on a CZT planar detector gamma camera, which is simpler and faster than the NEMA method. It is used to characterize the influence of distance on spatial resolution FWHM on a CZT camera equipped with a WEHR collimator. METHODS: The practical method uses linear sources tilted with respect to the detector axes. The spatial resolution full width at half maximum (FWHM) with four tilt angles was compared to the FWHM evaluated using the NEMA NU1-2018 method. Spatial resolution FWHM was also assessed with tilted sources acquired at distances of 0 to 20 cm using a single angle, with and without the post-processing image enhancement proposed by the manufacturer. RESULTS: Estimated spatial resolution FWHM with tilted sources was close to the spatial resolution FWHM estimated at 7.63 mm by the NEMA method, with deviations ranging from - 5.62 to 4.59% at 10 cm depending on the angle considered. The study of spatial resolution FWHM dependence on distance indicates that, for distances less than 3 cm, the FWHM no longer decreases with distance. The manufacturer's post-processing reduces the FWHM by an average of 15%. CONCLUSION: The practical method is quicker to implement and gives comparable results to the NEMA reference method for spatial resolution FWHM. Evaluation of spatial resolution with linear sources at short distances from the collimator is limited by the collimator effect and signal digitization. The tilted source method can be used to measure spatial resolution quickly and easily under clinical conditions for CZT planar cameras.
RESUMO
Objective. Peripheral Vascular Disease (PVD) affects more than 230 million people worldwide and is one of the leading causes of disability among people over age 60. Nowadays, PVD remains largely underdiagnosed and undertreated, and requires the development of tailored diagnostic approaches. We present the full design of the Dynamic Extremity SPECT (DE-SPECT) system, the first organ-dedicated SPECT system for lower extremity imaging, based on 1 cm thick Cadmium Zinc Telluride (CZT) spectrometers and a dynamic dual field-of-view (FOV) synthetic compound-eye (SCE) collimator.Approach. The proposed DE-SPECT detection system consists of 48 1 cm thick 3D-position-sensitive CZT spectrometers arranged in a partial ring of 59 cm in diameter in a checkerboard pattern. The detection system is coupled with a compact dynamic SCE collimator that allows the user to select between two different FOVs at any time during an imaging study: a wide-FOV (28 cm diameter) configuration for dual-leg or scout imaging or a high-resolution and high-sensitivity (HR-HS) FOV (16 cm diameter) for single-leg or focused imaging.Main results.The preliminary experimental data show that the CZT spectrometer achieves a 3D intrinsic spatial resolution of <0.75 mm FWHM and an excellent energy resolution over a broad energy range (2.6 keV FWHM at 218, 3.3 keV at 440 keV). From simulations, the wide-FOV configuration offers a 0.034% averaged sensitivity at 140 keV and <8 mm spatial resolution, whereas the HR-HS configuration presents a peak central sensitivity of 0.07% at 140 keV and a â¼5 mm spatial resolution. The dynamic SCE collimator enables the capability to perform joint reconstructions that would ensure an overall improvement in imaging performance.Significance. The DE-SPECT system is a stationary and high-performance SPECT system that offers an excellent spectroscopic performance with a unique computer-controlled dual-FOV imaging capability, and a relatively high sensitivity for multi-tracer and multi-functional SPECT imaging of the extremities.
Assuntos
Desenho de Equipamento , Doenças Vasculares Periféricas , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Humanos , Doenças Vasculares Periféricas/diagnóstico por imagem , Telúrio , Zinco , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , CádmioRESUMO
BACKGROUND: Large field of view CZT SPECT cameras with a ring geometry are available for some years now. Thanks to their good sensitivity and high temporal resolution, general dynamic SPECT imaging may be performed more easily, without resorting to dedicated systems. To evaluate the dynamic SPECT imaging by such cameras, we have performed an in vivo pilot study to analyze the kidney function of a pig and compare the results to standard dynamic planar imaging by a conventional gamma camera. METHODS: A 7-week-old (12 kg) female Landrace pig was injected with [99mTc]Tc-MAG3 and a 30 min dynamic SPECT acquisition of the kidneys was performed on a CZT ring camera. A fast SPECT/CT was acquired with the same camera immediately after the dynamic SPECT, without moving the pig, and used for attenuation correction and drawing regions of interest. The next day the same pig underwent a dynamic planar imaging of the kidneys by a conventional 2-head gamma camera. The dynamic SPECT acquisition was reconstructed using a MLEM algorithm with up to 20 iterations, with and without attenuation correction. Time-activity curves of the total counts of each kidney were extracted from 2D and 3D dynamic images. An adapted 2-compartment model was derived to fit the data points and extract physiological parameters. Comparison of these parameters was performed between the different reconstructions and acquisitions. RESULTS: Time-activity curves were nicely fitted with the 2-compartment model taking into account the anesthesia and bladder filling. Kidney physiological parameters were found in agreement with literature values. Good agreement of these parameters was obtained for the right kidney between dynamic SPECT and planar imaging. Regional analysis of the kidneys can be performed in the case of the dynamic SPECT imaging and provided good agreement with the whole kidney results. CONCLUSIONS: Dynamic SPECT imaging is feasible with CZT swiveling-detector ring cameras and provides results in agreement with dynamic planar imaging by conventional gamma cameras. Regional analysis of organs uptake and clearance becomes possible. Further studies are required regarding the optimization of acquisition and reconstruction parameters to improve image quality and enable absolute quantification.
Assuntos
Câmaras gama , Rim , Telúrio , Tomografia Computadorizada de Emissão de Fóton Único , Zinco , Animais , Projetos Piloto , Rim/diagnóstico por imagem , Feminino , Suínos , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Cádmio , Tecnécio Tc 99m Mertiatida , Algoritmos , Compostos RadiofarmacêuticosRESUMO
Background: The value of semiquantitative resting myocardial perfusion imaging (MPI) in coronary artery disease (CAD) is limited. At present, quantitative MPI can be performed by a new cadmium zinc tellurium single-photon emission computed tomography (CZT-SPECT) scan. The quantitative index of resting myocardial blood flow (MBF) has received little attention, and its manifestations and clinical value in the presence of unstable coronary blood flow have not been clarified. Purpose: In patients with ST-segment elevation myocardial infarction (STEMI), whether resting MBF can provide additional value of blood flow than semi-quantitative resting MPI is not sure. We also explored the influencing factors of resting MBF. Methods: This was a retrospective clinical study. We included 75 patients with STEMI in the subacute phase who underwent resting MPI and dynamic scans after reperfusion therapy. General patient information, STEMI-related data, MPI, gated MPI (G-MPI), and resting MBF data were collected and recorded. According to the clinically provided culprit vessels, the resting MBF was divided into ischemic MBF and non-ischemic MBF. The paired Wilcoxon signed-rank test was used for resting MBF. The receiver operating characteristic (ROC) curves were used to determine the optimal threshold for ischemia, and multiple linear regression analysis was used to analyze the influencing factors of resting MBF. Results: There was a statistically significant difference between the ischemic MBF and non-ischemic MBF [0.59 (0.47-0.72) vs. 0.76 (0.64-0.93), p < 0.0001]. The ROC curve analysis revealed that resting MBF could identify ischemia to a certain extent, with a cutoff value of 0.5975, area under the curve (AUC) = 0.666, sensitivity = 55.8%, and specificity = 68.7%. Male sex and summed rest score (SRS) were influencing factors for resting MBF. Conclusion: To a certain extent, resting MBF can suggest residual ischemia after reperfusion therapy in patients with STEMI. There was a negative correlation between male sex, SRS, and ischemic MBF. A lower resting MBF may be associated with more severe myocardial ischemia.
RESUMO
BACKGROUND: Position verification and motion monitoring are critical for safe and precise radiotherapy (RT). Existing approaches to these tasks based on visible light or x-ray are suboptimal either because they cannot penetrate obstructions to the patient's skin or introduce additional radiation exposure. The low-cost mmWave radar is an ideal solution for these tasks as it can monitor patient position and motion continuously throughout the treatment delivery. PURPOSE: To develop and validate frequency-modulated continuous wave (FMCW) mmWave radars for position verification and motion tracking during RT delivery. METHODS: A 77 GHz FMCW mmWave module was used in this study. Chirp Z Transform-based (CZT) algorithm was developed to process the intermediate frequency (IF) signals. Absolute distances to flat Solid Water slabs and human shape phantoms were measured. The accuracy of absolute distance and relative displacement were evaluated. RESULTS: Without obstruction, mmWave based on the CZT algorithm was able to detect absolute distance within 1 mm for a Solid Water slab that simulated the reflectivity of the human body. Through obstructive materials, the mmWave device was able to detect absolute distance within 5 mm in the worst case and within 3.5 mm in most cases. The CZT algorithm significantly improved the accuracy of absolute distance measurement compared with Fast Fourier Transform (FFT) algorithm and was able to achieve submillimeter displacement accuracy with and without obstructions. The surface-to-skin distance (SSD) measurement accuracy was within 8 mm in the anterior of the phantom. CONCLUSIONS: With the CZT signal processing algorithm, the mmWave radar is able to measure the absolute distance to a flat surface within 1 mm. But the absolute distance measurement to a human shape phantom is as large as 8 mm at some angles. Further improvement is necessary to improve the accuracy of SSD measurement to uneven surfaces by the mmWave radar.
Assuntos
Processamento de Sinais Assistido por Computador , Água , Humanos , Movimento (Física) , RadiografiaRESUMO
BACKGROUND: Meta-analysis show the diagnostic performance of cardiac dedicated multi-pinhole cadmium-zinc-telluride myocardial perfusion imaging (MPI) with a sensibility around 0.9 and a specificity around 0.7. The aim of the present study is to explore a simple method to generate less artefact on MPI using single photon emission computed tomography (SPECT) and to enhance specificity without changing sensibility. RESULTS: From October 2018 to March 2019, 200 patients who underwent SPECT with [99mTc]Tc-tetrofosmin were prospectively recruited: 100 patients with ischemia or necrosis diagnosis (first arm), and 100 patients with myocardial reversible SPECT artefact (second arm). Each SPECT was explored using two image process based on a Butterworth prefilter and post-filter: the original image processing (reconstruction A) with a cut-off frequency equals to 37% of the Nyquist frequency and order equals to 7, and a second image processing (reconstruction B) with a cut-off frequency equals to 25% of the Nyquist frequency and order equals to 5. For each patient, sum stress or rest score with and without septum (SSRS and SSRSws) were calculated with the two reconstructions. No significant statistical difference between SSRSa and SSRSb was identified for the first arm (P = 0.54) and the relative difference ∆r was - 0.5 ± 11.1% (95% CI - 2.7 to 1.7). We found a significant statistical difference between SSRSa and SSRSb for the second arm (p < 0.0001) and the relative difference ∆r was 69.7 ± 16.2% (95% CI 66.6-72.9). CONCLUSION: In conclusion, using a Butterworth prefilter and post-filter cut-off frequency equal to 25% of the Nyquist frequency before iterative reconstruction generates less artefact and improves myocardial SPECT specificity without affecting sensibility compared with the original reconstruction.
RESUMO
CdZnTe (CZT) is a new type of compound semiconductor that has emerged in recent years. Compared to other semiconductor materials, it possesses an ideal bandgap, high density, and high electron mobility, rendering it an excellent room-temperature composite semiconductor material for X-ray and γ-ray detectors. Due to the exceptional performance of CZT material, detectors manufactured using it exhibit high energy resolution, spatial resolution, and detection efficiency. They also have the advantage of operating at room temperature. CZT array detectors, furthermore, demonstrate outstanding spatial detection and three-dimensional imaging capabilities. Researchers worldwide have conducted extensive studies on this subject. This paper, building upon this foundation, provides a comprehensive analysis of CZT crystals and CZT array detectors and summarizes existing research to offer valuable insights for envisioning new detector methodologies.
RESUMO
BACKGROUND: In image processing for activity quantification, the end goal is to produce a metric that is independent of the measurement geometry. Photon attenuation needs to be accounted for and can be accomplished utilizing spectral information, avoiding the need of additional image acquisitions. The aim of this work is to investigate the feasibility of 177Lu activity quantification with a small CZT-based hand-held gamma-camera, using such an attenuation correction method. METHODS: A previously presented dual photopeak method, based on the differential attenuation for two photon energies, is adapted for the three photopeaks at 55 keV, 113 keV, and 208 keV for 177Lu. The measurement model describes the count rates in each energy window as a function of source depth and activity, accounting for distance-dependent system sensitivity, attenuation, and build-up. Parameter values are estimated from characterizing measurements, and the source depth and activity are obtained by minimizing the difference between measured and modelled count rates. The method is applied and evaluated in phantom measurements, in a clinical setting for superficial lesions in two patients, and in a pre-clinical setting for one human tumour xenograft. Evaluation is made for a LEHR and an MEGP collimator. RESULTS: For phantom measurements at clinically relevant depths, the average (and standard deviation) in activity errors are 17% ± 9.6% (LEHR) and 2.9% ± 3.6% (MEGP). For patient measurements, deviations from activity estimates from planar images from a full-sized gamma-camera are 0% ± 21% (LEHR) and 16% ± 18% (MEGP). For mouse measurements, average deviations of - 16% (LEHR) and - 6% (MEGP) are obtained when compared to a small-animal SPECT/CT system. The MEGP collimator appears to be better suited for activity quantification, yielding a smaller variability in activity estimates, whereas the LEHR results are more severely affected by septal penetration. CONCLUSIONS: Activity quantification for 177Lu using the hand-held camera is found to be feasible. The readily available nature of the hand-held camera may enable more frequent activity quantification in e.g., superficial structures in patients or in the pre-clinical setting.
RESUMO
To grasp the impact of carbon metabolism on the evolution of "production-living-ecological" (PLE) space due to land use change in the Changsha-Zhuzhou-Xiangtan (CZT) urban agglomeration, this study delves into the temporal and spatial distribution of PLE space carbon metabolism by constructing a carbon flow model. We evaluate the influence of positive and negative carbon flows on carbon metabolism using ecological network analysis and utility assessment. Furthermore, we delve into the driving factors behind carbon metabolism through redundancy analysis (RDA). The findings of this study included mainly the following aspects. (1) From 2000 to 2020, the net carbon flow in the CZT urban agglomeration consistently remained negative, with the primary source of negative carbon flow being the transition from ecological space to production space. (2) Within the ecological utility network, the dominant ecological relationship shifted from a period of control and exploitation relationship (counted for 61.91%) between 2000 and 2005 to one of competition relationship that counted for 83.33% in 2005-2010, 47.62% in 2010-2015, and 66.67% in 2015-2020. Mutualism relationship, present in the 2000-2005 period, completely disappeared in subsequent years. (3) The value of the utility function M was 0.88, 0.36, 0.48, and 0.40 in four stages (all less than 1), which meant that PLE space evolution on regional carbon metabolism was negative. (4) The key drivers influencing carbon metabolism in PLE space were mainly Change in the Comprehensive Land Use Index (CL), Change in the Proportion of Manufacturing Land (CM), Change in the Proportion of Forestland (CF), and Change in the Proportion of Cultivated Land (CC). Carbon metabolism holds a critical role in the urban material and energy cycle. Studying carbon metabolism within PLE space carries great importance for regional carbon cycling, carbon emission and sequestration, efforts to mitigate climate change, and the maintenance of regional sustainable development.
Assuntos
Ciclismo , Carbono , Mudança Climática , Comércio , Florestas , China , Cidades , Conservação dos Recursos Naturais , EcossistemaRESUMO
This study aimed to determine whether the whole-body bone Single Photon Emission Computed Tomography (SPECT) recording times of around 10 min, routinely provided by a high-sensitivity 360° cadmium and zinc telluride (CZT) camera, can be further reduced by a deep-learning noise reduction (DLNR) algorithm. METHODS: DLNR was applied on whole-body images recorded after the injection of 545 ± 33 MBq of [99mTc]Tc-HDP in 19 patients (14 with bone metastasis) and reconstructed with 100%, 90%, 80%, 70%, 60%, 50%, 40%, and 30% of the original SPECT recording times. RESULTS: Irrespective of recording time, DLNR enhanced the contrast-to-noise ratios and slightly decreased the standardized uptake values of bone lesions. Except in one markedly obese patient, the quality of DLNR processed images remained good-to-excellent down to 60% of the recording time, corresponding to around 6 min SPECT-recording. CONCLUSION: Ultra-fast SPECT recordings of 6 min can be achieved when DLNR is applied on whole-body bone 360° CZT-SPECT.
Assuntos
Cádmio , Aprendizado Profundo , Humanos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Telúrio , ZincoRESUMO
BACKGROUND: A CZT (cadmium zinc telluride) PET (positron emission tomography) system is being developed at Stanford University. CZT has the promise of outperforming scintillator-based systems in energy and spatial resolution but has relatively poor coincidence timing resolution. PURPOSE: To supplement GATE (GEANT 4 Application for Emission Tomography) simulations with charge transport and electronics modeling for a high-resolution CZT PET system. METHODS: A conventional GATE simulation was supplemented with electron-hole transport modeling and experimentally measured single detector energy resolution to improve the system-level understanding of a CZT high-resolution PET system in development at Stanford University. The modeling used GATE hits data and applied charge transport in the crystal and RC-CR processing of the simulated signals to model the electronics, including leading-edge discriminators and peak pick-off. Depth correction was also performed on the simulation data. Experimentally acquired data were used to determine energy resolution parameters and were compared to simulation data. RESULTS: The distributions of the coincidence timing, anode energy, and cathode energy are consistent with experimental data. Numerically, the simulation achieved 153 ns FWHM coincidence time resolution (CTR), which is of the same order of magnitude as the raw 210 ns CTR previously found experimentally. Further, the anode energy resolution was found to be 5.9% FWHM (full width at half maximum) at 511 keV in the simulation, which is between the experimental value found for a single crystal of 3% and the value found for the dual-panel setup of 8.02%, after depth correction. CONCLUSIONS: Developing this advanced simulation improves upon the limitations of GATE for modeling semiconductor PET systems and provides a means for deeper analysis of the coincidence timing resolution and other complementary electron-hole dependent system parameters.
Assuntos
Cádmio , Fótons , Telúrio , Humanos , Tomografia por Emissão de Pósitrons/métodos , Zinco/químicaRESUMO
The nitrogenated holey Graphene (C2N) based solar cell has been modeled and analyzed by using SCAPS-1D. Initially, a reported structure (TCO/IGZO/C2N) has been considered and improved by incorporating Al and Pt as front and back contact, respectively. Then, a novel device structure (Al/TCO/IGZO/C2N/CZT/Pt) has been proposed by inserting a BSF layer with heavily doped p-CZT material. The outcomes of the suggested cell structure have been analyzed numerically by changing different physical parameters. The absorber and BSF layer's thickness has been optimized as 0.6 µm and 0.4 µm, respectively. The cell performance is significantly declined when the bulk defect density in C2N exceeds the value of 1015 cm-3. The rising of device operating temperature shows a negative effect on performance. From this analysis, the structure has been optimized according to device performance. The optimized results have been achieved with the VOC, JSC, FF and efficiency (eta) of 1.40 V, 22.59 mA/cm2, 89.02%, and 28.16%, respectively. This research contributes to enriching the knowledge on the field of C2N materials and its use in optoelectronic applications.