Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 25: 100886, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33490643

RESUMO

Yeasts are important microorganisms used for ethanol production; however, they are not equally efficient in the amount of ethanol production under different environmental conditions. It is, therefore, necessary to screen for elite strains to utilize them for commercial production of these commodities. In this study, yeasts were isolated from different Ethiopian traditional fermented alcoholic beverages (teji, tella, shamiata and areqe tinisis), milk and ergo, teff and maize dough, soil and compost, flowers, and fruits to evaluate their potential use for ethanol fermentation process. Isolates were screened for efficient ethanol production and the selected ones were identified using phenotypic and genetic characters using D1/D2 region of LSU rDNA sequence analysis. The yeast isolates were evaluated based on their growth and fermentation of different carbon sources. Response surface methodology (RSM) was applied to optimize temperature, pH and incubation time using central composite design (CCD) in Design-Expert 7.0.0. A total of 211 yeasts colonies were isolated of which 60% were ethanologenic yeasts (ethanol producers) and 40% were non-ethanol producers. The yeast population detected from various sources was in the range of 10 5 CFU from traditional foods and beverages to that of 10 3 CFU from fruits and soil samples. The data also showed that the number of colony types (diversity) did not correlate with population density. The highly fermentative isolates were taxonomically characterized into four genera, of which 65% of the isolates (ETP37, ETP50; ETP53, ETP89, ETP94) were categorized under Saccharomyces cerevisiae, and the remaining were Pichia fermentans ETP22, Kluyveromyces marxianus ETP87, and Candida humilis ETP122. The S. cerevisiae isolates produced ethanol (7.6-9.0 g/L) similar with K. marxianus ETP87 producing 7.97 g/L; comparable to the ethanol produced from commercial baker's yeast (8.43 g/L) from 20 g/L dextrose; whereas C. humilis ETP122 and P. fermentans ETP22 produced 5.37 g/L and 6.43 g/L ethanol, respectively. S. cerevisiae ETP53, K. marxianus ETP87, P. fermentans ETP22 and C. humilis ETP122 tolerated 10% extraneous ethanol but the percentage of ethanol tolerance considerably decreased upon 15%. S. cerevisiae ETP53 produced ethanol optimally at pH 5.0, 60 h, and 34 o C. pH 4.8, temperature 36 o C, and 65 h of time were optimal growth conditions of ethanol fermentation by K. marxianus ETP87. The ethanol fermentation conditions of P. fermentans ETP22 was similar to S. cerevisiae ETP53 though the ethanol titer of S. cerevisiae ETP53 was higher than P. fermentans ETP22. Therefore, S. cerevisiae ETP53, K. marxianus and P. fermentans ETP22 are good candidates for ethanol production.

2.
Bioelectrochemistry ; 115: 47-55, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28063751

RESUMO

AIMS: This study aimed to determine how electric field strength, pulse width and shape, and specific energy input relate to the effect of pulsed electric fields (PEF) on viability and membrane permeabilization in Candida humilis and Saccharomyces cerevisiae suspended in potassium phosphate buffer. METHODS AND RESULTS: Cells were treated with a micro-scale system with parallel plate electrodes. Propidium iodide was added before or after treatments to differentiate between reversible and irreversible membrane permeabilization. Treatments of C. humilis with 71kV/cm and 48kJ/kg reduced cell counts by 3.9±0.6 log (cfu/mL). Pulse shape or width had only a small influence on the treatment lethality. Variation of electric field strength (17-71kV/cm), pulse width (0.086-4µs), and specific energy input (8-46kJ/kg) demonstrated that specific energy input correlated to the membrane permeabilization (r2=0.84), while other parameters were uncorrelated. A minimum energy input of 3 and 12kJ/kg was required to achieve reversible membrane permeabilization and a reduction of cell counts, respectively, of C. humilis. CONCLUSIONS: Energy input was the parameter that best described the inactivation efficiency of PEF. SIGNIFICANCE AND IMPACT OF STUDY: This study is an important step to identify key process parameters and to facilitate process design for improved cost-effectiveness of commercial PEF treatment.


Assuntos
Candida , Eletroporação/métodos , Saccharomyces cerevisiae , Candida/citologia , Permeabilidade da Membrana Celular , Campos Eletromagnéticos , Eletroporação/instrumentação , Desenho de Equipamento , Propídio/química , Saccharomyces cerevisiae/citologia
3.
Lett Appl Microbiol ; 62(2): 119-25, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26581944

RESUMO

UNLABELLED: The aim of this study was the setting up of a gluten-free sourdough from selected lactobacilli and yeasts isolated from a traditional wheat-based Type I sourdough. A gluten-free matrix was inoculated with Lactobacillus sanfranciscensis and Candida humilis, fermented to pH 4·0, and constantly propagated for ten times. A stable association between micro-organisms was observed from the second refreshment with mean values of 9·08 ± 0·25 log CFU g(-1) for lactobacilli and 7·81 ± 0·07 log CFU g(-1) for yeasts. In order to have a good workability of the dough, a 230 BU consistency was considered. Rheofermentographic indices remained constant over the ten refreshments, showing an average value of 23·2 mm dough height in about 7·5 h. The CO2 production and retention volumes reached average values of 1430 and 1238 ml respectively. The microbiological and technological data obtained highlighted that a GF sourdough was effectively developed. SIGNIFICANCE AND IMPACT OF THE STUDY: Type I sourdough has a long tradition as a leavening agent of baked goods as its use results in an improved texture, flavour, taste and extended shelf-life of the final products. In this study a Type I gluten-free sourdough was obtained. After few refreshments in controlled conditions, the sourdough presented a stable association between Lactobacillus sanfranciscensis and Candida humilis, constant fermentation times and technological properties (in terms of dough consistency, dough maximum height, CO2 production and retention). The results showed that the gluten-free sourdough developed in this study can improve the overall quality of gluten-free baked products.


Assuntos
Pão/microbiologia , Candida/metabolismo , Glutens/metabolismo , Lactobacillus/metabolismo , Triticum/metabolismo , Candida/crescimento & desenvolvimento , Candida/isolamento & purificação , Doença Celíaca , Dieta Livre de Glúten , Fermentação , Humanos , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/isolamento & purificação
4.
Food Microbiol ; 42: 72-81, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24929720

RESUMO

Candida milleri, together with Candida humilis, is the most representative yeast species found in type I sourdough ecosystems. In this work, comparison of the ITS region and the D1/D2 domain of 26S rDNA gene partial sequences, karyotyping, mtDNA-RFLP analysis, Intron Splice Site dispersion (ISS-PCR) and (GTG)5 microsatellite analyses, assimilation test of different carbohydrates, and metabolome assessment by FT-IR analysis, were investigated in seventeen strains isolated from four different companies as well as in type strains CBS6897(T) and CBS5658(T). Most isolates were ascribed to C. milleri, even if a strong relatedness was confirmed with C. humilis as well, particularly for three strains. Genetic characterization showed a high degree of intraspecific polymorphism since 12 different genotypes were discriminated. The number of chromosomes varied from 9 to 13 and their size ranged from less than 0.3 to over 2 Mbp. Phenotypic traits let to recognize 9 different profiles of carbon sources assimilation. FT-IR spectra from yeast cells cultivated in different media and collected at different growth phases revealed a diversity of behaviour among strains in accordance with the results of PCR-based fingerprinting. A clear evidence of the polymorphic status of C. milleri species is provided thus representing an important feature for the development of technological applications in bakery industries.


Assuntos
Pão/microbiologia , Candida/genética , Candida/metabolismo , Polimorfismo Genético , Candida/classificação , Candida/isolamento & purificação , DNA Fúngico/genética , DNA Ribossômico/genética , Genótipo , Dados de Sequência Molecular , Técnicas de Tipagem Micológica , Fenótipo , Filogenia , Polimorfismo de Fragmento de Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA