RESUMO
BACKGROUND: Colorectal cancer (CRC) is the third most prevalent cancer worldwide, with the tumor microenvironment (TME) playing a crucial role in its progression. Aggregated autophagy (AA) has been recognized as a factor that exacerbates CRC progression. This study aims to study the relationship between aggregated autophagy and CRC using single-cell sequencing techniques. Our goal is to explain the heterogeneity of the TME and to explore the potential for targeted personalized therapies. OBJECTIVE: To study the role of AA in CRC, we employed single-cell sequencing to discern distinct subpopulations within the TME. These subpopulations were characterized by their autophagy levels and further analyzed to identify specific biological processes and marker genes. RESULTS: Our study revealed significant correlations between immune factors and both clinical and biological characteristics of the tumor microenvironment (TME), particularly in cells expressing TUBA1B and HSP90AA1. These immune factors were associated with T cell depletion, a reduction in protective factors, diminished efficacy of immune checkpoint blockade (ICB), and enhanced migration of cancer-associated fibroblasts (CAFs), resulting in pronounced inflammation. In vitro experiments showd that silencing TUBA1B and HSP90AA1 using siRNA (Si-TUBA1B and Si-HSP90AA1) significantly reduced the expression of IL-6, IL-7, CXCL1, and CXCL2 and inhibition of tumor cell growth in Caco-2 and Colo-205 cell lines. This reduction led to a substantial alleviation of chronic inflammation and highlighted the heterogeneous nature of the TME. CONCLUSION: This study marks an initial foray into understanding how AA-associated processes may potentiate the TME and weaken immune function. Our findings provide insights into the complex dynamics of the TME and highlight potential targets for therapeutic intervention, suggesting a key role for AA in the advancement of colorectal cancer.
RESUMO
BACKGROUND: Fibroblast activation protein (FAP), a transmembrane serine protease overexpressed by cancer-associated fibroblasts in the tumor stroma, is an interesting biomarker for targeted radionuclide theranostics. FAP-targeting radiotracers have demonstrated to be superior to [18F]FDG PET/CT in various solid cancers. However, these radiotracers have suboptimal tumor retention for targeted radionuclide therapy (TRT). We aimed to develop a novel FAP-targeting pharmacophore with improved pharmacokinetics by introducing a substitution at the 8-position of (4-quinolinoyl)-glycyl-2-cyanopyrrolidine, which allows for conjugation of a chelator, dye, or other payloads. RESULTS: Here we showed the synthesis of DOTA-conjugated eFAP-6 and sulfo-Cyanine5-conjugated eFAP-7. After chemical characterization, the uptake and specificity of both tracers were determined on FAP-expressing cells. In vitro, [111In]In-eFAP-6 demonstrated a superior affinity and a more rapid, although slightly lower, peak uptake than gold standard [111In]In-FAPI-46. Confocal microscopy demonstrated a quick FAP-mediated internalization of eFAP-7. Studies with HT1080-huFAP xenografted mice confirmed a more rapid uptake of [177Lu]Lu-eFAP-6 vs. [177Lu]Lu-FAPI-46. However, tumor retention at 24 h post injection of [177Lu]Lu-eFAP-6 was lower than that of [177Lu]Lu-FAPI-46, hereby currently limiting its use for TRT. CONCLUSION: The superior affinity and faster tumor accumulation of eFAP-6 over FAPI-46 makes it a suitable compound for radionuclide imaging. After further optimization, the eFAP series has great potential for various oncological interventions, including fluorescent-guided surgery and effective targeted radionuclide theranostics.
RESUMO
Despite the efforts, pancreatic ductal adenocarcinoma (PDAC) is still highly lethal. Therapeutic challenges reside in late diagnosis and establishment of peculiar tumor microenvironment (TME) supporting tumor outgrowth. This stromal landscape is highly heterogeneous between patients and even in the same patient. The organization of functional sub-TME with different cellular compositions provides evolutive advantages and sustains therapeutic resistance. Tumor progressively establishes a TME that can suit its own needs, including proliferation, stemness and invasion. Cancer-associated fibroblasts and immune cells, the main non-neoplastic cellular TME components, follow soluble factors-mediated neoplastic instructions and synergize to promote chemoresistance and immune surveillance destruction. Unveiling heterotypic stromal-neoplastic interactions is thus pivotal to breaking this synergism and promoting the reprogramming of the TME toward an anti-tumor milieu, improving thus the efficacy of conventional and immune-based therapies. We underscore recent advances in the characterization of immune and fibroblast stromal components supporting or dampening pancreatic cancer progression, as well as novel multi-omic technologies improving the current knowledge of PDAC biology. Finally, we put into context how the clinic will translate the acquired knowledge to design new-generation clinical trials with the final aim of improving the outcome of PDAC patients.
Assuntos
Carcinoma Ductal Pancreático , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/terapia , Resistencia a Medicamentos Antineoplásicos/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Animais , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/metabolismo , Tolerância ImunológicaRESUMO
The three-dimensional (3D) cell culture technique has been applied comprehensively as a variable platform for medical research, biochemical signal pathway analysis, and evaluation of anti-tumor treatment response due to an excellent recapitulation of a tumor microenvironment (TME) in the in vitro cultured cancer cells. Pancreatic cancer (PaC) is one of the toughest malignancies with a complex TME and refractory treatment response. To comprehensively study the TME of PaC, there is an eager need to develop a 3D culture model to decompose the cellular components and their cross interactions. Herein, we establish a 3D PaC culture system with cancer stem cell (CSC) and scalability properties. To validate our model, we tested the individual PaC cell and the combined effects with cancer-associated fibroblasts (CAFs) on cancer tumorigenicity, the cellular interaction through the CXCR3/CXCL10 axis, and cellular responses reflection of anti-cancer treatments. With the help of our 3D technology, a simulated malignant spheroid with important stromal populations and TME physiochemical properties may be successfully recreated. It can be used in a wide range of preclinical research and helpful in advancing basic and translational cancer biology.
RESUMO
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers worldwide, with high morbidity and mortality rates. The evidence for the tumor-supporting capacities of cancer-associated fibroblasts (CAFs) that modulate cancer cell proliferation, invasion, metastasis, and tumor immunity, including in CRC, has been attracting attention. The present study examined the expression status of CD70 and POSTN in CRC and analyzed their association with clinicopathological features and clinical outcomes. In the present study, in total 15% (40/269) and 44% (119/269) of cases exhibited CD70 and POSTN expression on CAFs, respectively. Co-expression of CD70 and POSTN was detected in 8% (21/269) of patients. Fluorescent immunohistochemistry identified the co-expression of CD70 and POSTN with FAP and PDPN, respectively. ACTA2 was not co-expressed with CD70 or POSTN in CRC CAFs. CRC with CD70+/POSTN+ status in CAFs was significantly associated with distant organ metastasis (p = 0.0020) or incomplete resection status (p = 0.0011). CD70+/POSTN+ status tended to associate with advanced pT stage (p = 0.032) or peritoneal metastasis (p = 0.0059). Multivariate Cox hazards regression analysis identified CD70+/POSTN+ status in CAFs [hazard ratio (HR) = 3.78] as a potential independent risk factor. In vitro experiments revealed the activated phenotypes of colonic fibroblasts induced by CD70 and POSTN, while migration and invasion assays identified enhanced migration and invasion of CRC cells co-cultured with CD70- and POSTN-expressing colonic fibroblasts. On the basis of our observations, CD70 and POSTN immunohistochemistry can be used in the prognostication of CRC patients. CRC CAFs may be a promising target in the treatment of CRC patients.
Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos/metabolismo , Imuno-Histoquímica , Proliferação de Células , Neoplasias Colorretais/patologia , Moléculas de Adesão Celular/metabolismo , Ligante CD27/metabolismoRESUMO
Cancer metastasis is the deadliest event in tumorigenesis. Despite extensive research, there are still unsolved challenges regarding early metastasis detection and targeting strategies. Extracellular vesicles (EVs) and their impact on tumorigenic-related events are in the eye of current investigations. EVs represent a plethora of biomarkers and information, and they are considered key determinants in tumor progression and for tumor prognosis and monitoring. EVs are one of the key mediators for inter-cellular communications between tumor cells and their nearby stroma. They are involved in different steps of metastasis from invasion toward formation of pre-metastatic niches (PMNs), and final growth and colonization of tumor cells in desired organ/s of the target. Membrane components of EVs and their cargo can be traced for the identification of tumor metastasis, and their targeting is a promising strategy in cancer therapy. In this review, we aimed to discuss the current understanding of EV-based metastatic predilection in cancer, providing updated information about EV involvement in different metastatic steps and suggesting some strategies to hamper this devastating condition.
Assuntos
Vesículas Extracelulares , Metástase Neoplásica , Neoplasias , Humanos , Vesículas Extracelulares/metabolismo , Metástase Neoplásica/patologia , Neoplasias/patologia , Neoplasias/metabolismo , AnimaisRESUMO
Cells cultured on stiff 2D substrates exert high intracellular force, resulting in mechanical deformation of their nuclei. This nuclear deformation (ND) plays a crucial role in the transport of Yes Associated Protein (YAP) from the cytoplasm to the nucleus. However, cells in vivo are in soft 3D environment with potentially much lower intracellular forces. Whether and how cells may deform their nuclei in 3D for YAP localization remains unclear. Here, by culturing human colon cancer associated fibroblasts (CAFs) on 2D, 2.5D, and 3D substrates, we differentiated the effects of stiffness, force, and ND on YAP localization. We found that nuclear translocation of YAP depends on the degree of ND irrespective of dimensionality, stiffness and total force. ND induced by the perinuclear force, not the total force, and nuclear membrane curvature correlate strongly with YAP activation. Immunostained slices of human tumors further supported the association between ND and YAP nuclear localization, suggesting ND as a potential biomarker for YAP activation in tumors. Additionally, we conducted quantitative analysis of the force dynamics of CAFs on 2D substrates to construct a stochastic model of YAP kinetics. This model revealed that the probability of YAP nuclear translocation, as well as the residence time in the nucleus follow a power law. This study provides valuable insights into the regulatory mechanisms governing YAP dynamics and highlights the significance of threshold activation in YAP localization. STATEMENT OF SIGNIFICANCE: Yes Associated Protein (YAP), a transcription cofactor, has been identified as one of the drivers of cancer progression. High tumor stiffness is attributed to driving YAP to the nucleus, wherein it activates pro-metastatic genes. Here we show, using cancer associated fibroblasts, that YAP translocation to the nucleus depends on the degree of nuclear deformation, irrespective of stiffness. We also identified that perinuclear force induced membrane curvature correlates strongly with YAP nuclear transport. A novel stochastic model of YAP kinetics unveiled a power law relationship between the activation threshold and persistence time of YAP in the nucleus. Overall, this study provides novel insights into the regulatory mechanisms governing YAP dynamics and the probability of activation that is of immense clinical significance.
Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Proteínas de Sinalização YAP , Processamento de Proteína Pós-Traducional , Citoplasma/metabolismo , Neoplasias/metabolismo , Fibroblastos/metabolismoRESUMO
Background: Cancer-associated fibroblasts (CAFs) are notably involved in colorectal cancer (CRC) tumorigenesis, progression, and treatment failure. In this article, we report the in silico development of a CAF-related prognostic signature for CRC. Methods: We separately downloaded CRC transcription data from The Cancer Genome Atlas and the Gene Expression Omnibus database. Deconvolution algorithms, including Estimating the Proportions of Immune and Cancer Cells and the Microenvironment Cell Population-counter, were used to calculate CAF abundance, while the Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression algorithm was used to calculate the stromal score. Weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator algorithm were used to identify CAF-related genes and prognostic signatures. Results: We identified a three-gene, prognostic, CAF-related signature and defined risk groups based on the Riskscores. Multidimensional validations were applied to evaluate the robustness of the signature and its correlation with clinical parameters. We utilized Tumor Immune Dysfunction and Exclusion (TIDE) and oncoPredict algorithms to predict therapy responses and found that patients in low-risk groups are more sensitive to immunotherapy and chemotherapy drugs such as 5-fluorouracil and oxaliplatin. Finally, we used the Cancer Cell Line Encyclopedia and Human Protein Atlas databases to evaluate the mRNA and protein levels encoded by the signature genes. Conclusions: This novel CAF-related three-gene signature is expected to become a potential prognostic biomarker in CRC and predict chemotherapy and immunotherapy responses. It may be of considerable value for studying the tumor microenvironment in CRC.
RESUMO
Hematologic malignancies comprise a diverse range of blood, bone marrow, and organ-related disorders that present significant challenges due to drug resistance, relapse, and treatment failure. Cancer-associated fibroblasts (CAFs) represent a critical component of the tumor microenvironment (TME) and have recently emerged as potential therapeutic targets. In this comprehensive review, we summarize the latest findings on the roles of CAFs in various hematologic malignancies, including acute leukemia, multiple myeloma, chronic lymphocytic leukemia, myeloproliferative neoplasms, and lymphoma. We also explore their involvement in tumor progression, drug resistance, and the various signaling pathways implicated in their activation and function. While the underlying mechanisms and the existence of multiple CAF subtypes pose challenges, targeting CAFs and their associated pathways offers a promising avenue for the development of innovative treatments to improve patient outcomes in hematologic malignancies.
RESUMO
Single cell RNA sequencing (scRNA-seq) provides a great convenience for studying tumor occurrence and development for its ability to study gene expression at the individual cell level. However, patient-derived tumor tissues are composed of multiple types of cells including tumor cells and adjacent non-malignant cells such as stromal cells and immune cells. The spatial locations of various cells in situ tissues plays a pivotal role in the occurrence and development of tumors, which cannot be elucidated by scRNA-seq alone. Spatially resolved transcriptomics (SRT) technology emerges timely to explore the unrecognized relationship between the spatial background of a particular cell and its functions, and is increasingly used in cancer research. This review provides a systematic overview of the SRT technologies that are developed, in particular the more widely used cutting-edge SRT technologies based on next-generation sequencing (NGS). In addition, the main achievements by SRT technologies in precisely unveiling the underappreciated spatial locations on gene expression and cell function with unprecedented high-resolution in cancer research are emphasized, with the aim of developing more effective clinical therapeutics oriented to a deeper understanding of the interaction between tumor cells and surrounding non-malignant cells.
Assuntos
Neoplasias , Transcriptoma , Humanos , Transcriptoma/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Tecnologia , Neoplasias/genéticaRESUMO
Cancer-associated fibroblasts (CAFs) as a major component of cancer stroma contribute to diverse procedures of most solid tumors and might be a targeted cancer therapy approach. Their specified features, related signaling pathways, distinct biomarkers, and sub-populations need to be deciphered. There is a need for CAF extraction or induction for in vitro investigations. Some miRNAs could activate CAF-like phenotype and they also interfere in CAF-mediated drug resistance, aggressiveness, and metastatic behaviors of several cancer cell types. Due to the complex relevance of miRNA and CAFs, these non-coding oligonucleotides may serve as attractive scope for anti-cancer targeted therapies, but the lack of an efficient delivery system is still a major hurdle. Here, we have summarized the investigated information on CAF features, isolation, and induction procedures, and highlighted the miRNA-CAF communications, providing special insight into nano-delivery systems.
RESUMO
Colorectal cancer (CRC) is a leading cause of death worldwide. Improved preclinical tumor models are needed to make treatment screening clinically relevant and address disease mortality. Advancements in 3D cell culture have enabled a greater recapitulation of the architecture and heterogeneity of the tumor microenvironment (TME). This has enhanced their pathophysiological relevance and enabled more accurate predictions of tumor progression and drug response in patients. An increasing number of 3D CRC spheroid models include cell populations such as cancer-associated fibroblasts (CAFs), endothelial cells (ECs), immune cells, and gut bacteria to better mimic the in vivo regulation of signaling pathways. Furthermore, cell heterogeneity within the 3D spheroid models enables the identification of new therapeutic targets to develop alternative treatments and test TME-target therapies. In this mini review, we present the advances in mimicking tumor heterogeneity in 3D CRC spheroid models by incorporating CAFs, ECs, immune cells, and gut bacteria. We introduce how, in these models, the diverse cells influence chemoresistance and tumor progression of the CRC spheroids. We also highlight important parameters evaluated during drug screening in the CRC heterocellular spheroids.
RESUMO
Fibroblast activation protein (FAP), expressed on cancer-associated fibroblasts, is a target for diagnosis and therapy in multiple tumour types. Strategies to systemically deplete FAP-expressing cells show efficacy; however, these induce toxicities, as FAP-expressing cells are found in normal tissues. FAP-targeted photodynamic therapy offers a solution, as it acts only locally and upon activation. Here, a FAP-binding minibody was conjugated to the chelator diethylenetriaminepentaacetic acid (DTPA) and the photosensitizer IRDye700DX (DTPA-700DX-MB). DTPA-700DX-MB showed efficient binding to FAP-overexpressing 3T3 murine fibroblasts (3T3-FAP) and induced the protein's dose-dependent cytotoxicity upon light exposure. Biodistribution of DTPA-700DX-MB in mice carrying either subcutaneous or orthotopic tumours of murine pancreatic ductal adenocarcinoma cells (PDAC299) showed maximal tumour uptake of 111In-labelled DTPA-700DX-MB at 24 h post injection. Co-injection with an excess DTPA-700DX-MB reduced uptake, and autoradiography correlated with FAP expression in the stromal tumour region. Finally, in vivo therapeutic efficacy was determined in two simultaneous subcutaneous PDAC299 tumours; only one was treated with 690 nm light. Upregulation of an apoptosis marker was only observed in the treated tumours. In conclusion, DTPA-700DX-MB binds to FAP-expressing cells and targets PDAC299 tumours in mice with good signal-to-background ratios. Furthermore, the induced apoptosis indicates the feasibility of targeted depletion of FAP-expressing cells with photodynamic therapy.
Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Fotoquimioterapia , Animais , Camundongos , Serina Endopeptidases/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Distribuição Tecidual , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas/patologia , Fibroblastos/metabolismo , Ácido Pentético/metabolismoRESUMO
Patients with pancreatic ductal adenocarcinoma (PDAC) have a dismal 5 year survival of 9%. One important limiting factor for treatment efficacy is the dense tumor-supporting stroma. The cancer-associated fibroblasts in this stroma deposit excessive amounts of extracellular matrix components and anti-inflammatory mediators, which hampers the efficacy of chemo- and immunotherapies. Systemic depletion of all activated fibroblasts is, however, not feasible nor desirable and therefore a local approach should be pursued. Here, we provide a proof-of-principle of using fibroblast activation protein (FAP)-targeted photodynamic therapy (tPDT) to treat PDAC. FAP-targeting antibody 28H1 and irrelevant control antibody DP47GS were conjugated to the photosensitizer IRDye700DX (700DX) and the chelator diethylenetriaminepentaacetic acid. In vitro binding and cytotoxicity were evaluated using the fibroblast cell-line NIH-3T3 stably transfected with FAP. Biodistribution of 111In-labeled antibody-700DX constructs was determined in mice carrying syngeneic tumors of the murine PDAC cell line PDAC299, and in a genetically engineered PDAC mouse model (CKP). Then, tPDT was performed by exposing the subcutaneous or the spontaneous PDAC tumors to 690 nm light. Induction of apoptosis after treatment was assessed using automated analyses of immunohistochemistry for cleaved caspase-3. 28H1-700DX effectively bound to 3T3-FAP cells and induced cytotoxicity upon exposure to 690 nm light, whereas no binding or cytotoxic effects were observed for DP47GS-700DX. Although both 28H1-700DX and DP47GS-700DX accumulated in subcutaneous PDAC299 tumors, autoradiography demonstrated that only 28H1-700DX reached the tumor core. On the contrary, control antibody DP47GS-700DX was only present at the tumor rim. In CKP mice, both antibodies accumulated in the tumor, but tumor-to-blood ratios of 28H1-700DX were higher than that of the control. Notably, in vivo FAP-tPDT caused upregulation of cleaved caspase-3 staining in both subcutaneous and in spontaneous tumors. In conclusion, we have shown that tPDT is a feasible approach for local depletion of FAP-expressing stromal cells in murine models for PDAC.
Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Fotoquimioterapia , Camundongos , Animais , Serina Endopeptidases/metabolismo , Caspase 3/metabolismo , Distribuição Tecidual , Modelos Animais de Doenças , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patologia , Fibroblastos/metabolismo , Anticorpos/metabolismo , Linhagem Celular Tumoral , Neoplasias PancreáticasRESUMO
Growing evidence demonstrates that cancer-associated fibroblasts (CAF) are responsible for tumor genesis, growth, metastasis, and treatment response. Therefore, targeting these cells may contribute to tumor control. It has been proposed that targeting key molecules and pathways of proliferative functions can be more effective than killing CAFs. In this regard, multicellular aggregates, like spheroids, can be used as human tumor models. Spheroids closely resemble human tumors and mimic many of their features. Microfluidic systems are ideal for cultivation and study of spheroids. These systems can be designed with different biological and synthetic matrices in order to have a more realistic simulation of the tumor microenvironment (TME). In this study, we investigated the effect of all-trans retinoic acid (ATRA) on 3D spheroid invasion of MDA-MB cells exposed to hydrogel matrix derived from CAFs. The number of invasive cells significantly decreased in CAF-ECM hydrogel treated with ATRA (p < 0.05), which indicates that ATRA could be effective for CAFs normalization. This experiment was done using an agarose-alginate microfluidic chip. As compared with common methods, such hydrogel casting is an easier method for chip fabrication and can even reduce costs. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-023-00578-y.
RESUMO
Background: Poor prognosis in colon cancer is associated with a high content of cancer-associated fibroblasts (CAFs) and an immunosuppressive tumor microenvironment. The relationship between these two features is incompletely understood. Here, we aimed to generate a model system for studying the interaction between cancer cells and CAFs and their effect on immune-related cytokines and T cell proliferation. Methods: CAFs were isolated from colon cancer liver metastases and were immortalized to prolong lifespan and improve robustness and reproducibility. Established medium and matrix compositions that support the growth of patient-derived organoids were adapted to also support CAF growth. Changes in growth pattern and cellular re-organization were assessed by confocal microscopy, live cell imaging, and immunofluorescence. Single cell RNA sequencing was used to study CAF/organoid co-culture-induced phenotypic changes in both cell types. Conditioned media were used to quantify the production of immunosuppressive factors and to assess their effect on T cell proliferation. Results: We developed a co-culture system in which colon cancer organoids and CAFs spontaneously organize into superstructures with a high capacity to contract and stiffen the extracellular matrix (ECM). CAF-produced collagen IV provided a basement membrane supporting cancer cell organization into glandular structures, reminiscent of human cancer histology. Single cell RNA sequencing analysis showed that CAFs induced a partial epithelial-to-mesenchymal-transition in a subpopulation of cancer cells, similar to what is observed in the mesenchymal-like consensus molecular subtype 4 (CMS4) colon cancer. CAFs in co-culture were characterized by high expression of ECM components, ECM-remodeling enzymes, glycolysis, hypoxia, and genes involved in immunosuppression. An expression signature derived from CAFs in co-culture identified a subpopulation of glycolytic myofibroblasts specifically residing in CMS1 and CMS4 colon cancer. Medium conditioned by co-cultures contained high levels of the immunosuppressive factors TGFß1, VEGFA and lactate, and potently inhibited T cell proliferation. Conclusion: Co-cultures of organoids and immortalized CAFs recapitulate the histological, biophysical, and immunosuppressive features of aggressive mesenchymal-like human CRC. The model can be used to study the mechanisms of immunosuppression and to test therapeutic strategies targeting the cross-talk between CAFs and cancer cells. It can be further modified to represent distinct colon cancer subtypes and (organ-specific) microenvironments.
Assuntos
Fibroblastos Associados a Câncer , Neoplasias do Colo , Humanos , Fibroblastos Associados a Câncer/metabolismo , Técnicas de Cocultura , Reprodutibilidade dos Testes , Neoplasias do Colo/patologia , Microambiente TumoralRESUMO
Hepatocellular carcinoma (HCC) is the most common form of liver cancer. It is often preceded by chronic inflammation such as liver fibrosis and cirrhosis. Different cell types are believed to give rise to liver-specific cancer associated fibroblast (CAF), these include resident fibroblast, hepatic stellate cell, liver cancer cell, hepatic sinusoidal endothelial cell and mesenchymal stromal cell. The abundance of fibroblasts has contributed to the cancer progression, immune modulation and treatment resistance in HCC. In this review, we discussed the origins, subtypes and roles of cancer associated fibroblasts in HCC. Their specific roles in shaping the tumor microenvironment, facilitating cancer growth, and modulating different immune cell types to confer a permissive environment for cancer growth. CAF is now an attractive therapeutic target for cancer treatment, however specific therapeutic development in HCC is still lacking. Hence, we have included preclinical and clinical development of CAF-specific interventions for other cancer types in this review. However, most CAF-specific therapies have resulted in disappointing clinical outcomes, likely due to the difficulties in differentiating CAF from normal fibroblast. A thorough understanding of the characteristics and functionalities of CAF is warranted to further improve the therapeutic efficacy of anti-CAF therapies.
RESUMO
INTRODUCTION: Cancer-associated fibroblasts (CAFs) in the tumour microenvironment play a key role in tumour development, proliferation, invasion, and metastasis. The cytological features of spindle cells including CAFs-defined as stromal spindle cells (SSCs) adjacent to cancer cells-are frequently encountered in pulmonary adenocarcinomas. This study aimed to investigate the association between the presence of SSCs in cytological specimens and the clinicopathological features. METHODS: We evaluated 211 patients with pulmonary adenocarcinoma who underwent surgical resection. All participants had cytological specimens corresponding to the histological specimens available for review. RESULTS: Of the 211 cases examined, 89 were SSC-positive (SSC+ ) and 122 were SSC-negative (SSC- ). SSC+ cases were more frequently associated with higher pathological stage (P < 0.001), lymph node metastasis (P = 0.002), anaplastic lymphoma kinase (ALK) gene rearrangement (P = 0.04), high tumour grade (P < 0.001), solid and micropapillary predominant pattern (P = 0.02), and lymphatic vessel (P = 0.003), blood vessel (P < 0.001), and pleural invasion (P = 0.03) as compared to SSC- cases. Patients with SSC+ adenocarcinoma had a significantly shorter recurrence-free survival than those with SSC- adenocarcinoma (P = 0.009). Cytologically, necrotic background (P = 0.002), mucinous cancer cells (P = 0.02), pleomorphic cells (P < 0.001), and mutual cell inclusions (P = 0.01) were observed more frequently in SSC+ adenocarcinomas. CONCLUSIONS: The presence of SSCs could be an important cytological feature for predicting poor prognosis in lung adenocarcinomas.