Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
1.
Polymers (Basel) ; 16(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39339110

RESUMO

A large number of the thin-film organic structures (polyimides, 2-cyclooctylarnino-5-nitropyridine, N-(4-nitrophenyl)-(L)-prolinol, 2-(n-Prolinol)-5-nitropyridine) sensitized with the different types of the nano-objects (fullerenes, carbon nanotubes, quantum dots, shungites, reduced graphene oxides) are presented, which are studied using the holographic technique under the Raman-Nath diffraction conditions. Pulsed laser irradiation testing of these materials predicts a dramatic increase of the laser-induced refractive index, which is in several orders of the magnitude greater compared to pure materials. The estimated nonlinear refraction coefficients and the cubic nonlinearities for the materials studied are close to or larger than those known for volumetric inorganic crystals. The role of the intermolecular charge transfer complex formation is considered as the essential in the refractivity increase in nano-objects-doped organics. As a new idea, the shift of charge from the intramolecular donor fragment to the intermolecular acceptors can be proposed as the development of Janus particles. The energy losses via diffraction are considered as an additional mechanism to explain the nonlinear attenuation of the laser beam.

2.
Talanta ; 281: 126803, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39255624

RESUMO

Lactate dehydrogenase (LDH), a prevalent enzyme involved in anaerobic glycolysis, is released into body fluids following cell damage and has long been a general marker of tissue injury. However, due to its lack of selectivity and the advent of more accurate biomarkers, the clinical utility of LDH has been largely limited to confirming hemolysis. LDH has been recognized as a valuable prognostic biomarker for various cancers, making its monitoring crucial during cancer management. Traditional LDH methods include spectrophotometric analysis of NADH at 340 nm, native electrophoresis, or enzyme-linked immunosorbent assay. This study presents the first lateral flow immunoassay (LFIA) for the smartphone-based quantification of serum LDH levels at the point of care. Highly-affinity and specific antibodies have been produced, with 5 nM equilibrium dissociation constant and no cross-reactivity with human serum albumin and human immunoglobulin G. Utilizing carbon nanoparticles as signal transducers significantly enhanced the quantification limit 55-fold, compared to the conventional gold nanoparticles-based LFIA, achieving a quantification limit of 1.5 ng mL-1. The developed assay demonstrated a mean recovery rate of 115 ± 21 % when evaluating LDH-spiked serum samples. This method can be an interesting home-testing tool for monitoring cancer progression or therapy effectiveness.

3.
ACS Appl Mater Interfaces ; 16(35): 46079-46089, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39169850

RESUMO

Phototherapy has demonstrated substantial development because in the second near-infrared (NIR-II) window it has a larger tissue penetration and fewer adverse consequences. In this work, a particular kind of NIR-II responsive Fe-doped carbon nanoparticles (FDCNs) is synthesized using a one-pot hydrothermal method for combined photothermal and chemodynamic therapy. The mesoporous nanostructure of FDCN, which has a size distribution that exceeds 225 nm, allows for effective acidification. The iron ions released from these nanoparticles can catalyze the decomposition of hydrogen peroxide (H2O2) into hydroxyl radical (•OH) for chemodynamic therapy (CDT). In addition to their CDT utility, FDCN can effectively adsorb and transform 1064 nm light into local heat, achieving a photothermal conversion efficacy (PCE) of 36.3%. This dual functionality not only allows for the direct eradication of cancer cells through photothermal therapy (PTT) but also enhances the chemodynamic reaction, creating a synergistic effect that amplifies the therapeutic outcome. The FDCN has demonstrated remarkable anticancer activity in both cellular and animal tests without incurring major systemic toxicity. This suggests that the compound has great promise for use in clinical cancer therapy.


Assuntos
Carbono , Ferro , Nanopartículas , Carbono/química , Humanos , Animais , Ferro/química , Nanopartículas/química , Camundongos , Raios Infravermelhos , Antineoplásicos/química , Antineoplásicos/farmacologia , Terapia Fototérmica , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/patologia , Fototerapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C
4.
Bioresour Technol ; 408: 131206, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39097241

RESUMO

Carbon quantum dots (CQDs) were successfully synthesized from carbohydrate-rich residue of birch obtained following the lignin-first strategy. The optical and physicochemical properties of the CQDs were studied, along with their potential for photocatalytic pollutant degradation. By combining solvothermal and chemical oxidation methods, the product yield of CQDs from carbohydrate-rich residue reached 8.1 wt%. Doping nitrogen enhances the graphitization of CQDs and introduces abundant amino groups to the surface, thereby boosted the quantum yield significantly from 8.9 % to 18.7 %-19.3 %. Nitrogen-doped CQDs exhibited efficient photocatalytic degradation of methylene blue, reaching 37 % within 60 min, with a kinetic degradation rate of 0.00725 min-1. This study demonstrates that carbohydrate-rich residue obtained from lignin-first strategy are ideal precursors for synthesizing CQD with high mass yield and quantum yield by combining solvothermal treatment and chemical oxidation methods, offering a novel approach for the utilization of whole biomass components following the lignin-first strategy.


Assuntos
Betula , Carbono , Lignina , Pontos Quânticos , Pontos Quânticos/química , Lignina/química , Carbono/química , Betula/química , Carboidratos/química , Azul de Metileno/química , Nitrogênio/química , Catálise , Cinética
5.
Membranes (Basel) ; 14(7)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39057668

RESUMO

The development of an ideal membrane for membrane distillation (MD) is of the utmost importance. Enhancing the efficiency of MD by adding nanoparticles to or onto a membrane's surface has drawn considerable attention from the scientific community. It is crucial to thoroughly examine state-of-the-art nanomaterials-enabled MD membranes with desirable properties, as they greatly enhance the efficiency and reliability of the MD process. This, in turn, opens up opportunities for achieving a sustainable water-energy-environment nexus. By introducing carbon-based nanomaterials into the membrane's structure, the membrane gains excellent separation abilities, resistance to various feed waters, and a longer lifespan. Additionally, the use of carbon-based nanomaterials in MD has led to improved membrane performance characteristics such as increased permeability and a reduced fouling propensity. These nanomaterials have also enabled novel membrane capabilities like in situ foulant degradation and localized heat generation. Therefore, this review offers an overview of how the utilization of different carbon-based nanomaterials in membrane synthesis impacts the membrane characteristics, particularly the liquid entry pressure (LEP), hydrophobicity, porosity, and membrane permeability, as well as reduced fouling, thereby advancing the MD technology for water treatment processes. Furthermore, this review also discusses the development, challenges, and research opportunities that arise from these findings.

6.
Nanomaterials (Basel) ; 14(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39057898

RESUMO

Poly(3,4-ethylenedioxythiophene) (PEDOT) and PEDOT-functionalized carbon nanoparticles (f-CNPs) were synthesized by in situ chemical oxidative polymerization and pyrolysis methods. f-CNP-PEDOT nanocomposites were prepared by varying the concentration of PEDOT from 1 to 20% by weight (i.e., 1, 2.5, 5, 10, and 20 wt%). Several characterization techniques, such as field-emission scanning electron microscopy (FESEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), X-ray diffraction (XRD), N2 Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) analyses, as well as cyclic voltammetry (CV), galvanostatic charge discharge (GCD), and electrochemical impedance spectroscopy (EIS), were applied to investigate the morphology, the crystalline structure, the N2 adsorption/desorption capability, as well as the electrochemical properties of these new synthesized nanocomposite materials. FESEM analysis showed that these nanocomposites have defined porous structures, and BET surface area analysis showed that the standalone f-CNP exhibited the largest surface area of 801.6 m2/g, whereas the f-CNP-PEDOT with 20 wt% exhibited the smallest surface area of 116 m2/g. The BJH method showed that the nanocomposites were predominantly mesoporous. CV, GCD, and EIS measurements showed that f-CNP functionalized with 5 wt% PEDOT had a higher capacitive performance compared to the individual f-CNPs and PEDOT constituents, exhibiting an extraordinary specific capacitance of 258.7 F/g, at a current density of 0.25 A/g, due to the combined advantage of enhanced electrochemical activity induced by PEDOT doping, and highly developed porosity of f-CNPs. Symmetric aqueous supercapacitor devices were fabricated using the optimized f-CNP-PEDOT doped with 5 wt% of PEDOT as active material, exhibiting a high capacitance of 96.7 F/g at 1.4 V, holding practically their full charge, after 10,000 charge-discharge cycles at 2 A/g, thus providing the highest electrical electrodes performance. Hereafter, this work paves the way for the potential use of f-CNP-PEDOT nanocomposites in the development of high-energy-density supercapacitors.

7.
Methods Mol Biol ; 2780: 27-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987462

RESUMO

Docking methods can be used to predict the orientations of two or more molecules with respect of each other using a plethora of various algorithms, which can be based on the physics of interactions or can use information from databases and templates. The usability of these approaches depends on the type and size of the molecules, whose relative orientation will be estimated. The two most important limitations are (i) the computational cost of the prediction and (ii) the availability of the structural information for similar complexes. In general, if there is enough information about similar systems, knowledge-based and template-based methods can significantly reduce the computational cost while providing high accuracy of the prediction. However, if the information about the system topology and interactions between its partners is scarce, physics-based methods are more reliable or even the only choice. In this chapter, knowledge-, template-, and physics-based methods will be compared and briefly discussed providing examples of their usability with a special emphasis on physics-based protein-protein, protein-peptide, and protein-fullerene docking in the UNRES coarse-grained model.


Assuntos
Algoritmos , Simulação de Acoplamento Molecular , Proteínas , Simulação de Acoplamento Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Ligação Proteica , Biologia Computacional/métodos , Conformação Proteica , Bases de Conhecimento , Software
8.
PeerJ ; 12: e17652, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011381

RESUMO

The application of nanomaterials in different plants exerts varying effects, both positive and negative. This study aimed to investigate the influence of carbon nanoparticles (CNPs) on the growth and development of Ficus tikoua Bur. plant. The morphological characteristics, photosynthetic parameters, and chlorophyll content of F. tikoua Bur. plants were evaluated under four different concentrations of CNPs. Results indicated a decreasing trend in several agronomic traits, such as leaf area, branching number, and green leaf number and most photosynthetic parameters with increasing CNPs concentration. Total chlorophyll and chlorophyll b contents were also significantly reduced in CNPs-exposed plants compared to the control. Notably, variations in plant tolerance to CNPs were observed based on morphological and physiological parameters. A critical concentration of 50 g/kg was identified as potentially inducing plant toxicity, warranting further investigation into the effects of lower CNPs concentrations to determine optimal application levels.


Assuntos
Carbono , Clorofila , Ficus , Nanopartículas , Fotossíntese , Ficus/química , Fotossíntese/efeitos dos fármacos , Carbono/metabolismo , Nanopartículas/química , Clorofila/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
9.
Sci Total Environ ; 947: 174614, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38992354

RESUMO

This study aimed to determine the potential toxicological effects of carbon nanotubes (CNTs), their modifications with ethylenediamine (ED) and boric acid (BA) on aquatic organisms. Specifically, the research focused on the morphological, physiological, and histopathological-immuno-histochemical responses in zebrafish (Danio rerio) embryos and larvae, via applying different concentrations of CNTs, CNT-ED, and CNT-ED-BA (Control, 5, 10, and 20 mg/L). The results indicated that 20 mg/L CNT nanoparticles were toxic to zebrafish larvae, with mortality rates increasing with CNT and CNT-ED concentrations, reaching 36.7 % at the highest CNT concentration. The highest dose caused considerable degeneration, necrosis, DNA damage, and apoptosis, as evidenced by histopathological and immunohistochemical tests. In contrast, despite their high concentration, CNT-ED-BA nanoparticles exhibited low toxicity. Behavioral studies revealed that CNT and CNT-ED nanoparticles had a more significant impact on sensory-motor functions compared to CNT-ED-BA nanoparticles. These findings suggest that modifying the nanosurface with boric acid, resulting in boramidic acid, can reduce the toxicity induced by CNT and CNT-ED.


Assuntos
Ácidos Bóricos , Embrião não Mamífero , Larva , Nanotubos de Carbono , Poluentes Químicos da Água , Peixe-Zebra , Animais , Nanotubos de Carbono/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Ácidos Bóricos/toxicidade , Larva/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
10.
Nanomaterials (Basel) ; 14(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38921918

RESUMO

The enhancement of carbon-supported components is a crucial factor in augmenting the interplay between carbon-supported and metal-active components in the utilization of catalysts for direct ethanol fuel cells (DEFCs). Here, we propose a strategy for designing a catalyst by modifying candle soot (CS) and loading nickel onto ordered carbon soot. The present study aimed to investigate the effect of the Ni nanoparticles content on the electrocatalytic performance of Ni-CS, ultimately leading to the identification of a maximum composition. The presence of an excessive quantity of nickel particles leads to a decrease in the number of active sites within the material, resulting in sluggishness of the electron transfer pathway. The electrocatalyst composed of nickel and carbon support, with a nickel content of 20 wt%, has demonstrated a noteworthy current activity of 18.43 mA/cm2, which is three times that of the electrocatalyst with a higher nickel content of 25 wt%. For example, the 20 wt% Ni-CS electrocatalytic activity was found to be good, and it was approximately four times higher than that of 20 wt% Ni-CB (nickel-carbon black). Moreover, the chronoamperometry (CA) test demonstrated a reduction in current activity of merely 65.80% for a 20 wt% Ni-CS electrocatalyst, indicating electrochemical stability. In addition, this demonstrates the great potential of candle soot with Ni nanoparticles to be used as a catalyst in practical applications.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124721, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38943755

RESUMO

Breast cancer (BC) is the most common malignancy among females worldwide, and its high metastasis rates are the leading cause of death just after lung cancer. Currently, tamoxifen (TAM) is a hydrophobic anticancer agent and a selective estrogen modulator (SERM), approved by the FDA that has shown potential anticancer activity against BC, but the non-targeted delivery has serious side effects that limit its ubiquitous utility. Therefore, releasing anti-cancer drugs precisely to the tumor site can improve efficacy and reduce the side effects on the body. Nanotechnology has emerged as one of the most important strategies to solve the issue of overdose TAM toxicity, owing to the ability of nano-enabled formulations to deliver desirable quantity of TAM to cancer cells over a longer period of time. In view of this, use of fluorescent carbon nanoparticles in targeted drug delivery holds novel promise for improving the efficacy, safety, and specificity of TAM therapy. Here, we synthesized biocompatible carbon nanoparticles (CNPs) using chitosan molecules without any toxic surface passivating agent. Synthesized CNPs exhibit good water dispersibility and emit intense blue fluorescence upon excitation (360 nm source). The surface of the CNPs has been functionalized with folate using click chemistry to improve the targeted drug uptake by the malignant cell. The pH difference between cancer and normal cells was successfully exploited to trigger TAM release at the target site. After six hours of incubation, CNPs released âˆ¼ 74 % of the TAM drug in acidic pH. In vitro, studies have also demonstrated that after treatment with the synthesized CNPs, significant inhibition of the tumor growth could be achieved.


Assuntos
Neoplasias da Mama , Carbono , Portadores de Fármacos , Nanopartículas , Tamoxifeno , Tamoxifeno/farmacologia , Tamoxifeno/química , Tamoxifeno/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Humanos , Feminino , Nanopartículas/química , Carbono/química , Portadores de Fármacos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Células MCF-7 , Corantes Fluorescentes/química , Camundongos
12.
J Fluoresc ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902497

RESUMO

Nanoscale materials are being developed from individual particles to multi-component assemblies, with carbon nanomaterials being particularly useful in bioimaging, sensing, and optoelectronics due to their unique optical properties, enhanced by surface passivation and chemical doping. Noble metals are commonly used in conjunction with carbon-based nanomaterials for the synthesis of nanohybrids. Carbon-based materials can function as photosensitizers and effective carriers in photodynamic therapy, enabling the use of combined treatment approaches. The hydrophobicity and agglomeration tendency of carbon nanoparticles pose a drawback. This study is an attempt to overcome these limitations, which involved the synthesis of iron oxide-doped carbon nanoparticles through the carbonisation of citric acid and hexamethylene tetramine, followed by doping them with iron oxide. The as synthesized iron oxide-doped carbon nanoparticles were stabilised with fluorescently modified hyperbranched polyglycerol. The efficacy of these nanoparticles in photodynamic antibacterial therapy and Cd (II) ion sensing was investigated. The selectivity of stabilised nanoparticles against Cd2+ ion is presented in the current study. The current study also compares the antibacterial efficacy of undoped, iron oxide-doped and stabilised nanoparticle systems. The possible toxic effects of the synthesised nanosystems were investigated in order to assess their suitability for biomedical applications and establish their safety profile.

13.
3D Print Addit Manuf ; 11(2): e548-e571, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689914

RESUMO

Advancement in additive manufacturing (AM) allows the production of nanocomposites with complex and custom geometries not typically allowable with conventional manufacturing techniques. The benefits of AM have led to recent interest in producing multifunctional materials capable of being printed with current AM technologies. In this article, piezoresistive composites realized by AM and the matrices and fillers utilized to make such devices are introduced and discussed. Carbon-based nanoparticles (Carbon Nanotubes, Graphene/Graphite, and Carbon Black) are often the filler choice of most researchers and are heavily discussed throughout this review in combination with extrusion AM methods. Piezoresistive applications such as physiological and wearable sensors, structural health monitoring, and soft robotics are presented with an emphasis on material and AM selection to meet the demands of such applications.

14.
Polymers (Basel) ; 16(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732705

RESUMO

Recently, increasing attention of researchers in the field of membrane technology has been paid to the development of membranes based on biopolymers. One of the well-proven polymers for the development of porous membranes is cellulose acetate (CA). This paper is devoted to the study of the influence of different parameters on ultrafiltration CA membrane formation and their transport properties, such as the variation in coagulation bath temperature, membrane shrinkage (post-treatment at 80 °C), introduction to casting CA solution of polymers (polyethylene glycol (PEG), polysulfone (PS), and Pluronic F127 (PL)) and carbon nanoparticles (SWCNTs, MWCNTs, GO, and C60). The structural and physicochemical properties of developed membranes were studied by scanning electron and atomic force microscopies, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and contact angle measurements. The transport properties of developed CA-based membranes were evaluated in ultrafiltration of bovine serum albumin (BSA), dextran 110 and PVP K-90. All developed membranes rejected 90% compounds with a molecular weight from ~270,000 g/mol. It was shown that the combination of modifications (addition of PEG, PS, PL, PS-PL, and 0.5 wt% C60) led to an increase in the fluxes and BSA rejection coefficients with slight decrease in the flux recovery ratio. These changes were due to an increased macrovoid number, formation of a more open porous structure and/or thinner top selective, and decreased surface roughness and hydrophobization during C60 modification of blend membranes. Optimal transport properties were found for CA-PEG+C60 (the highest water-394 L/(m2h) and BSA-212 L/(m2h) fluxes) and CA-PS+C60 (maximal rejection coefficient of BSA-59%) membranes.

15.
Oncol Lett ; 27(6): 288, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38736745

RESUMO

At present, due to its wide application and relatively low cost, chemotherapy remains a clinically important cancer treatment option; however, a number of chemotherapeutic drugs have important limitations, such as lack of specificity, high toxicity and side effects, and multi-drug resistance. The emergence of nanocarriers has removed numerous clinical application limitations of certain antitumor chemotherapy drugs and has been widely used in the treatment of tumors with nanodrugs. The present study used carbon nanoparticles (CNPs) as a nanocarrier for doxorubicin (DOX) to form the novel nanomedicine delivery system (CNPs@DOX)was demonstrated by UV-vis and fluorescence spectrophotometry, ζ potential and TEM characterization experiments. The results confirmed the successful preparation of CNPs@DOX nanoparticles with a particle size of 96±17 nm, a wide range of absorption and a negatively charged surface. Furthermore, CNPs@DOX produced more reactive oxygen species and induced apoptosis, and thus exhibited higher cytotoxicity than DOX, which is a small molecule anticancer drug without a nanocarrier delivery system.. The present study provides a strategy for the treatment of tumors with nanomedicine.

16.
Biomater Adv ; 161: 213886, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735200

RESUMO

Altering the route of uptake by the cells is an attractive strategy to overcome drug-receptor adaptation problems. Carbon nanoparticles (CNPs) with emission beyond tissue autofluorescence for imaging biological tissues were used to study the phenomenon of uptake by the cells. In this regard, red-emitting carbon nanoparticles (CNPs) were synthesized and incorporated onto lipid microbubbles (MBs). The CNPs showed red emissions in the range of 640 nm upon excitation with 480 nm wavelength of light. Atomic force microscopic and confocal microscopic images showed the successful loading of CNPs onto the MB. Carbon nanoparticle loaded microbubbles (CNP-MBs) were treated with NIH 3 T3 cells at different concentrations. Confocal microscopic imaging studies confirm the presence of CNPs inside the treated cells. Cytotoxicity studies revealed that the CNPs showed minimal toxicity towards cells after loading onto MBs. The CNPs are usually taken up by the cells through the clathrin-mediated (CME) pathway, but when loaded onto MBs, the mechanism of uptake of CNPs is altered, and the uptake by the cells was observed even in the presence of inhibitors for the CME pathway. Loading CNPs onto MBs resulted in the uptake of CNPs by the cell through micropinocytosis and sonophoresis in the presence of ultrasound. The in vivo uptake CNP-MBs were performed in Danio rerio (Zebrafish larvae). This study provides insights into altering the uptake pathway through reformulation by loading nanoparticles onto MBs.


Assuntos
Carbono , Microbolhas , Nanopartículas , Peixe-Zebra , Animais , Carbono/química , Camundongos , Nanopartículas/química , Células NIH 3T3 , Sistemas de Liberação de Medicamentos/métodos
17.
J Colloid Interface Sci ; 670: 449-459, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772261

RESUMO

Aqueous zinc ion batteries (ZIBs) have been considered promising energy storage systems due to their excellent electrochemical performance, environmental toxicity, high safety and low cost. However, uncontrolled dendrite growth and side reactions at the zinc anode have seriously hindered the development of ZIBs. Herein, we prepared the carbon nanoparticles layer coated zinc anode with (103) crystal plane preferential oriented crystal structure (denoted as C@RZn) by a facile one-step vapor deposition method. The preferential crystallographic orientation of (103) crystal plane promotes zinc deposition at a slight angle, effectively preventing the formation of Zn dendrites on the surface. In addition, the hydrophobic layer of carbon layer used as an inert physical barrier to prevent corrosion reaction and a buffer during volume changes, thus improving the reversibility of the zinc anode. As a result. the C@RZn anode achieves a stable cycle performance of more than 3000 h at 1 mA cm-2 with CE of 99.77 % at 5 mA cm-2. The full battery with C@RZn anode and Mn-doped V6O13 (MVO) cathode show stability for 5000 cycles at the current density of 5 A g-1. This work provides a new approach for the design of multifunctional interfaces for Zn anode.

18.
Colloids Surf B Biointerfaces ; 240: 113968, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38788472

RESUMO

Due to the unique structure, carbon nanomaterials could convert near-infrared (NIR) light into heat efficiently in tumor ablation using photothermal therapy (PTT). However, none of them has been applied in clinical treatment, because they have not been approved for clinical evaluations and the precise temperature control facility is scarce. In this study, we designed a temperature-responsive controller for PTT and used carbon nanoparticles-Fe(II) complex (CNSI-Fe) as photothermal conversion agent (PTA) for PTT of tumor in vitro and in vivo. CNSI-Fe was an innovative drug under the evaluations in clinical trials. CNSI-Fe showed excellent photothermal conversion ability in water to increase the water temperature by 40 °C within 5 min under irradiation of 808 nm laser at 0.5 W/cm2. The temperature was precisely controlled at 52 °C for both in vitro and in vivo tumor inhibition. CNSI-Fe with NIR irradiation showed higher tumor cell inhibition than CNSI. In tumor bearing mice, CNSI-Fe with NIR irradiation achieved an inhibition rate of 84.7 % and 71.4 % of them were completely cured. Mechanistically, CNSI-Fe under NIR irradiation induced the radical generation, oxidative damage and ferroptosis to kill tumor. In addition, CNSI-Fe showed good biosafety during PTT according to hematological, serum biological and histopathological examinations. These results indicated that the combination of chemotherapy and PTT provided higher antitumor efficiency using CNSI-Fe as PTA.


Assuntos
Carbono , Nanopartículas , Terapia Fototérmica , Animais , Carbono/química , Camundongos , Nanopartículas/química , Humanos , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos Endogâmicos BALB C , Raios Infravermelhos , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Tamanho da Partícula , Ensaios de Seleção de Medicamentos Antitumorais
19.
Nanotechnology ; 35(29)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38621367

RESUMO

The fundamentals, performance, and applications of piezoresistive strain sensors based on polymer nanocomposites are summarized herein. The addition of conductive nanoparticles to a flexible polymer matrix has emerged as a possible alternative to conventional strain gauges, which have limitations in detecting small strain levels and adapting to different surfaces. The evaluation of the properties or performance parameters of strain sensors such as the elongation at break, sensitivity, linearity, hysteresis, transient response, stability, and durability are explained in this review. Moreover, these nanocomposites can be exposed to different environmental conditions throughout their lifetime, including different temperature, humidity or acidity/alkalinity levels, that can affect performance parameters. The development of flexible piezoresistive sensors based on nanocomposites has emerged in recent years for applications related to the biomedical field, smart robotics, and structural health monitoring. However, there are still challenges to overcome in designing high-performance flexible sensors for practical implementation. Overall, this paper provides a comprehensive overview of the current state of research on flexible piezoresistive strain sensors based on polymer nanocomposites, which can be a viable option to address some of the major technological challenges that the future holds.

20.
ACS Infect Dis ; 10(5): 1644-1653, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38602317

RESUMO

This study describes the synthesis of amino-functionalized carbon nanoparticles derived from biopolymer chitosan using green synthesis and its application toward ultrasensitive electrochemical immunosensor of highly virulent Escherichia coli O157:H7 (E. coli O157:H7). The inherent advantage of high surface-to-volume ratio and enhanced rate transfer kinetics of nanoparticles is leveraged to push the limit of detection (LOD), without compromising on the selectivity. The prepared carbon nanoparticles were systematically characterized by employing CO2-thermal programmed desorption (CO2-TPD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-visible), and transmission electron microscopy (TEM). The estimated limit of detection of 0.74 CFU/mL and a sensitivity of 5.7 ((ΔRct/Rct)/(CFU/mL))/cm2 in the electrochemical impedance spectroscopy (EIS) affirm the utility of the sensor. The proposed biosensor displayed remarkable selectivity against interfering species, making it well suited for real-time applications. Moreover, the chitosan-derived semiconducting amino-functionalized carbon shows excellent sensitivity in a comparative analysis compared to highly conducting amine-functionalized carbon synthesized via chemical modification, demonstrating its vast potential as an E. coli sensor.


Assuntos
Técnicas Biossensoriais , Carbono , Quitosana , Espectroscopia Dielétrica , Escherichia coli O157 , Escherichia coli O157/isolamento & purificação , Técnicas Biossensoriais/métodos , Carbono/química , Quitosana/química , Nanopartículas/química , Limite de Detecção , Química Verde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA