Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 1): 132273, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734348

RESUMO

The basic leucine zipper (bZIP) transcription factors (TFs) function importantly in numerous life processes in plants. However, bZIP members and their biological roles remain unknown in Camelina sativa, a worldwide promising oil crop. Here, 220 CsbZIP proteins were identified in camelina and classified into thirteen groups. Two and 347 pairs of tandem and segmental duplication genes were detected to be underwent purification selection, with segmental duplication as the main driven-force of CsbZIP gene family expansion. Most CsbZIP genes displayed a tissue-specific expression pattern. Particularly, CsbZIP-A12 significantly positively correlated with many FA/oil biosynthesis-related genes, indicating CsbZIP-A12 may regulate lipid biosynthesis. Notably, yeast one-hybrid (Y1H), ß-Glucuronidase (GUS), dual-luciferase (LUC) and EMSA assays evidenced that CsbZIP-A12 located in nucleus interacted with the promoters of CsSAD2-3 and CsFAD3-3 genes responsible for unsaturated fatty acid (UFA) synthesis, thus activating their transcriptions. Overexpression of CsbZIP-A12 led to an increase of total lipid by 3.275 % compared to the control, followed with oleic and α-linolenic acid levels enhanced by 3.4 % and 5.195 %, and up-regulated the expressions of CsSAD2-3, CsFAD3-3 and CsPDAT2-3 in camelina seeds. Furthermore, heterogeneous expression of CsbZIP-A12 significantly up-regulated the expressions of NtSAD2, NtFAD3 and NtPDAT genes in tobacco plants, thereby improving the levels of total lipids and UFAs in both leaves and seeds without negative effects on other agronomic traits. Together, our findings suggest that CsbZIP-A12 upregulates FA/oil biosynthesis by activating CsSAD2-3 and CsFAD3-3 as well as possible other related genes. These data lay a foundation for further functional analyses of CsbZIPs, providing new insights into the TF-based lipid metabolic engineering to increase vegetable oil yield and health-beneficial quality in oilseeds.


Assuntos
Brassicaceae , Ácidos Graxos Insaturados , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regiões Promotoras Genéticas , Filogenia , Nicotiana/genética , Nicotiana/metabolismo
2.
Nat Prod Res ; : 1-5, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613231

RESUMO

Camelina sativa (L.) Crantz is an oilseed plant common in Europe and Asia. This study used the gas chromatography-mass spectrometry (GC-MS) to examine the differences in the aroma on the basis of extraction method such as water distillation extraction (CSPW), Solid-phase microextraction (CSPM) and subcritical extraction (CSPS). Antibacterial test was evaluated by the microdilution method against Salmonella typhimurium, Streptococcus pneumoniae, Escherichia coli, Strepococcus pyogenens, Staphylococcus aureus, and antioxidant activity was determined through DPPH free radical, hydroxyl free radical, and superoxide anion radical scavenging capacity activity. The result revealed that three extraction methods were distinct from each other based on their volatile compounds. Sixty-one volatiles of diverse chemical nature were identified and quantified. The volatile components contain thioether, aldehydes, alcohols, ketones, acids, esters, alkene, alkanes, amide, and furan compounds. The volatile components of Camelina sativa (L.) Crantz have good antibacterial and antioxidant activities. Furthermore, this work provides reference methods for detecting novel volatile organic compounds in plants and products.

3.
Antioxidants (Basel) ; 12(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37627490

RESUMO

Sprouts are increasingly present in the human diet, being tasty and healthy foods high in antioxidant compounds. Although there is a body of literature on the sprouting of many plant species, Camelina sativa (L.) Crantz has not yet been studied for this purpose. This study aimed to characterize the main bioactive compounds and antioxidant potential of seeds and sprouts of five different Camelina cultivars (ALBA, CO46, CCE43, JOELLE, and VERA). In particular, the contents of phenolic compounds (PCs), phenolic acids (PAs), and glucosinolates (GLSs) were investigated. PCs, PAs, GLSs, and the antioxidant activity of seeds differed among cultivars and were greatly increased by sprouting. A PCA analysis underlined both the effect of the cultivar (PC2) and the germination (PC1) on the nutritional properties of Camelina. The best nutritional properties of seeds were observed for ALBA and CCE43, while the best nutritional properties of sprouts were recorded for CCE43 and JOELLE, since the latter cultivar showed a greater enhancement in phytochemical content and antioxidant activity with sprouting. Finally, a UHPLC-UV procedure for the analysis of GLSs in Camelina was developed and validated. The performance criteria of the proposed method demonstrated that it is useful for the analysis of GLSs in Camelina.

4.
Plants (Basel) ; 12(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36987017

RESUMO

Winter oilseed cash cover crops are gaining popularity in integrated weed management programs for suppressing weeds. A study was conducted at two field sites (Fargo, North Dakota, and Morris, Minnesota) to determine the freezing tolerance and weed-suppressing traits of winter canola/rapeseed (Brassica napus L.) and winter camelina [Camelina sativa (L.) Crantz] in the Upper Midwestern USA. The top 10 freezing tolerant accessions from a phenotyped population of winter canola/rapeseed were bulked and planted at both locations along with winter camelina (cv. Joelle) as a check. To phenotype our entire winter B. napus population (621 accessions) for freezing tolerance, seeds were also bulked and planted at both locations. All B. napus and camelina were no-till seeded at Fargo and Morris at two planting dates, late August (PD1) and mid-September (PD2) 2019. Data for winter survival of oilseed crops (plants m-2) and their corresponding weed suppression (plants m-2 and dry matter m-2) were collected on two sampling dates (SD) in May and June 2020. Crop and SD were significant (p < 0.05) for crop plant density at both locations, and PD in Fargo and crop x PD interaction in Morris were significant for weed dry matter. At Morris and Fargo, PD1 produced greater winter B. napus survival (28% and 5%, respectively) and PD2 produced higher camelina survival (79% and 72%, respectively). Based on coefficient of determination (r2), ~50% of weed density was explained by camelina density, whereas ≤20% was explained by B. napus density at both locations. Camelina from PD2 suppressed weed dry matter by >90% of fallow at both locations, whereas weed dry matter in B. napus was not significantly different from fallow at either PD. Genotyping of overwintering canola/rapeseed under field conditions identified nine accessions that survived at both locations, which also had excellent freezing tolerance under controlled conditions. These accessions are good candidates for improving freezing tolerance in commercial canola cultivars.

5.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498878

RESUMO

Camelina sativa (L.) Crantz is an indispensable oilseed crop, and its seeds contain many unsaturated fatty acids. FAD (fatty acid desaturase) regulates the synthesis of unsaturated fatty acids. In this research, we performed CsFAD gene family analysis and identified 24 CsFAD genes in Camelina, which were unevenly distributed on 14 of the 19 total chromosomes. Phylogenetic analysis showed that CsFAD includes four subfamilies, supported by the conserved structures and motifs of CsFAD genes. In addition, we investigated the expression patterns of the FAD family in the different tissues of Camelina. We found that CsFAD family genes were all expressed in the stem, and CsFAD2-2 was highly expressed in the early stage of seed development. Moreover, during low temperature (4 °C) stress, we identified that the expression level of CsFAD2-2 significantly changed. By observing the transient expression of CsFAD2-2 in Arabidopsis protoplasts, we found that CsFAD2-2 was located on the nucleus. Through the detection and analysis of fatty acids, we prove that CsFAD2-2 is involved in the synthesis of linolenic acid (C18:3). In conclusion, we identified CsFAD2-2 through the phylogenetic analysis of the CsFAD gene family and further determined the fatty acid content to find that CsFAD2-2 is involved in fatty acid synthesis in Camelina.


Assuntos
Arabidopsis , Brassicaceae , Filogenia , Brassicaceae/genética , Brassicaceae/metabolismo , Sementes/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo
6.
Front Nutr ; 9: 901944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938110

RESUMO

The food waste generated by small and medium agro-industrial enterprises requires appropriate management and valorization in order to decrease environmental problems and recover high-value products, respectively. In this study, the Camelina sativa seed by-product was used as a source of glucosinolates. To begin, the chemical profile of the extract obtained using an international organization for standardization (ISO) procedure was determined by UPLC-HRMS/MS analysis. In addition, an extraction method based on ultrasound-assisted extraction was developed as an alternative and green method to recover glucosinolates. Main parameters that affect extraction efficiency were optimized using a response surface design. Under optimized conditions, the extract showed an improvement in extraction yield with a reduction in organic solvent amount compared to those obtained using the ISO procedure. Finally, the extract obtained with the ultrasound-assisted method was purified, tested on human colorectal cancer cell lines, and showed promising results.

7.
Physiol Mol Biol Plants ; 27(2): 417-427, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33707878

RESUMO

Due to the increased production and release of silver nanoparticles (AgNPs) in the environment, the concerns about the possibility of toxicity and oxidative damage to plant ecosystems should be considered. In the present study, the effects of different concentrations of AgNPs (0, 0.5, 1, 2, 3 and 4 g/L) synthesized using the extract of camelina (Camelina sativa) leaves on the growth and the biochemical traits of camelina seedlings were investigated. The results showed that AgNPs significantly increased Ag accumulation in the roots and shoots which decreased the growth and photosynthetic pigments of camelina seedlings. The highest decrease in the height and total dry weight was observed by 53.1 and 61.8% under 4 g/L AgNPs, respectively over control plants. AgNPs application over 2 g/L enhanced the accumulation of proline, malondialdehyde, hydrogen peroxide and methylglyoxal, and up-regulated the activity of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) and glyoxalase (glyoxalase I and II) system which indicates oxidative stress induction in camelina seedlings. Moreover, AgNPs reduced ASA and GSH contents and increased DHA and GSSG contents, hence disrupting the redox balance. These results showed that AgNPs at 4 g/L had the most toxic effects on the camelina growth. Therefore, increasing oxidative stress markers and the activity of antioxidant enzymes and enzymes involved in glyoxalase system indicated the oxidative stress induced by AgNPs treatments over 2 g/L as well as the induction of antioxidant defense systems to combat AgNPs-induced oxidative stress.

8.
Plant Sci ; 303: 110752, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33487340

RESUMO

Diacylglycerol acyltransferases (DGAT) catalyze the final committed step of de novo biosynthesis of triacylglycerol (TAG) in plant seeds. This study was to functionally characterize DGAT3 genes in Camelina sativa, an important oil crops accumulating high levels of unsaturated fatty acids (UFAs) in seeds. Three camelina DGAT3 genes (CsDGAT3-1, CsDGAT3-2 and CsDGAT3-3) were identified, and the encoded proteins were predicted to be cytosolic-soluble proteins present as a homodimer containing the 2Fe-2S domain. They had divergent expression patterns in various tissues, suggesting that they may function in tissue-specific manner with CsDGAT3-1 in roots, CsDGAT3-2 in flowers and young seedlings, and CsDGAT3-3 in developing seeds. Functional complementation assay in yeast demonstrated that CsDGAT3-3 restored TAG synthesis. TAG content and UFAs, particularly eicosenoic acid (EA, 20:1n-9) were largely increased by adding exogenous UFAs in the yeast medium. Further heterogeneously transient expression in N. benthamiana leaves and seed-specific expression in tobacco seeds indicated that CsDGAT3-3 significantly enhanced oil and UFA accumulation with much higher level of EA. Overall, CsDGAT3-3 exhibited a strong abilty catalyzing TAG synthesis and high substrate preference for UFAs, especially for 20:1n-9. The present data provide new insights for further understanding oil biosynthesis mechanism in camelina seeds, indicating that CsDGAT3-3 may have practical applications for increasing both oil yield and quality.


Assuntos
Acil Coenzima A/metabolismo , Aciltransferases/genética , Camellia/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Aciltransferases/metabolismo , Aciltransferases/fisiologia , Camellia/enzimologia , Camellia/fisiologia , Clonagem Molecular , Ácidos Graxos Monoinsaturados/metabolismo , Genes de Plantas/fisiologia , Organismos Geneticamente Modificados , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae , Análise de Sequência de DNA , Especificidade por Substrato , Nicotiana , Transcriptoma
9.
BMC Genomics ; 21(1): 786, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176698

RESUMO

BACKGROUND: WRKY transcription factors are a superfamily of regulators involved in diverse biological processes and stress responses in plants. However, there is limited knowledge about the WRKY family in camelina (Camelina sativa), an important Brassicaceae oil crop with strong tolerance for various stresses. Here, a genome-wide characterization of WRKY proteins is performed to examine their gene structures, phylogenetics, expression, conserved motif organizations, and functional annotation to identify candidate WRKYs that mediate stress resistance regulation in camelinas. RESULTS: A total of 242 CsWRKY proteins encoded by 224 gene loci distributed unevenly over the chromosomes were identified, and they were classified into three groups by phylogenetic analysis according to their WRKY domains and zinc finger motifs. The 15 CsWRKY gene loci generated 33 spliced variants. Orthologous WRKY gene pairs were identified, with 173 pairs in the C. sativa and Arabidopsis genomes as well as 282 pairs in the C. sativa and B. napus genomes, respectively. A total of 137 segmental duplication events were observed, but there was no tandem duplication in the camelina genome. Ten major conserved motifs were examined, with WRKYGQK being the most conserved, and several variants were present in many CsWRKYs. Expression analysis revealed that 50% more CsWRKY genes were expressed constitutively, and a set of them displayed tissue-specific expression. Notably, 11 CsWRKY genes exhibited significant expression changes in seedlings under cold, salt, and drought stresses, showing a preferentially inducible expression pattern in response to the stress. CONCLUSIONS: The present article describes a detailed analysis of the CsWRKY gene family and its expression profiles in 12 tissues and under several stress conditions. Segmental duplication is the major force underlying the broad expansion of this gene family, and a strong purifying pressure occurred for CsWRKY proteins during their evolution. CsWRKY proteins play important roles in plant development, with differential functions in different tissues. Exceptionally, eleven CsWRKYs, particularly five alternative spliced isoforms, were found to be the possible key players in mediating plant responses to various stresses. Overall, our results provide a foundation for understanding the roles of CsWRKYs and the precise mechanism through which CsWRKYs regulate high stress resistance as well as the development of stress tolerance cultivars among Cruciferae crops.


Assuntos
Genoma de Planta , Proteínas de Plantas , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
10.
Ceska Slov Farm ; 69(3): 137-142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32972157

RESUMO

The present article discusses the results of the study of the pharmacological activity of plant extracts from Camelina sativa (L.) Crantz: total herb extract (ECS) and oil from seeds (OCS). ECS was obtained from non-fat raw materials by the method of fractional maceration with 70% ethanol. OCS was obtained by means of extraction in a Soxhlet apparatus. Possible hypoglycemic activity of the extracts and dose selection were evaluated by primary pharmacological screening. Maximum hypoglycemic activity for ECS and OCS at a dose of 200 mg/kg was detected. A deeper study of the hypoglycemic and hypolipidemic properties of the extracts was performed on an experimental model of metabolic syndrome in rats that was induced by excessive doses of fructose (20% solution) for 8 weeks. In the last 2 weeks, the animals additionally received extracts and the reference preparation Metformin® (150 mg/kg). The characteristics of glucose homeo-stasis were evaluated by oral glucose tolerance test and short insulin test. The study also examined the content of total cholesterol and triglycerides. It was found that ECS and OCS of Camelina sativa (L.) Crantz at a dose of 200 mg/kg being administered for 14 days under conditions of high-fructose diet statistically significantly inhibited the formation of glucose tolerance and insulin resistance. ECS was found to have a pronounced lipid-lowering effect on lipid metabolism. The obtained results require further study of this plant raw material.


Assuntos
Brassicaceae/química , Hipoglicemiantes/farmacologia , Hipolipemiantes/farmacologia , Resistência à Insulina , Extratos Vegetais/farmacologia , Animais , Glicemia , Dieta , Frutose , Insulina , Metabolismo dos Lipídeos , Síndrome Metabólica/tratamento farmacológico , Ratos
11.
Front Plant Sci ; 11: 11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117362

RESUMO

Camelina sativa (L.) Crantz is an important Brassicaceae oil crop with a number of excellent agronomic traits including low water and fertilizer input, strong adaptation and resistance. Furthermore, its short life cycle and easy genetic transformation, combined with available data of genome and other "-omics" have enabled camelina as a model oil plant to study lipid metabolism regulation and genetic improvement. Particularly, camelina is capable of rapid metabolic engineering to synthesize and accumulate high levels of unusual fatty acids and modified oils in seeds, which are more stable and environmentally friendly. Such engineered camelina oils have been increasingly used as the super resource for edible oil, health-promoting food and medicine, biofuel oil and high-valued chemical production. In this review, we mainly highlight the latest advance in metabolic engineering towards the predictive manipulation of metabolism for commercial production of desirable bio-based products using camelina as an ideal platform. Moreover, we deeply analysis camelina seed metabolic engineering strategy and its promising achievements by describing the metabolic assembly of biosynthesis pathways for acetyl glycerides, hydroxylated fatty acids, medium-chain fatty acids, ω-3 long-chain polyunsaturated fatty acids, palmitoleic acid (ω-7) and other high-value oils. Future prospects are discussed, with a focus on the cutting-edge techniques in camelina such as genome editing application, fine directed manipulation of metabolism and future outlook for camelina industry development.

12.
Biochem Biophys Res Commun ; 513(1): 213-218, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30954220

RESUMO

Rare cold-inducible 2 (RCI2) proteins are small hydrophobic proteins that are known to be localized in cellular membranes. The function of RCI2 proteins has been reported to be associated with low-temperature, salt, and drought stress tolerances as a membrane potential regulator; however, the specific functions are still unknown. The PIP2 (plasma membrane intrinsic protein 2) aquaporins are proteins that transport water and small solutes into the cell. The expression and activity of PIP2 proteins, like RCI2, are also related to salt- and drought-stress tolerance. In this study, we identified novel protein interactions between RCI2 and PIP2; 1, including protein accumulation changes in the bioenergy crop Camelina sativa L. under various NaCl stress conditions. Accumulation of both CsRCI2E and CsRCI2F proteins increased with NaCl stress; however, to differing levels depending on the NaCl stress intensity. A co-immunoprecipitation test revealed interaction between CsRCI2E-CsPIP2 and CsRCI2F-CsPIP2. Moreover, co-expression of the four CsRCI2 proteins with CsPIP2; 1 in Xenopus laevis oocytes reduced water transport activity. Furthermore, the abundance of CsPIP2; 1 protein was decreased under CsRCI2E and CsRCI2F co-expression. These results suggest that NaCl-induced expression of CsRCI2E and CsRCI2F contributes to the regulation of CsPIP2; 1.


Assuntos
Aquaporinas/metabolismo , Brassicaceae/fisiologia , Proteínas de Plantas/metabolismo , Estresse Salino , Água/metabolismo , Animais , Secas , Mapas de Interação de Proteínas , Cloreto de Sódio/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA