Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Biomaterials ; 312: 122719, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39088912

RESUMO

Acute myeloid leukemia (AML) is a deadly form of leukemia with ineffective traditional treatment and frequent chemoresistance-associated relapse. Personalized drug screening holds promise in identifying optimal regimen, nevertheless, primary AML cells undergo spontaneous apoptosis during cultures, invalidating the drug screening results. Here, we reconstitute a 3D osteogenic niche (3DON) mimicking that in bone marrow to support primary AML cell survival and phenotype maintenance in cultures. Specifically, 3DON derived from osteogenically differentiated mesenchymal stem cells (MSC) from healthy and AML donors are co-cultured with primary AML cells. The AML cells under the AML_3DON niche showed enhanced viability, reduced apoptosis and maintained CD33+ CD34-phenotype, associating with elevated secretion of anti-apoptotic cytokines in the AML_3DON niche. Moreover, AML cells under the AML_3DON niche exhibited low sensitivity to two FDA-approved chemotherapeutic drugs, further suggesting the physiological resemblance of the AML_3DON niche. Most interestingly, AML cells co-cultured with the healthy_3DON niche are highly sensitive to the same sample drugs. This study demonstrates the differential responses of AML cells towards leukemic and healthy bone marrow niches, suggesting the impact of native cancer cell niche in drug screening, and the potential of re-engineering healthy bone marrow niche in AML patients as chemotherapeutic adjuvants overcoming chemoresistance, respectively.


Assuntos
Sobrevivência Celular , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Fenótipo , Microambiente Tumoral , Humanos , Leucemia Mieloide Aguda/patologia , Microambiente Tumoral/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura/métodos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Medula Óssea/patologia , Medula Óssea/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos , Células da Medula Óssea/citologia , Masculino , Diferenciação Celular/efeitos dos fármacos , Feminino
2.
Stem Cell Rev Rep ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39388081

RESUMO

The discipline of 3D cell modeling is currently undergoing a surge of captivating developments that are enhancing the realism and utility of tissue simulations. Using bioinks which represent cells, scaffolds, and growth factors scientists can construct intricate tissue architectures layer by layer using innovations like 3D bioprinting. Drug testing can be accelerated and organ functions more precisely replicated owing to the precise control that microfluidic technologies and organ-on-chip devices offer over the cellular environment. Tissue engineering is becoming more dynamic with materials that can modify their surroundings with the advent of hydrogels and smart biomaterials. Advances in spheroids and organoids are not only bringing us towards more effective and customized therapies, but they are also improving their ability to resemble actual human tissues. Confocal and two-photon microscopy are examples of advanced imaging methods that provide precise images of the functioning and interaction of cells. Artificial Intelligence models have applications for enhanced scaffold designs and for predicting the response of tissues to medications. Furthermore, via strengthening predictive models, optimizing data analysis, and simplifying 3D cell culture design, artificial intelligence is revolutionizing this field. When combined, these technologies are improving our ability to conduct research and moving us toward more individualized and effective medical interventions.

3.
Pathol Res Pract ; 263: 155610, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39342888

RESUMO

The high mortality rate of colorectal cancer (CRC) highlights the need for new treatment strategies; however, the venous invasion mechanisms in tumor endothelial cells within CRC remain unexplored. Therefore, we investigated the clinicopathological features of SRY-box transcription factor 17 (SOX17) in CRC. Immunohistochemical staining was performed on 55 CRC tissue specimens using a SOX17-specific antibody, followed by Kaplan-Meier and Cox proportional hazards regression analyses. SOX17 immunoreactivity was detected in the endothelial cells of tumor-penetrating vessels in 35/55 CRC samples. Kaplan-Meier analysis indicated that patients with SOX17 immunoreactivity had favorable overall and progression-free survival (log-rank test, P = 0.03 and 0.02, respectively). Notably, tumor endothelial SOX17 immunoreactivity was associated with a favorable prognosis in patients with stage III or IV disease (OS, P = 0.0089; PFS, P = 0.0065). Cox proportional hazard regression analysis indicated that SOX17 immunoreactivity is an independent factor for predicting favorable overall and progression-free survival in CRC (P = 0.02 and 0.01, respectively). The present findings suggest that SOX17 expression in tumor endothelial cells is a potential indicator of favorable prognosis in patients with CRC.

4.
Sci Rep ; 14(1): 20486, 2024 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227700

RESUMO

Recent advances in imaging suggested that spatial organization of hematopoietic cells in their bone marrow microenvironment (niche) regulates cell expansion, governing progression, and leukemic transformation of hematological clonal disorders. However, our ability to interrogate the niche in pre-malignant conditions has been limited, as standard murine models of these diseases rely largely on transplantation of the mutant clones into conditioned mice where the marrow microenvironment is compromised. Here, we leveraged live-animal microscopy and ultralow dose whole body or focal irradiation to capture single cells and early expansion of benign/pre-malignant clones in the functionally preserved microenvironment. 0.5 Gy whole body irradiation (WBI) allowed steady engraftment of cells beyond 30 weeks compared to non-conditioned controls. In-vivo tracking and functional analyses of the microenvironment showed no change in vessel integrity, cell viability, and HSC-supportive functions of the stromal cells, suggesting minimal inflammation after the radiation insult. The approach enabled in vivo imaging of Tet2+/- and its healthy counterpart, showing preferential localization within a shared microenvironment while forming discrete micro-niches. Notably, stationary association with the niche only occurred in a subset of cells and would not be identified without live imaging. This strategy may be broadly applied to study clonal disorders in a spatial context.


Assuntos
Hematopoiese Clonal , Nicho de Células-Tronco , Animais , Camundongos , Nicho de Células-Tronco/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos da radiação , Células-Tronco Hematopoéticas/metabolismo , Irradiação Corporal Total , Camundongos Endogâmicos C57BL , Rastreamento de Células/métodos , Microscopia Intravital/métodos
5.
Bioact Mater ; 42: 316-327, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39290339

RESUMO

Deciphering breast cancer treatment resistance remains hindered by the lack of models that can successfully capture the four-dimensional dynamics of the tumor microenvironment. Here, we show that microextrusion bioprinting can reproducibly generate distinct cancer and stromal compartments integrating cells relevant to human pathology. Our findings unveil the functional maturation of this millimeter-sized model, showcasing the development of a hypoxic cancer core and an increased surface proliferation. Maturation was also driven by the presence of cancer-associated fibroblasts (CAF) that induced elevated microvascular-like structures complexity. Such modulation was concomitant to extracellular matrix remodeling, with high levels of collagen and matricellular proteins deposition by CAF, simultaneously increasing tumor stiffness and recapitulating breast cancer fibrotic development. Importantly, our bioprinted model faithfully reproduced response to treatment, further modulated by CAF. Notably, CAF played a protective role for cancer cells against radiotherapy, facilitating increased paracrine communications. This model holds promise as a platform to decipher interactions within the microenvironment and evaluate stroma-targeted drugs in a context relevant to human pathology.

6.
Metabolism ; 161: 156016, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222743

RESUMO

Metabolism of Branched-chain amino acids (BCAAs) is essential for the nutrient necessities in mammals. Catalytic enzymes serve to direct the whole-body BCAAs oxidation which involve in the development of various metabolic disorders. The reprogrammed metabolic elements are also responsible for malignant oncogenic processes, and favor the formation of distinctive immunosuppressive microenvironment surrounding different cancers. The impotent immune surveillance related to BCAAs dysfunction is a novel topic to investigate. Here we focus on the BCAA catalysts that contribute to metabolic changes and dysregulated immune reactions in cancer progression. We summarize the current knowledge of BCAA catalyzation, highlighting the interesting roles of BCAA metabolism in the treatment of cancers.

7.
Int Rev Immunol ; : 1-14, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267425

RESUMO

In recent years, mostly spanning the past decade, the concept of immunometabolism has ushered with a novel perspective on carcinogenesis, tumor progression, and tumor response to therapy. It has become clear that the metabolic state of immune cells plays a significant role in shaping their antitumor or protumor activities within the cancer microenvironment. Consequently, the examination of tumor metabolic heterogeneity, including an exploration of immunometabolism, proves indispensable for enhancing prognostic tools and advancing the quest for personalized treatments. Here we have delved into how metabolic reprogramming profoundly influences the acquisition and maintenance of functional states, spanning from effector and cytotoxic profiles to regulatory and immunosuppressive phenotypes in both innate and adaptive immunity. These alterations wield considerable influence over tumor evolution and affect the outcome of cancer. Furthermore, we explore some of the cellular signaling mechanisms that underpin the metabolic and phenotypic flexibility of immune cells in response to external stimuli.

8.
Mol Carcinog ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254492

RESUMO

Adipocyte is a predominant component of the omental adipose tissue that influences the tumor microenvironment and increases the risk of endometrial cancer progression (EC), however, little is known about the underlying mechanism. In this study, using a co-culture model, we found that the adipocyte-EC cell interaction promoted SIRT1 signaling in vitro and in vivo xenograft mice models. Furthermore, immunostaining of SIRT1 protein showed significantly higher expression of SIRT1 in endometrial cancer patients than in normal endometria. RNA sequencing analysis revealed HMMR (hyaluronan-mediated motility receptor), an oncogene, as a downstream effector of SIRT1 in adipocyte-associated EC. Transient knockdown and chromatin immunoprecipitation assays showed that SIRT1 inhibition impedes transcription of the HMMR gene via FOXM1, and reduced expression of HMMR in co-cultured EC cells blocks AURKA activation via TPX2, leading to cell cycle arrest. This is the first study to report the positive correlation between SIRT1 and HMMR in EC patient tumors and might be used as a potential biomarker in EC. Notably, SIRT1 regulates HMMR expression in a FOXM1-dependent manner, and interfering with SIRT1 may provide a promising strategy for the management of endometrial cancer.

9.
Front Immunol ; 15: 1460282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39295859

RESUMO

Liver cancer is a major global health concern, ranking among the top causes of cancer-related deaths worldwide. Despite advances in medical research, the prognosis for liver cancer remains poor, largely due to the inherent limitations of current therapies. Traditional treatments like surgery, radiation, and chemotherapy often fail to provide long-term remission and are associated with significant side effects. Immunotherapy has emerged as a promising avenue for cancer treatment, leveraging the body's immune system to target and destroy cancer cells. However, its application in liver cancer has been limited. One of the primary challenges is the liver's unique immune microenvironment, which can inhibit the effectiveness of immunotherapeutic agents. This immune microenvironment creates a barrier, leading to drug resistance and reducing the overall efficacy of treatment. Recent studies have focused on understanding the immunological landscape of liver cancer to develop strategies that can overcome these obstacles. By identifying the specific factors within the liver that contribute to immune suppression and drug resistance, researchers aim to enhance the effectiveness of immunotherapy. Prospective strategies include combining immunotherapy with other treatments, using targeted therapies to modulate the immune microenvironment, and developing new agents that can bypass or counteract the inhibitory mechanisms in the liver. These advancements hold promise for improving outcomes in liver cancer treatment.


Assuntos
Imunoterapia , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Imunoterapia/métodos , Animais , Fígado/imunologia , Fígado/patologia , Evasão Tumoral , Tolerância Imunológica
10.
Cancer Cell Int ; 24(1): 199, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840117

RESUMO

The extracellular matrix (ECM) is a dynamic and complex microenvironment that modulates cell behavior and cell fate. Changes in ECM composition and architecture have been correlated with development, differentiation, and disease progression in various pathologies, including breast cancer [1]. Studies have shown that aligned fibers drive a pro-metastatic microenvironment, promoting the transformation of mammary epithelial cells into invasive ductal carcinoma via the epithelial-to-mesenchymal transition (EMT) [2]. The impact of ECM orientation on breast cancer metabolism, however, is largely unknown. Here, we employ two non-invasive imaging techniques, fluorescence-lifetime imaging microscopy (FLIM) and intensity-based multiphoton microscopy, to assess the metabolic states of cancer cells cultured on ECM-mimicking nanofibers in a random and aligned orientation. By tracking the changes in the intrinsic fluorescence of nicotinamide adenine dinucleotide and flavin adenine dinucleotide, as well as expression levels of metastatic markers, we reveal how ECM fiber orientation alters cancer metabolism and EMT progression. Our study indicates that aligned cellular microenvironments play a key role in promoting metastatic phenotypes of breast cancer as evidenced by a more glycolytic metabolic signature on nanofiber scaffolds of aligned orientation compared to scaffolds of random orientation. This finding is particularly relevant for subsets of breast cancer marked by high levels of collagen remodeling (e.g. pregnancy associated breast cancer), and may serve as a platform for predicting clinical outcomes within these subsets [3-6].

11.
Inflamm Regen ; 44(1): 23, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720352

RESUMO

BACKGROUND: Cancer tissues contain a wide variety of immune cells that play critical roles in suppressing or promoting tumor progression. Macrophages are one of the most predominant populations in the tumor microenvironment and are composed of two classes: infiltrating macrophages from the bone marrow and tissue-resident macrophages (TRMs). This review aimed to outline the function of TRMs in the tumor microenvironment, focusing on lung cancer. REVIEW: Although the functions of infiltrating macrophages and tumor-associated macrophages have been intensively analyzed, a comprehensive understanding of TRM function in cancer is relatively insufficient because it differs depending on the tissue and organ. Alveolar macrophages (AMs), one of the most important TRMs in the lungs, are replenished in situ, independent of hematopoietic stem cells in the bone marrow, and are abundant in lung cancer tissue. Recently, we reported that AMs support cancer cell proliferation and contribute to unfavorable outcomes. CONCLUSION: In this review, we introduce the functions of AMs in lung cancer and their underlying molecular mechanisms. A thorough understanding of the functions of AMs in lung cancer will lead to improved treatment outcomes.

12.
Acta Biomater ; 183: 111-129, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38801868

RESUMO

The development of high-throughput anticancer drug screening methods using patient-derived cancer cell (PDC) lines that maintain their original characteristics in an in vitro three-dimensional (3D) culture system poses a significant challenge to achieving personalized cancer medicine. Because stromal tissue plays a critical role in the composition and maintenance of the cancer microenvironment, in vitro 3D-culture using reconstructed stromal tissues has attracted considerable attention. Here, a simple and unique in vitro 3D-culture method using heparin and collagen together with fibroblasts and endothelial cells to fabricate vascularized 3D-stromal tissues for in vitro culture of PDCs is reported. Whereas co-treatment with bevacizumab, a monoclonal antibody against vascular endothelial growth factor, and 5-fluorouracil significantly reduced the survival rate of 3D-cultured PDCs to 30%, separate addition of each drug did not induce comparable strong cytotoxicity, suggesting the possibility of evaluating the combined effect of anticancer drugs and angiogenesis inhibitors. Surprisingly, drug evaluation using eight PDC lines with the 3D-culture method resulted in a drug efficacy concordance rate of 75% with clinical outcomes. The model is expected to be applicable to in vitro throughput drug screening for the development of personalized cancer medicine. STATEMENT OF SIGNIFICANCE: To replicate the cancer microenvironment, we constructed a cancer-stromal tissue model in which cancer cells are placed above and inside stromal tissue with vascular network structures derived from vascular endothelial cells in fibroblast tissue using CAViTs method. Using this method, we were able to reproduce the invasion and metastasis processes of cancer cells observed in vivo. Using patient-derived cancer cells, we assessed the possibility of evaluating the combined effect with an angiogenesis inhibitor. Further, primary cancer cells also grew on the stromal tissues with the normal medium. These data suggest that the model may be useful for new in vitro drug screening and personalized cancer medicine.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Linhagem Celular Tumoral , Células Estromais/efeitos dos fármacos , Células Estromais/citologia , Células Estromais/metabolismo , Técnicas de Cultura de Células em Três Dimensões/métodos , Ensaios de Triagem em Larga Escala/métodos , Microambiente Tumoral/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/citologia , Técnicas de Cocultura
13.
Biomimetics (Basel) ; 9(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38786516

RESUMO

Cancer vasculogenesis is a pivotal focus of cancer research and treatment given its critical role in tumor development, metastasis, and the formation of vasculogenic microenvironments. Traditional approaches to investigating cancer vasculogenesis face significant challenges in accurately modeling intricate microenvironments. Recent advancements in three-dimensional (3D) bioprinting technology present promising solutions to these challenges. This review provides an overview of cancer vasculogenesis and underscores the importance of precise modeling. It juxtaposes traditional techniques with 3D bioprinting technologies, elucidating the advantages of the latter in developing cancer vasculogenesis models. Furthermore, it explores applications in pathological investigations, preclinical medication screening for personalized treatment and cancer diagnostics, and envisages future prospects for 3D bioprinted cancer vasculogenesis models. Despite notable advancements, current 3D bioprinting techniques for cancer vasculogenesis modeling have several limitations. Nonetheless, by overcoming these challenges and with technological advances, 3D bioprinting exhibits immense potential for revolutionizing the understanding of cancer vasculogenesis and augmenting treatment modalities.

14.
Mol Ther ; 32(9): 3128-3144, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-38734897

RESUMO

Altered branched chain amino acids (BCAAs), including leucine, isoleucine, and valine, are frequently observed in patients with advanced cancer. We evaluated the efficacy of chimeric antigen receptor (CAR) T cell-mediated cancer cell lysis potential in the immune microenvironment of BCAA supplementation and deletion. BCAA supplementation increased cancer cell killing percentage, while accelerating BCAA catabolism and decreasing BCAA transporter decreased cancer cell lysis efficacy. We thus designed BCKDK engineering CAR T cells for the reprogramming of BCAA metabolism in the tumor microenvironment based on the genotype and phenotype modification. BCKDK overexpression (OE) in CAR-T cells significantly improved cancer cell lysis, while BCKDK knockout (KO) resulted in inferior lysis potential. In an in vivo experiment, BCKDK-OE CAR-T cell treatment significantly prolonged the survival of mice bearing NALM6-GL cancer cells, with the differentiation of central memory cells and an increasing proportion of CAR-T cells in the peripheral circulation. BCKDK-KO CAR-T cell treatment resulted in shorter survival and a decreasing percentage of CAR-T cells in the peripheral circulation. In conclusion, BCKDK-engineered CAR-T cells exert a distinct phenotype for superior anticancer efficiency.


Assuntos
Aminoácidos de Cadeia Ramificada , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Animais , Aminoácidos de Cadeia Ramificada/metabolismo , Camundongos , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Linfócitos T/imunologia , Linfócitos T/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/imunologia , Modelos Animais de Doenças
15.
Immunopharmacol Immunotoxicol ; 46(3): 417-423, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678437

RESUMO

OBJECTIVE: Up-regulating programmed cell death ligand-1(PD-L1) expressed on tumor cells and tumor-infiltrating myeloid cells interacting with up-regulated programmed cell death-1 (PD-1) expressed on tumor-infiltrating lymphoid cells greatly hinder their tumor-inhibiting effect. It is necessary to explore the deep mechanism of this negative effect, so as to find the potential methods to improve the immunotherapy efficiency. METHODS AND RESULTS: In this study, we found that the PD-1 expression in lung cancer-infiltrating type II innate lymphoid cells (ILC2s) was highly up-regulated, which greatly restrained the activation and function of ILC2s. Furthermore, anti-PD-1 could restore the inhibition and effective cytokine secretion of ILC2s when co-cultured with tumor cells. In vivo studies proved that anti-PD-1 treatment promoted the activation of tumor-infiltrating ILC2s and inhibited the tumor growth of LLC-bearing nude mice. DISCUSSION: Our studies demonstrate a new PD-1/PD-L1 axis regulating mechanism on innate immune cells, which provide a useful direction to ILC2s-based immunotherapy to cancer diseases.


Assuntos
Imunidade Inata , Linfócitos , Receptor de Morte Celular Programada 1 , Animais , Humanos , Camundongos , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Lewis/metabolismo , Linhagem Celular Tumoral , Imunidade Inata/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Nus , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
Front Oncol ; 14: 1371342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595825

RESUMO

Background: Our earlier research revealed that the secreted lysyl oxidase-like 4 (LOXL4) that is highly elevated in triple-negative breast cancer (TNBC) acts as a catalyst to lock annexin A2 on the cell membrane surface, which accelerates invasive outgrowth of the cancer through the binding of integrin-ß1 on the cell surface. However, whether this machinery is subject to the LOXL4-mediated intrusive regulation remains uncertain. Methods: Cell invasion was assessed using a transwell-based assay, protein-protein interactions by an immunoprecipitation-Western blotting technique and immunocytochemistry, and plasmin activity in the cell membrane by gelatin zymography. Results: We revealed that cell surface annexin A2 acts as a receptor of plasminogen via interaction with S100A10, a key cell surface annexin A2-binding factor, and S100A11. We found that the cell surface annexin A2/S100A11 complex leads to mature active plasmin from bound plasminogen, which actively stimulates gelatin digestion, followed by increased invasion. Conclusion: We have refined our understanding of the role of LOXL4 in TNBC cell invasion: namely, LOXL4 mediates the upregulation of annexin A2 at the cell surface, the upregulated annexin 2 binds S100A11 and S100A10, and the resulting annexin A2/S100A11 complex acts as a receptor of plasminogen, readily converting it into active-form plasmin and thereby enhancing invasion.

17.
Oncol Lett ; 27(5): 212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38572063

RESUMO

Trefoil factor family member 2 (Tff2) is significantly involved in intestinal tumor growth in ApcMin/+ mice, which can be used as a human colon cancer model. TFF2, which encodes TFF2 (spasmolytic protein 1) is highly expressed in human cancer tissues, including the pancreas, colon and bile ducts, as well as in normal gastric and duodenum tissues. By contrast, TFF2 exhibits low expression levels in other normal tissues, including the small and large intestine. Furthermore, TFF2 expression has not been detected in DLD-1 cells, a cell line derived from human colon cancer. What induces TFF2 expression in normal and tumor cells is still unknown. Highly malignant tumor tissues are characterized by higher temperatures and lower pH (6.2-6.9) than in normal tissues, where normal pH ranges from 7.2 to 7.4. This microenvironment exacerbates malignancy by promoting the acquisition of cell death resistance, drug resistance and immune escape. Therefore, the present study examined how TFF2 expression is affected in cultured cells that imitate the tumor tissue microenvironment. The incubation temperature was increased from 37 to 40°C, but no expression of TFF2 was induced. Subsequently, a culture solution with an acidic pH was prepared to simulate the Warburg effect in tumors. TFF2 expression was increased by 42.8- and 5.8-fold in cells cultured in acidic medium at pH 6.5 and 6.8 compared with at pH 7.4, respectively, as determined using the relative quantification method following quantitative polymerase chain reaction. The present study also analyzed fluctuations in the expression levels of genes other than TFF2, under acidic conditions. Acidic conditions upregulated the expression of genes related to cell membranes and glycoproteins, based on the Database for Annotation, Visualization, and Integrated Discovery. In conclusion, TFF2 was highly expressed under acidic conditions, implying that it may have an important function in protecting the plasma membrane from acidic environments in both normal and cancer cells. These findings warrant further investigation of TFF2 as a target of cancer therapy and diagnosis.

18.
Pathol Res Pract ; 256: 155263, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484656

RESUMO

IZUMO2 belongs to the testis-expressed IZUMO family of proteins, which are characterized by an N-terminal IZUMO domain. Based on integrated analysis of expression profiles and matched DNA methylation data from a public database, IZUMO2 represents a prognosis-related methylation-driven gene in colorectal cancer. However, it remains unclear whether IZUMO2 protein expression is suppressed or overexpressed in colorectal cancer cells. In this study, we aimed to elucidate the expression of the IZUMO2 protein in colorectal cancer, with a focus on the clinicopathological features. Sixty-four colorectal cancer tissue specimens were immunohistochemically stained using specific antibodies against IZUMO2. IZUMO2 immunoreactivity was detected at the invasion front in 30 of the 64 colorectal cancer samples. Kaplan-Meier analysis demonstrated that patients with IZUMO2 immunoreactivity had a relatively shorter overall and progression-free survival (log-rank test, P = 0.046 and 0.019, respectively). IZUMO2 immunoreactivity served as an independent factor predictive of poor progression-free survival in colorectal cancer (P = 0.025) as determined via the Cox proportional hazard regression model. Moreover, IZUMO2 immunoreactivity represented an independent factor for poor overall survival (P = 0.035) and progression-free survival (P = 0.013) in patients with colon cancer. The present findings suggest that IZUMO2 is expressed in many colorectal cancers, especially at the cancer invasion front, and may represent an indicator of poor prognosis in colorectal cancer.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Prognóstico , Intervalo Livre de Progressão , Modelos de Riscos Proporcionais
19.
Neurosurg Focus ; 56(2): E2, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301244

RESUMO

OBJECTIVE: Several studies have compared the immune microenvironment of isocitrate dehydrogenase (IDH)-wildtype glioma versus IDH-mutant glioma. The authors sought to determine whether histological tumor progression in a subset of IDH-mutant glioma was associated with concomitant alterations in the intratumoral immune microenvironment. METHODS: The authors performed bulk RNA sequencing on paired and unpaired samples from patients with IDH-mutant glioma who underwent surgery for tumor progression across multiple timepoints. They compared patterns of differential gene expression, overall inflammatory signatures, and transcriptomic measures of relative immune cell proportions. RESULTS: A total of 55 unique IDH-mutant glioma samples were included in the analysis. The authors identified multiple genes associated with progression and higher grade across IDH-mutant oligodendrogliomas and astrocytomas. Compared with lower-grade paired samples, grade 4 IDH-mutant astrocytomas uniquely demonstrated upregulation of VEGFA in addition to counterproductive alterations in inflammatory score reflective of a more hostile immune microenvironment. CONCLUSIONS: Here, the authors have provided a transcriptomic analysis of a progression cohort for IDH-mutant glioma. Compared with lower-grade tumors, grade 4 astrocytomas displayed alterations that may inform the timing of antiangiogenic and immune-based therapy as these tumors progress.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Regulação para Cima , Mutação/genética , Glioma/genética , Glioma/patologia , Astrocitoma/genética , Microambiente Tumoral/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Cancer Immunol Immunother ; 73(2): 30, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279989

RESUMO

Recently, a breakthrough immunotherapeutic strategy of chimeric antigen receptor (CAR) T-cells has been introduced to hematooncology. However, to apply this novel treatment in solid cancers, one must identify suitable molecular targets in the tumors of choice. CEACAM family proteins are involved in the progression of a range of malignancies, including pancreatic and breast cancers, and pose attractive targets for anticancer therapies. In this work, we used a new CEACAM-targeted 2A3 single-domain antibody-based chimeric antigen receptor T-cells to evaluate their antitumor properties in vitro and in animal models. Originally, 2A3 antibody was reported to target CEACAM6 molecule; however, our in vitro co-incubation experiments showed activation and high cytotoxicity of 2A3-CAR T-cells against CEACAM5 and/or CEACAM6 high human cell lines, suggesting cross-reactivity of this antibody. Moreover, 2A3-CAR T-cells tested in vivo in the BxPC-3 xenograft model demonstrated high efficacy against pancreatic cancer xenografts in both early and late intervention treatment regimens. Our results for the first time show an enhanced targeting toward CEACAM5 and CEACAM6 molecules by the new 2A3 sdAb-based CAR T-cells. The results strongly support the further development of 2A3-CAR T-cells as a potential treatment strategy against CEACAM5/6-overexpressing cancers.


Assuntos
Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Anticorpos de Domínio Único , Animais , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Domínio Único/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Linhagem Celular , Linfócitos T , Imunoterapia Adotiva/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA