Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur Heart J Open ; 3(5): oead099, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849787

RESUMO

Aims: Myocardial infarction (MI) is one of the leading causes of death worldwide. It is well accepted that early diagnosis followed by early reperfusion therapy significantly increases the MI survival. Diagnosis of acute MI is traditionally based on the presence of chest pain and electrocardiogram (ECG) criteria. However, around 50% of the MIs are without chest pain, and ECG is neither completely specific nor definitive. Therefore, there is an unmet need for methods that allow detection of acute MI or ischaemia without using ECG. Our hypothesis is that a hybrid physics-based machine learning (ML) method can detect the occurrence of acute MI or ischaemia from a single carotid pressure waveform. Methods and results: We used a standard occlusion/reperfusion rat model. Physics-based ML classifiers were developed using intrinsic frequency parameters extracted from carotid pressure waveforms. ML models were trained, validated, and generalized using data from 32 rats. The final ML models were tested on an external stratified blind dataset from additional 13 rats. When tested on blind data, the best ML model showed specificity = 0.92 and sensitivity = 0.92 for detecting acute MI. The best model's specificity and sensitivity for ischaemia detection were 0.85 and 0.92, respectively. Conclusion: We demonstrated that a hybrid physics-based ML approach can detect the occurrence of acute MI and ischaemia from carotid pressure waveform in rats. Since carotid pressure waveforms can be measured non-invasively, this proof-of-concept pre-clinical study can potentially be expanded in future studies for non-invasive detection of MI or myocardial ischaemia.

2.
Am J Cardiol ; 204: 195-199, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544144

RESUMO

The primary goal of this study was to test the hypothesis that a hybrid intrinsic frequency-machine learning (IF-ML) approach can accurately evaluate total arterial compliance (TAC) and aortic characteristic impedance (Zao) from a single noninvasive carotid pressure waveform in both women and men with heart failure (HF). TAC and Zao are cardiovascular biomarkers with established clinical significance. TAC is lower and Zao is higher in women than in men, so women are more susceptible to the consequent deleterious effects of them. Although the principles of TAC and Zao are pertinent to a multitude of cardiovascular diseases, including HF, their routine clinical use is limited because of the requirement for simultaneous measurements of flow and pressure waveforms. For this study, the data were obtained from the Framingham Heart Study (n = 6,201, 53% women). The reference values of Zao and TAC were computed from carotid pressure and aortic flow waveforms. IF parameters of carotid pressure waveform were used in ML models. IF models were developed on n = 5,168 of randomly selected data and blindly tested the remaining data (n = 1,033). The final models were evaluated in patients with HF. Correlations between IF-ML and reference values in all HF and HF with preserved ejection fraction for TAC were 0.88 and 0.90, and for Zao were 0.82 and 0.80, respectively. The classification accuracy in all HF and HF with preserved ejection fraction for TAC were 0.9 and 0.93, and for Zao were 0.81 and 0.89, respectively. In conclusion, the IF-ML method provides an accurate estimation of TAC and Zao in all subjects with HF and in the general population.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Masculino , Humanos , Feminino , Impedância Elétrica , Aorta , Estudos Longitudinais
3.
J Biomech ; 129: 110852, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34775340

RESUMO

Intrinsic Frequency (IF) is a systems-based approach that provides valuable information for hemodynamic monitoring of the left ventricle (LV), the arterial system, and their coupling. Recent clinical studies have demonstrated the clinical significance of this method for prognosis and diagnosis of cardiovascular diseases. In IF analysis, two dominant instantaneous frequencies (ω1 and ω2) are extracted from arterial pressure waveforms. The value of ω1 is related to the dynamics of the LV and the value of ω2 is related to the dynamics of vascular function. This work investigates the effects of vessel wall mechanics on the accuracy and applicability of IFs extracted from vessel wall displacement waveforms compared to IFs extracted from pressure waveforms. In this study, we used a computational approach employing a fluid-structure interaction finite element method for various wall mechanics governed by linearly elastic, hyperelastic, and viscoelastic models. Results show that for vessels with elastic wall behavior, the error between displacement-based and pressure-based IFs is negligible. In the presence of stenosis or aneurysm in elastic arteries, the maximum errors associated with displacement-based IFs is less than 2%. For non-linear elastic and viscoelastic arteries, errors are more pronounced (where the former reaches up to 11% and the latter up to 27%). Our results ultimately suggest that displacement-based computations of ω1 and ω2 are accurate in vessels that exhibit elastic behavior (such as carotid arteries) and are suitable surrogates for pressure-based IFs. This is clinically significant because displacement-based IFs can be measured non-invasively.


Assuntos
Doenças Cardiovasculares , Coração , Artérias Carótidas , Elasticidade , Humanos , Modelos Cardiovasculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA