Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant ; 17(2): 312-324, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38160253

RESUMO

Defensin-like proteins are conserved in multicellular organisms and contribute to innate immune responses against fungal pathogens. In rice, defensins play a novel role in regulating cadmium (Cd) efflux from the cytosol. However, whether the antifungal activity of defensins correlates with Cd-efflux function remains unknown. In this study, we isolated an endophytic Fusarium, designed Fo10, by a comparative microbiome analysis of rice plants grown in a paddy contaminated with Cd. Fo10 is tolerant to high levels of Cd, but is sensitive to the defensin-like protein OsCAL1, which mediates Cd efflux to the apoplast. We found that Fo10 symbiosis in rice is regulated by OsCAL1 dynamics, and Fo10 coordinates multiple plant processes, including Cd uptake, vacuolar sequestration, efflux to the environment, and formation of Fe plaques in the rhizosphere. These processes are dependent on the salicylic acid signaling pathway to keep Cd levels low in the cytosol of rice cells and to decrease Cd levels in rice grains without any yield penalty. Fo10 also plays a role in Cd tolerance in the poaceous crop maize and wheat, but has no observed effects in the eudicot plants Arabidopsis and tomato. Taken together, these findings provide insights into the mechanistic basis underlying how a fungal endophyte and host plant interact to control Cd accumulation in host plants by adapting defense responses to promote the establishment of a symbiosis that permits adaptation to high-Cd environments.


Assuntos
Oryza , Poluentes do Solo , Cádmio/metabolismo , Oryza/metabolismo , Poluentes do Solo/análise , Defensinas/metabolismo , Fungos , Solo
2.
Sci Total Environ ; 678: 660-670, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31078857

RESUMO

Cadmium (Cd) is a biologically non-essential heavy metal that can cause toxic effects in plants, animals and humans already at low concentrations compared to other metals. After Cd concentrations in cacao beans of various provenances, particularly from Latin America, were found to exceed the new regulations enforced by the European Union in 2019, there is an urgent need to find measures to lower Cd accumulation in cacao beans to acceptable values. In this research, the long-term cacao cultivar trial CEDEC-JAS in northern Honduras was used to investigate differences between 11 cultivars in Cd uptake and translocation. Sampling of various plant parts, including rootstocks, scions, leaves and beans, from three replicate trees per cultivar and the soil around each tree was conducted at this site. Results indicate that concentrations of available soil Cd were more closely correlated with Cd concentrations of the rootstocks (R2 = 0.56), scions (R2 = 0.59) and leaves (R2 = 0.46) than with bean Cd concentrations (R2 = 0.26). In addition, Cd concentrations of rootstocks, scions and leaves showed close relationships to available soil Cd concentrations, with no significant differences between the cultivars. In contrast, bean Cd concentrations showed only weak correlations to available soil Cd and Cd concentrations in the vegetative plant parts, but significant variation among cultivars. Three cultivars, which were analysed in more detail, showed significant differences in Cd concentrations of mature beans, but not of immature beans. These results suggest that cultivar-related differences in bean Cd concentrations primarily result from differences in Cd loading during bean maturation, possibly due to cultivar-specific differences in the xylem-to-phloem transfer of Cd. The results show that selection of cultivars with low Cd transfer from vegetative parts into the beans has high potential to keep Cd accumulation in cacao beans at levels that are safe for consumption.


Assuntos
Cacau/metabolismo , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Árvores/metabolismo , Cacau/genética , Honduras , Espectrometria de Massas , Distribuição Tecidual , Árvores/genética
3.
Ecotoxicol Environ Saf ; 150: 260-269, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29289861

RESUMO

Soil contamination with metals is a widespread problem posing risks to humans and ecosystems. Metal contaminated soils often hold poor microbial density and biodiversity. Among soil bacteria, rhizobia have a great agronomic and environmental significance and are major contributors to a sustainable maintenance of soil fertility. This group of microorganisms are severely affected by metals, such as cadmium (Cd), but information about metal resistance mechanisms in rhizobia is still limited. A concerted approach of the different mechanisms conferring Cd tolerance to rhizobia was conducted using two Rhizobium strains with contrasting tolerances to Cd. Results show that both strains resort to the same mechanisms (extracellular immobilization, periplasmic allocation, cytoplasmic sequestration and biotransformation of toxic products) to overcome stress, but differences in the efficiencies of some mechanisms were noticed. The ability of Rhizobium to increase glutathione in the presence of Cd emerges as a central factor in the tolerance to Cd and is as a feature to be looked for when screening or transforming microorganisms to integrate plant-microbe consortia. These could promote plant growth at contaminated sites, being more efficient for the cleanup of metals from contaminated sites and the restoration of soil quality.


Assuntos
Cádmio/toxicidade , Rhizobium/efeitos dos fármacos , Microbiologia do Solo , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Biodiversidade , Ecossistema , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Desenvolvimento Vegetal , Rhizobium/metabolismo , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA