Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Arch Razi Inst ; 79(1): 201-210, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39192966

RESUMO

The most preferred method for the detection of foot-and-mouth disease (FMD) viral antigen and identification of viral serotype is the enzyme-linked immunosorbent assay (ELISA). Diagnostic tests with high sensitivity are necessary both to distinguish infected vaccinated animals and execute disease control programs for the identification of the carrier animals. The current strategies for the detection of FMD virus are mainly based on the capture antibody (sandwich) ELISA test. The usage of laying pullets as an animal bioreactor for the production of specific egg yolk antibodies (IgY) has increased in recent years due to its high yield, affinity, low price, and quick production turnover. The present study aimed to produce a concentrated and purified IgY polyclonal antibody to design a capture antibody ELISA kit against the FMD virus (FMDV) serotype A. At first, laying hens were immunized with inactivated FMDV serotype virus, and then, on days 14, 21, and 28 following vaccination, the eggs and sera were collected. Afterward, the IgY polyclonal antibodies were extracted and purified from the chicken egg yolk using a polyethylene glycol 6000-ethanol precipitation procedure. Extracts were filtered, purified by ion exchange chromatography, and dialyzed. The purified IgY concentration, estimated by Bradford assay, confirmed its presence by SDS-PAGE and Western blot and also its specific immune reaction by Ouchterlony double immunodiffusion and Dot blot tests. Moreover, for achieving the optimum concentration of antigen/antibody (sera) in sandwich ELISA, a checkerboard titration test was set up based on indirect ELISA results. Eventually, 119 previously confirmed samples (including 80 positive and 39 negative) by both real-time polymerase chain reaction (quantitative PCR, qPCR) and a commercial ELISA kit were used for evaluation of the sensitivity and accuracy of our developed Capture antibody ELISA kit. In this manner, the sensitivity and specificity of our designed kit were 100% and 98%, respectively. Accordingly, the present developed capture ELISA kit based on IgY had high sensitivity and specificity for FMD virus detection and it could be used in the future for both commercial detecting and serotyping applications.


Assuntos
Anticorpos Antivirais , Galinhas , Ensaio de Imunoadsorção Enzimática , Febre Aftosa , Imunoglobulinas , Doenças das Aves Domésticas , Animais , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulinas/imunologia , Imunoglobulinas/análise , Febre Aftosa/diagnóstico , Febre Aftosa/prevenção & controle , Febre Aftosa/virologia , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/virologia , Vírus da Febre Aftosa/imunologia , Vírus da Febre Aftosa/isolamento & purificação , Sensibilidade e Especificidade , Gema de Ovo/imunologia
2.
Talanta ; 265: 124927, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37441999

RESUMO

Protein glycosylation and other post-translational modifications are involved in many biological processes including growth, development and immune responses, and glycoproteins are also known as biomarkers for cancer, diabetes and cardiovascular diseases. In traditional lateral flow immunoassay (LFIA) for glycoprotein detection, capture antibody (CA) is often required to label targets. However, the production of CA is complicated and expensive, restricting the wide application of LFIA. In this study, we developed a universal boronate affinity CA-independent LFIA method for glycoprotein detection. 4-Mercaptophenylboronic acid (4-MPBA)-modified Au nanoparticles (namely 4-MPBA-AuNPs) were used as LFIA labels, which could generate colorimetric signal and showed outstanding capability to bind glycoprotein. Compared with CA, 4-MPBA molecular as a glycoprotein recognition element had more prominent advantages, e.g., low cost, easy availability and good quality controllability. Take carcinoembryonic antigen (CEA) as model glycoprotein, the limit of detection of this CA-independent LFIA was 1.25 ng/mL by naked eyes, which was 8-fold lower than conventional CA-dependent sandwich LFIA. Significantly, the developed 4-MPBA-AuNPs-based CA-independent LFIA successfully detected 23 CEA-positive samples from 64 suspected human serum samples within 50 min in a nonlaboratory environment, with a 100% accuracy compared to clinical detection method. Therefore, this diagnostic platform could provide an effective tool for point-of-care glycoprotein detection with excellent reproducibility and high specificity.


Assuntos
Antígeno Carcinoembrionário , Nanopartículas Metálicas , Humanos , Ouro , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes , Anticorpos , Glicoproteínas , Imunoensaio/métodos , Limite de Detecção
3.
Anal Biochem ; 632: 114390, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560055

RESUMO

Nanobodies (Nbs) as capture antibodies in enzyme-linked immunosorbent assays (ELISAs) is greatly hampered by their poor performance after attaching onto polystyrene microplates. Reasons behind those phenomena remain unknown. One of possible explanation is that Nbs with a single domain might lose their accessibility of paratope when adsorbed on the plates. Increasing their binding sites might improve performance in capture Nbs-based ELISA. In this study, anti-3-phenoxybenzoic acid (3-PBA) Nbs was assembled to trivalent form (Nb3) in tandem with flexible linkers (G4S)3. Direct competitive ELISA on the basis of Nb3 and 3-PBA-horseradish peroxidase was developed for detection of 3-PBA in livestock urine. The ELISA had a half-maximum (IC50) inhibition concentration of 0.51 ng/mL, with a limit of detection of 0.02 ng/mL, which was more sensitive than that of the parental Nb with a IC50 of 2.39 ng/mL. The average recoveries of 3-PBA spiked in swine, sheep and dairy cow urine samples by the assay ranged from 89.52% to 114.25% and agreed well with those of liquid chromatography mass spectrometry (LC-MS). The above results indicated that multivalent Nbs could be treated as the capture antibody in ELISA for routine screening analysis of 3-PBA residues in urine.


Assuntos
Anticorpos/química , Benzoatos/urina , Ensaio de Imunoadsorção Enzimática , Anticorpos de Domínio Único/química , Animais , Bovinos , Ovinos , Suínos
4.
J Genet Eng Biotechnol ; 19(1): 119, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34403025

RESUMO

BACKGROUND: Sandwich ELISA is an ideal antigen detection and quantification assay. Recently, it was used as the basic concept for high technology diagnostics. The specificity of the assay depends on the exclusion of detection cross-reactivity which arises from using two antibodies developed in different species. Since mice and rats are the common laboratory animals used to develop antigen specific antibodies. Therefore, the questions we addressed here were (1) can one use antigen-specific antibodies raised in mice and rats in the same assay to specifically detect/quantify antigens? and (2) which antibodies of the two rodents should be placed for capturing and for detection in the antigen-detection sandwich? RESULTS: Direct ELISA assay was used to assess for the specific reaction of the HRP-conjugated antibody to the target serum. First reaction was to compare between either conjugate anti-rat IgG (homologous) or anti-mouse IgG (heterologous) for the detection of rat sera IgG. Following the dilution factor optimization, the O.D. were 0.744±0.051 and 0.604±0.05, respectively (p= .004). The difference in mean O.D. of 0.14 reflected an unaccepted non-specific reaction. The second reaction was to compare between either conjugate anti-mouse IgG (homologous) and anti-rat IgG (heterologous) for the detection of mouse sera IgG. The recorded O.D. were 0.9414±0.14 and 0.317 ±0.141, respectively (p= .0002). The improved difference in mean O.D. of 0.624 reflecting a minimized cross-reaction. CONCLUSIONS: Our results suggest that it is possible to use both Swiss albino mice and albino rats in a single sandwich ELISA, given that the captured antibody species to be from the Swiss albino mice and the detection antibody to be from the albino rat. The described working details are limited to the source of the antibodies used in the study. However, the approach stresses on the importance of such optimization steps before making any interpretations based on the antigen detection. To our knowledge, this study is the first to cover the optimal order of the capturing and the detection antibodies in a sandwich ELISA assay. In addition to addressing the possible interfering cross-reactivity that result from using mouse and rat serum antibodies in a single assay.

5.
Methods Mol Biol ; 2141: 611-627, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32696380

RESUMO

Surface plasmon resonance (SPR) is an important and convenient method for measuring kinetic rate constants of given molecular interactions, equilibrium binding constants at steady state, or determinations of binding stoichiometry. In its traditional setup, SPR requires that one binding partner is tightly immobilized on the surface of a sensor chip either by direct chemical coupling to the surface-coated carboxymethylated dextran matrix or by non-covalent capture to a high-affinity binding partner that is covalently linked to the surface. The latter design of the sensor surface is highly advantageous compared to the direct chemical coupling as this setup ensures a homogeneous and specific orientation of the immobilized binding partner. This chapter provides guidelines for the design of capturing systems that generally provide high-end kinetic data suitable for determination of binding rate constants. This principle will be illustrated by the binding of synthetic peptides derived from an intrinsically disordered region of the endothelial glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) to captured monoclonal antibodies.


Assuntos
Técnicas Biossensoriais , Proteínas Intrinsicamente Desordenadas/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Desenho de Equipamento , Cinética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Receptores de Lipoproteínas , Ressonância de Plasmônio de Superfície/instrumentação
6.
Anal Biochem ; 593: 113580, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31926892

RESUMO

Surface plasmon resonance (SPR) is a well-established method to characterize biomolecular interactions and is widely used in drug discovery and development. Here, we demonstrate that capture surfaces profoundly impact the binding kinetics parameters that are measured for antibody-antigen interactions. Six unique antibody-antigen interactions were characterized using eight different anti-human IgG capture surfaces. The antigen binding affinities for six different human monoclonal antibodies (hmAbs) captured using three different goat anti-human Fc (AHC) polyclonal antibody (pAb) surfaces were in reasonable agreement (3-7-fold weaker) with those measured by kinetic exclusion assay (KinExA). In contrast, up to 81, 32, 489, 2826, and 219-fold weaker antigen binding affinities were measured using mouse AHC mAb, Protein G, Protein A, Protein A/G, and Protein L surfaces, respectively. Protein A, Protein A/G and Protein G interacted with the Fab of hmAbs, possibly affecting antigen binding to hmAbs captured over these surfaces. Additional studies revealed that mouse AHC mAb binds hmAbs with a weak affinity (5.5-36.3 nM) and t½ values of 1.4-3.3min, compared to the sub-nanomolar affinities of the goat AHC pAbs. These results emphasize the value of measuring binding kinetics of the capture molecule before immobilizing them onto the sensor surface to perform capture kinetics assays on label-free biosensors.


Assuntos
Anticorpos Monoclonais/imunologia , Reações Antígeno-Anticorpo , Técnicas Biossensoriais/métodos , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Animais , Cabras , Humanos , Cinética , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA