Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 596
Filtrar
1.
Adv Sci (Weinh) ; : e2408152, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254191

RESUMO

Coupling carbon capture with electrocatalytic carbon dioxide reduction (CO2R) to yield high-value chemicals presents an appealing avenue for combating climate change, yet achieving highly selective electrocatalysts remains a significant challenge. Herein, two molecularly woven covalent organic frameworks (COFs) are designed, namely CuCOF and CuCOF+, with copper(I)-bisphenanthroline complexes as building blocks. The metal-organic helical structure unit made the CuCOF and CuCOF+ present woven patterns, and their ordered pore structures and cationic properties enhanced their CO2 adsorption and good conductivity, which is confirmed by gas adsorption and electrochemical analysis. In the electrocatalytic CO2R measurements, CuCOF+ decorated with extra ethyl groups exhibit a main CO product with selectivity of 57.81%, outperforming the CuCOF with 42.92% CO at the same applied potential of 0.8 VRHE. After loading Pd nanoparticles, CuCOF-Pd and CuCOF+-Pd performed increased CO selectivity up to 84.97% and 95.45%, respectively. Combining the DFT theoretical calculations and experimental measurements, it is assumed that the molecularly woven cationic COF provides a catalytic microenvironment for CO2R and ensures efficient charge transfer from the electrode to the catalytic center, thereby achieving high electrocatalytic activity and selectivity. The present work significantly advances the practice of cationic COFs in real-time CO2 capture and highly selective conversion to value-added chemicals.

2.
Bioresour Technol ; : 131415, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233184

RESUMO

Bacterioruberin is widely used in medicine, food, and cosmetics owing to its prominent characteristics of antioxidants and bioactivities. Bioconversion of methane into bacterioruberin is a promising way to address biomanufacturing substrate costs and greenhouse gas emissions but has not been achieved yet. Herein, this study aimed to upcycle methane to bacterioruberin by microbial consortia. The microbial consortia consist of Methylomonas and Methylophilus capable of synthesizing carotenoids from methane was firstly enriched from paddy soil. Through this microbial community, methane was successfully converted into C50 bacterioruberin for the first time. The bioconversion process was then optimized by the response surface methodology. Finally, the methane-derived bacterioruberin reached a record yield of 280.88 ±â€¯2.94 µg/g DCW. This study presents a cost-effective and eco-friendly approach for producing long-chain carotenoids from methane, offering a significant advancement in the direct conversion of greenhouse gases into value-added products.

3.
Enzymes ; 55: 31-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39222995

RESUMO

Carbonic anhydrases belonging to the α-class are widely distributed in bacterial species. These enzymes have been isolated from bacteria with completely different characteristics including both Gram-negative and Gram-positive strains. α-CAs show a considerable similarity when comparing the biochemical, kinetic and structural features, with only small differences which reflect the diverse role these enzymes play in Nature. In this chapter, we provide a comprehensive overview on bacterial α-CA data, with a highlight to their potential biomedical and biotechnological applications.


Assuntos
Anidrases Carbônicas , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/química , Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
4.
Environ Sci Technol ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225344

RESUMO

Carbon dioxide (CO2) chemisorption using biphasic solvents has been regarded as a promising approach, but challenges remain in achieving efficient dynamic phase-splitting during practical implementation. To address this, the centrifugal force was innovatively adopted to enhance the coalescence and separation of immiscible fine droplets within the biphasic solvent. The comprehensive evaluation demonstrates that centrifugal phase-splitting shows outstanding separation efficiency (>95%) and excellent applicability for various solvents. Correlation analysis reveals a strong relationship between the rich phase's viscosity, lean phase's residual CO2, and the phase separation efficiency. The time-profile behavior of immiscible droplets, observed through microscope images of phase-splitting, enables the estimation of the growth and coalescence rates of the discrete phase. Industrial-scale process simulation for technical and economic analysis confirms that the total capture cost ($ 42.5/t CO2) can be reduced by ∼22% with the use of biphasic solvents and a centrifugal separator compared to conventional methods. This study introduces a fresh perspective on polarity-induced cluster generation and coagulation-induced separation, offering an effective solution to address the challenges associated with dynamic phase-splitting in biphasic solvents during practical applications.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39225926

RESUMO

CO2 emissions have been steadily increasing and have been a major contributor for climate change compelling nations to take decisive action fast. The average global temperature could reach 1.5 °C by 2035 which could cause a significant impact on the environment, if the emissions are left unchecked. Several strategies have been explored of which carbon capture is considered the most suitable for faster deployment. Among different carbon capture solutions, adsorption is considered both practical and sustainable for scale-up. But the development of adsorbents that can exhibit satisfactory performance is typically done through the experimental approach. This hit and trial method is costly and time consuming and often success is not guaranteed. Machine learning (ML) and other computational tools offer an alternate to this approach and is accessible to everyone. Often, the research towards materials focuses on maximizing its performance under simulated conditions. The aim of this study is to present a holistic view on progress in material research for carbon capture and the various tools available in this regard. Thus, in this review, we first present a context on the workflow for carbon capture material development before providing various machine learning and computational tools available to support researchers at each stage of the process. The most popular application of ML models is for predicting material performance and recommends that ML approaches can be utilized wherever possible so that experimentations can be focused on the later stages of the research and development.

6.
Fundam Res ; 4(4): 916-925, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39156562

RESUMO

CO2 capture from coal power plants is an important and necessary solution to realizing carbon neutrality in China, but CCS demonstration deployment in power sector is far behind expectations. Hence, the reduction potential of energy consumption and cost for CCS and its competitiveness to renewable powers are very important to make roadmaps and policies toward carbon neutrality. Unlike the popular recognition that capturing CO2 from flue gases is technically and commercially mature, this paper notes that it has been proved to be technically feasible but far beyond technology maturity and high energy penalty leads to its immaturity and therefore causes high cost. Additionally, the potential energy penalty reduction of capture is investigated thermodynamically, and future CO2 avoidance cost is predicted and compared to renewable power (solar PV and onshore wind power). Results show that energy penalty for CO2 capture can be reduced by 48%-57%. When installation capacity reaches a similar scale to that of solar PV in China (250 GW), CO2 capture cost in coal power plants can be reduced from the current 28-40 US$/ton to 10-20 US$/ton, and efficiency upgrade contributes to 67%-75% in cost reduction for high coal price conditions. In China, CO2 capture in coal power plants can be cost competitive with solar PV and onshore wind power. But it is worth noting that the importance and share of CCS role in CO2 emission reduction is decreasing since renewable power is already well deployed and there is still a lack of large-scale CO2 capture demonstrations in China. Innovative capture technologies with low energy penalties need to be developed to promote CCS. Results in this work can provide informative references for making roadmaps and policies regarding CO2 emission reductions that contribute towards carbon neutrality.

7.
Sci Rep ; 14(1): 18661, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134560

RESUMO

Commercial scale decarbonization through carbon capture and storage may likely involve many CO2 storage projects located in close proximity. The close proximity could raise concerns over caprock integrity associated with reservoir pressure buildup and interference among adjacent projects. Commercial-scale injection will also require large prospective CO2 storage resource and high injectivity in the targeted storage formations. To accommodate the need for both large resource and high injectivity, project operators could consider injecting CO2 into a stacked sequence of formations. This analysis investigates the benefits of injecting CO2 into a vertically stacked sequence of saline formations, over injecting the same amount of CO2 into a single saline formation, in addressing these challenges. Our analysis shows that injecting into the stacked sequence mitigates the extent of pressure buildup among the stacked formations, while still achieving the same or greater target CO2 storage volumes. Among cases modeled, the resulting pressure buildup front is most reduced when each storage site distributes injection volumes over several wells, each of which injects a portion of the total CO2 mass across the stacked sequence. This favorable case not only results in the smallest CO2 aerial footprint, but also shows the largest reduction in the pressure buildup at the top of perforation at the injection wells (upwards of approximately 46% compared to the single-formation storage), the result of which is crucial to maintain caprock integrity. This analysis provides insights into required decision-making when considering multi-project deployment in a shared basin.

8.
Sci Total Environ ; 951: 175799, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39191332

RESUMO

Emission reduction, heat mitigation, and improved access to water and food provision are increasingly critical challenges for urban areas in the context of global climate change adaptation and mitigation. The revival of local agricultural production is often lauded as a potential nature-based solution. However, an expansion of peri-urban agriculture (peri-UA) may entail significant ecosystem trade-offs. This study explores the impacts on the food-water-climate nexus of different scenarios of peri-urban agricultural expansion in a semi-arid, Mediterranean climate, addressing local food provision, freshwater use, local temperature regulation, global climate change mitigation, and the trade-offs thereof. We estimate food provision and irrigation water requirements based on a georeferenced urban metabolism approach along with atmospheric and biosphere models to examine four land-use scenarios in the Metropolitan Area of Barcelona. Our study reveals that a 31 % (+17.27 km2) and 115 % (+64.25 km2) increase in the current peri-UA in the AMB, results in an increase in local food production of 24 % (+16,503 tons year-1) and 86 % (+58,940 tons year-1), and irrigation water requirements by 10.0 % (+3.2 hm3) and 43.5 % (+14.1 hm3), respectively. The expansion of irrigated peri-UA potentially reduces near-surface temperatures by 0.7 °C, albeit temperature reductions in the densest urban areas are minimal. Since the additional peri-UA is achieved by replacing natural non-forested and forest areas, the simulations predict reductions in the net ecosystem productivity of up to 18.5 % and total carbon stocks by 3.3 %. This integrated approach combining urban metabolism and atmospheric modelling to determine the trade-offs appears to be a promising tool for informing land-use decision-making in the context of urban climate adaptation and mitigation.

9.
Adv Mater ; : e2407567, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39165037

RESUMO

Carbon capture is a promising technology to mitigate greenhouse gas emissions to achieve net carbon neutrality. Electro-swing reactive adsorption has emerged as an attractive approach for sustainable decarbonization. However, current electrodes with limited gas transport present a major barrier that hinders their practical implementation. Herein, porous polymeric electrodes are developed to effectively enhance CO2 transport without the need for additional gas diffusion conduits. Such all-in-one porous electrodes also enable more accessible redox active sites (e.g., quinones) for CO2 sorption, leading to an increased materials utilization efficiency of ≈90%. A continuous flow-through carbon capture and release operation with high Faradaic efficiency and excellent stability under practical working conditions is further demonstrated. Together with low cost and robust mechanical properties, the as-developed porous polymeric electrodes highlight the potential to advance the future implementation of electrochemical separation technologies.

10.
Heliyon ; 10(15): e35316, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39166011

RESUMO

The solvent regeneration in the post-combustion carbon capture process usually relies on steam from the power plant steam cycle. This heat duty is one of the challenges of energy consumption in PCC (Post-combustion Carbon Capture). However, this practice results in a significant energy penalty, leading to a substantial reduction in the capacity of the Power Plant, estimated to be between 19.5 and 40 %. This paper investigate the techno-economic feasibility of a solar-assisted regeneration process for the PCC industrial scale with diglycolamine solvent. The study aims to assess the impact of system configuration modifications, such as LVC (Lean Vapor Compression), SPCC (Solar Post-combustion Carbon Capture), and combinations of trough or compound solar collectors with LVC, on energy efficiency and overall plant performance. With 3E analysis for SPCC configuration results show that this configuration. However, reducing energy consumption and energy penalty factor, exhibits a decrease in exergy and exergoeconomic efficiency compared to the other configurations in terms of exergy and exergoeconomic aspects. However, the LVC + SCSS (Solar Combined Separator-Stripper) configuration demonstrates the best performance across the 3E aspects, resulting in a reduction energy penalty to 12.2 % and improvements of 38 % and 4.2 % in exergy and exergoeconomic factors, respectively.

11.
Environ Sci Pollut Res Int ; 31(39): 51582-51592, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39115736

RESUMO

In situ CO2 mixing technology is a potential technology for permanently sequestering CO2 during concrete manufacturing processes. Although it has been approved as a promising carbon capture and utilisation (CCU) method, its effect on the leachability of heavy metals from cementitious compounds has not yet been studied. This study focuses on the effect of in situ CO2 mixing of cement paste on the leaching of hexavalent chromium (Cr(VI)). The tank leaching test of the CO2 mixing cement specimen resulted in a Cr(VI) cumulative leaching of 0.614 mg/m2 in 28 d, which is ten times lower than that of the control mixing specimens. The results in thermogravimetric analysis indicated that a relatively significant amount of CrO42- is immobilised as CaCrO4 during the CO2-mixing, and a higher Cr-O extension is observed in the Fourier transform infrared spectra. Furthermore, a portion of the monocarboaluminate is inferred from microstructural analyses to incorporate CrO42- ions. These results demonstrate that in situ CO2 mixing is beneficial not only in reducing CO2 emissions, but also in controlling the leaching of toxic substances.


Assuntos
Dióxido de Carbono , Cromo , Materiais de Construção , Cromo/química , Dióxido de Carbono/química
12.
Environ Sci Pollut Res Int ; 31(40): 52868-52885, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39164560

RESUMO

In this study, the high potential tertiary N-methyl-4-piperidinol or MPDL (0.25-1.00 M) was blended with 5 M monoethanolamine (MEA) to formulate 5.25-6.00 M MEA-MPDL solvent and compare with the benchmark 5 M MEA. It was found that the density and the Henry's constant slightly decreased, while the viscosity increased as the MPDL concentration in the blend increased. Even though the equilibrium CO2-loaded viscosity considerably increased (by 34.3-40.2%) as the MPDL content increased, it was still in a great operating region of less than 10 mPa.s. Experimental overall reaction kinetics constant ( k ov ) was well corresponding with the zwitterion mechanism of MEA and the base-catalyze hydration mechanism of MPDL based absorption kinetics model, with %AAD of 0.56%. Interestingly, an addition of MPDL into 5 M MEA slightly enhanced k ov (1.2-3.3% increment) and considerably favored absorption capacity (13-31% elevation), and regeneration heat duty (28-47% reduction), respecting 5 M MEA. The proposed strategic blending can maintain the overall solvent reactivity at the same level of the benchmark, while obviously increase the absorption capacity and largely reduce the regeneration heat duty. This highly favors a solvent upgrading for the existing 5 M MEA based CO2 capture plant. According to the recent data, 5 M MEA + 1.00 M MPDL was suggested. Since the blend was formulated at high concentration, its corrosiveness should also be considered.


Assuntos
Etanolamina , Solventes , Cinética , Solventes/química , Etanolamina/química , Carbono/química , Piperidinas/química
13.
ChemSusChem ; : e202401500, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180755

RESUMO

To mitigate the greenhouse effect, a number of porous organic polymers (POPs) has been developed for carbon capture. Considering the permanent quadrupole of symmetrical CO2 molecules, the integration of electron-rich groups into POPs is a feasible way to enhance the dipole-quadrupole interactions between host and guest. To comprehensively explore the effect of pore environment, including specific surface area, pore size, and number of heteroatoms, on carbon dioxide adsorption capacity, we synthesized a series of microporous POPs with different content of ß-ketoenamine structures via Schiff-base condensation reactions. These materials exhibit high BET specific surface areas, high stability, and excellent CO2 adsorption capacity. It is worth mentioning that the CO2 adsorption capacity and CO2/N2 selectivity of TAPPy-TFP reaches 3.87 mmol g-1 and 27. This work demonstrates that the introduction of ß-ketoenamine sites directly through condensation reaction is an effective strategy to improve the carbon dioxide adsorption performance of carbon dioxide.

14.
Heliyon ; 10(14): e34640, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39130412

RESUMO

This article explores the influence of safety culture (as a subset of organizational culture) on the safety performance of a post-combustion carbon capture facility. After determining the controlling variables of safety culture, a system dynamics model was built to assess how those variables contribute to the safety performance of the facility. The focus on safety culture arises for avoiding major disasters that could significantly impact a company's ability to continue, as well as minor but disruptive incidents occurring during routine operations (i.e. when there is no system upset). This paper describes the complex relationship between cultural norms, leadership practices, communication patterns, and safety conduct with an emphasis on management and personnel commitment to safety, open communication, safety investments, and productivity pressure. Insights from this study contribute to the development of strategies for enhancing the safety performance of carbon capture operations, thereby promoting the integrity and reliability of these essential elements of energy networks. This paper focuses on the visible aspect of safety culture as manifested in organismal practices. We proposed a system dynamics model to devise strategies to reconcile the profitability while preventing accidents.

15.
Biotechnol J ; 19(8): e2400361, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39212191

RESUMO

Selecting the optimal microalgal strain for carbon capture and biomass production is crucial for ensuring the commercial viability of microalgae-based biorefinery processes. This study aimed to evaluate the impact of varying bicarbonate concentrations on the growth rates, inorganic carbon (IC) utilization, and biochemical composition of three freshwater and two marine microalgal species. Parachlorella kessleri, Vischeria cf. stellata, and Porphyridium purpureum achieved the highest carbon removal efficiency (>85%) and biomass production at 6 g L-1 sodium bicarbonate (NaHCO3), while Phaeodactylum tricornutum showed optimal performance at 1 g L-1 NaHCO3. The growth and carbon removal rate of Scenedesmus quadricauda increased with increasing NaHCO3 concentrations, although its highest carbon removal efficiency (∼70%) was lower than the other species. Varying NaHCO3 levels significantly impacted the biochemical composition of P. kessleri, S. quadricauda, and P. purpureum but did not affect the composition of the remaining species. The fatty acid profiles of the microalgae were dominated by C16 and C18 fatty acids, with P. purpureum and P. tricornutum yielding relatively high polyunsaturated fatty acid content ranging between 14% and 30%. Furthermore, bicarbonate concentration had a species-specific effect on the fatty acid and chlorophyll-a content. This study demonstrates the potential of bicarbonate as an effective IC source for microalgal cultivation, highlighting its ability to select microalgal species for various applications based on their carbon capture efficiency and biochemical composition.


Assuntos
Bicarbonatos , Biomassa , Carbono , Água Doce , Microalgas , Bicarbonato de Sódio , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Carbono/metabolismo , Bicarbonatos/metabolismo , Bicarbonato de Sódio/metabolismo , Ácidos Graxos/metabolismo , Água do Mar , Scenedesmus/metabolismo , Scenedesmus/crescimento & desenvolvimento
16.
Mar Pollut Bull ; 207: 116878, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39173475

RESUMO

In the context of carbon emission reduction in the shipping industry, CCUS technology can modify ships to reduce carbon emissions, providing a new direction for the green development of the shipping industry. Based on this, this paper investigates the technology related to carbon capture on ships, firstly puts forward the applicable requirements of carbon capture technology; and analyses the adaptability of the existing carbon capture solutions to the shipping industry; and discusses the development prospect of carbon capture on ships through the three challenges of space utilisation, safety, and economy; and finally analyses the related policies. After analysis and discussion, this paper concludes that the alcohol-amine method is the most suitable carbon capture solution for ships, but there are challenges in economics and space utilisation. The future research direction lies in optimising the performance of the absorber, improving the energy efficiency of the system and solving the CO2 storage problem.

17.
Water Res ; 263: 122127, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094202

RESUMO

Nitrate pollution in groundwater is a serious problem worldwide, as its concentration in many areas exceeds the WHO-defined drinking water standard (50 mg/L). Hydrogen-oxidizing bacteria (HOB) are a group of microorganisms capable of producing single-cell protein (SCP) using hydrogen and oxygen. Furthermore, HOB can utilize various nitrogen sources, including nitrate. This study developed a novel hybrid biological-inorganic (HBI) system that coupled a new submersible water electrolysis system driven by renewable electricity with HOB fermentation for in-situ nitrate recovery from polluted groundwater and simultaneously upcycling it together with CO2 into single-cell protein. The performance of the novel HBI system was first evaluated in terms of bacterial growth and nitrate removal efficiency. With 5 V voltage applied and the initial nitrate concentration of 100 mg/L, the nitrate removal efficiency of 85.52 % and raw of 47.71 % (with a broad amino acid spectrum) were obtained. Besides, the HBI system was affected by the applied voltages and initial nitrogen concentrations. The water electrolysis with 3 and 4 V cannot provide sufficient H2 for HOB and the removal of nitrate was 57.12 % and 59.22 % at 180 h, while it reached 65.14 % and 65.42 % at 5 and 6 V, respectively. The nitrate removal efficiency reached 58.40 % and 50.72 % within 180 h with 200 and 300 mg/L initial nitrate concentrations, respectively. Moreover, a larger anion exchange membrane area promoted nitrate removal. The monitored of the determination of different forms of nitrogen indicated that around 60 % of the recovered nitrate was assimilated into cells, and 40 % was bio-converted to N2. The results demonstrate a potentially sustainable method for remediating nitrate contaminant in groundwater, upcycling waste nitrogen, CO2 sequestration and valorization of renewable electricity into food or feed.


Assuntos
Água Subterrânea , Nitratos , Água Subterrânea/química , Poluentes Químicos da Água , Purificação da Água/métodos , Eletrólise , Proteínas Alimentares
18.
Sci Total Environ ; 950: 175256, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39098412

RESUMO

Exploring the challenges posed by uncertainties in numerical modeling for hazardous material storage, this study introduces methodologies to improve monitoring networks for detecting subsurface leakages. The proposed approaches were applied to the Korea CO2 Storage Environmental Management (K-COSEM) test site, undergoing calibration, validation and uncertainty analysis through hydraulic and controlled-CO2 release tests. The calibration phase involved inter-well tracer and multi-well pumping tests, leveraging the Parameter ESTimation (PEST) model to determine the aquifer flow and solute transport properties of the K-COSEM site. To tackle uncertainties with limited observation data, we adopted Latin Hypercube simulation. Our uncertainty analysis confirmed model accuracy in simulating observed CO2 breakthrough curves. We also explored a probabilistic method to identify the environmental change point (EnCP) through correlation analysis with the distance from the CO2 injection well, revealing a linear trend and pinpointed potential preferential flow pathways by assessing detection probabilities. Evaluating CO2 detection capabilities was crucial for optimizing monitoring well placement, highlighting strategic well selection based on detection probabilities. This study advances managing uncertainties in hydrogeological modeling, underscoring the importance of sophisticated models in designing monitoring networks for hazardous leak detection in complex subsurface conditions.

19.
Bioresour Technol ; 411: 131334, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39181515

RESUMO

Wastewater treatment innovation toward resource recovery facilities raises concerns about the adsorption and bio-degradation (A-B) process. This study integrated enhanced biological phosphorus removal (EBPR) into the A-stage for real domestic sewage treatment using the short sludge retention time (S-SRT) approach. The S-SRT approach resulted in outstanding phosphorus (over 90 %) and COD removal (approximately 88 %), increased sludge yield and organic matter content, and a 1.68-fold increase in energy recovery efficiency by sludge anaerobic digestion. The inhibition of nitrification relieved competition for carbon sources between denitrification and phosphorus removal, allowing for the enrichment of phosphorus-accumulating organisms (PAOs) such as Tetrasphaera and Halomonas, leading to enhanced phosphorus removal activities. Biological adsorption also plays a significant role in achieving steady phosphorus removal performance. This study demonstrates the potential of the S-SRT approach as an effective strategy for simultaneous carbon and phosphorus capture in the A-stage, contributing to energy and nutrient recovery from sewage.

20.
Sci Total Environ ; 947: 174613, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38997036

RESUMO

This study applies a regional Dynamic Energy Budget (DEB) model, enhanced to include biocalcification processes, to evaluate the carbon capture potential of farmed blue mussels (Mytilus edulis/trossulus) in the Baltic Sea. The research emphasises the long-term capture of carbon associated with shell formation, crucial for mitigating global warming effects. The model was built using a comprehensive pan-Baltic dataset that includes information on mussel growth, filtration and biodeposition rates, and nutrient content. The study also examined salinity, temperature, and chlorophyll a as key environmental factors influencing carbon capture in farmed mussels. Our findings revealed significant spatial and temporal variability in carbon dynamics under current and future environmental conditions. The tested future predictions are grounded in current scientific understanding and projections of climate change effects on the Baltic Sea. Notably, the outer Baltic Sea subbasins exhibited the highest carbon capture capacity with an average of 55 t (in the present scenario) and 65 t (under future environmental conditions) of carbon sequestrated per farm (0.25 ha) over a cultivation cycle - 17 months. Salinity was the main driver of predicted regional changes in carbon capture, while temperature and chlorophyll a had more pronounced local effects. This research advances our understanding of the role low trophic aquaculture plays in mitigating climate change. It highlights the importance of developing location-specific strategies for mussel farming that consider both local and regional environmental conditions. The results contribute to the wider discourse on sustainable aquaculture development and environmental conservation.


Assuntos
Aquicultura , Mudança Climática , Monitoramento Ambiental , Mytilus edulis , Animais , Mytilus edulis/metabolismo , Carbono , Oceanos e Mares , Sequestro de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA