Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 14(6): 2567-2580, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38828157

RESUMO

The pandemic of SARS-CoV-2 worldwide with successive emerging variants urgently calls for small-molecule oral drugs with broad-spectrum antiviral activity. Here, we show that carrimycin, a new macrolide antibiotic in the clinic and an antiviral candidate for SARS-CoV-2 in phase III trials, decreases the efficiency of programmed -1 ribosomal frameshifting of coronaviruses and thus impedes viral replication in a broad-spectrum fashion. Carrimycin binds directly to the coronaviral frameshift-stimulatory element (FSE) RNA pseudoknot, interrupting the viral protein translation switch from ORF1a to ORF1b and thereby reducing the level of the core components of the viral replication and transcription complexes. Combined carrimycin with known viral replicase inhibitors yielded a synergistic inhibitory effect on coronaviruses. Because the FSE mechanism is essential in all coronaviruses, carrimycin could be a new broad-spectrum antiviral drug for human coronaviruses by directly targeting the conserved coronaviral FSE RNA. This finding may open a new direction in antiviral drug discovery for coronavirus variants.

2.
World J Clin Cases ; 12(15): 2542-2550, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38817218

RESUMO

BACKGROUND: The number of patients undergoing solid organ transplantation has increased annually. However, infections in solid organ transplant recipients can have a severe effect on patient survival owing to the continued use of immunosuppressants. Carrimycin is a novel macrolide antibiotic produced by genetically engineered streptomyces spiramyceticus harboring a 4''-O-isovaleryltransferase gene (ist) from streptomyces thermotoleran. Carrimycin has good antibacterial and antiviral effects. However, no relevant studies have been conducted on the efficacy and safety of carrimycin in patients with severe pneumonia (SP) after solid organ transplantation. AIM: To explore the efficacy and safety of carrimycin in patients with SP after solid organ transplantation to provide a medication reference for clinical treatment. METHODS: In March 2022, ten patients with SP following solid-organ transplantation were treated at our hospital between January 2021 and March 2022. When the condition was critical and difficult to control with other drugs, carrimycin was administered. These ten patients' clinical features and treatment protocols were retrospectively analyzed, and the efficacy and safety of carrimycin for treating SP following solid organ transplantation were evaluated. RESULTS: All ten patients were included in the analysis. Regarding etiological agent detection, there were three cases of fungal pneumonia, two cases of bacterial pneumonia, two cases of Pneumocystis pneumonia, and three cases of mixed infections. After treatment with carrimycin, the disease in seven patients significantly improved, the course of the disease was significantly shortened, fever was quickly controlled, chest computed tomography was significantly improved, and oxygenation was significantly improved. Finally, the patients were discharged after curing. One patient died of acute respiratory distress syndrome, and two patients discontinued treatment. CONCLUSION: Carrimycin is a safe and effective treatment modality for SP following solid organ transplantation. Carrimycin may have antibacterial and antiviral effects in patients with SP following solid organ transplantation.

3.
Chin J Nat Med ; 22(3): 235-248, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38553191

RESUMO

Carrimycin (CA), sanctioned by China's National Medical Products Administration (NMPA) in 2019 for treating acute bronchitis and sinusitis, has recently been observed to exhibit multifaceted biological activities, encompassing anti-inflammatory, antiviral, and anti-tumor properties. Despite these applications, its efficacy in sepsis treatment remains unexplored. This study introduces a novel function of CA, demonstrating its capacity to mitigate sepsis induced by lipopolysaccharide (LPS) and cecal ligation and puncture (CLP) in mice models. Our research employed in vitro assays, real-time quantitative polymerase chain reaction (RT-qPCR), and RNA-seq analysis to establish that CA significantly reduces the levels of pro-inflammatory cytokines, namely tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1ß), and interleukin 6 (IL-6), in response to LPS stimulation. Additionally, Western blotting and immunofluorescence assays revealed that CA impedes Nuclear Factor Kappa B (NF-κB) activation in LPS-stimulated RAW264.7 cells. Complementing these findings, in vivo experiments demonstrated that CA effectively alleviates LPS- and CLP-triggered organ inflammation in C57BL/6 mice. Further insights were gained through 16S sequencing, highlighting CA's pivotal role in enhancing gut microbiota diversity and modulating metabolic pathways, particularly by augmenting the production of short-chain fatty acids in mice subjected to CLP. Notably, a comparative analysis revealed that CA's anti-inflammatory efficacy surpasses that of equivalent doses of aspirin (ASP) and TIENAM. Collectively, these findings suggest that CA exhibits significant therapeutic potential in sepsis treatment. This discovery provides a foundational theoretical basis for the clinical application of CA in sepsis management.


Assuntos
Lipopolissacarídeos , Sepse , Espiramicina/análogos & derivados , Camundongos , Animais , Lipopolissacarídeos/efeitos adversos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Punções , Sepse/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças
4.
World J Clin Cases ; 12(3): 623-629, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38322455

RESUMO

BACKGROUND: Pulmonary tuberculosis (PTB) is prevalent in immunocompromised populations, including patients with hematologic malignancies, human immunodeficiency virus infections, and chronic diseases. Effective treatment for acute promyelocytic leukemia (APL) combined with PTB is lacking. These patients show an extremely poor prognosis. Therefore, studies should establish efficient treatment options to improve patient survival and prognosis. CASE SUMMARY: A 60-year-old male with pain in the right side of his chest and a fever for 4 d visited the outpatient department of our hospital. Peripheral blood smear revealed 54% blasts. Following bone marrow examinations, variant APL with TNRC18-RARA fusion gene was diagnosed. Chest computed tomography scan showed bilateral pneumonitis with bilateral pleural effusions, partial atelectasis in the lower lobes of both lungs, and the bronchoalveolar lavage fluid gene X-Pert test was positive, indicative of PTB. Carrimycin, ethambutol (EMB), and isoniazid (INH) were administered since he could not receive chemotherapy as the WBC count decreased continuously. After one week of treatment with carrimycin, the patient recovered from fever and received chemotherapy. Chemotherapy was very effective and his white blood cells counts got back to normal. After being given five months with rifampin, EMB and INH and chemotherapy, the patient showed complete remission from pneumonia and APL. CONCLUSION: We report a case of PTB treated successfully with carrimycin with APL that requires chemotherapy.

5.
Pharmacol Res ; 198: 106991, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984505

RESUMO

Carrimycin is a potential immune-regulating agent for sepsis in patients with tumors. In this study, we investigated its effects on inflammation and immune function in tumor patients with sepsis. In total, 120 participants were randomized to receive either carrimycin treatment (400 mg/day) (n = 62) or placebo (n = 58) for 7 days. The primary outcomes were immune-related indicators. Subsequently, patients were stratified into two subgroups (CD4 < 38.25% and CD8 < 25.195%). Ninety-nine participants were analyzed: 47 and 52 in the carrimycin and placebo groups, respectively. HLA-DR levels were rapidly increased in the carrimycin group; however, the placebo group initially experienced a decline in HLA-DR level at 1 day after administration. In the subgroup with CD4 < 38.25%, the carrimycin group exhibited significantly higher HLA-DR levels than the placebo group (2.270, P = 0.023) 1 day after administration and the degree of increase in HLA-DR in the carrimycin group was higher than that in the placebo group (2.057, P = 0.040). In the CD8 < 25.195% subgroup, the carrimycin group demonstrated significantly higher levels of CD8+ T cells than the placebo group at 3 (2.300,P = 0.027) and 5 (2.106, P = 0.035) days after administration. Carrimycin intervention led to significant reductions in the SOFA, APACHE II, PCT, and CRP levels. No adverse events were observed. In tumor patients with sepsis, particularly in those experiencing immunological suppression, carrimycin effectively regulates immune responses by increasing HLA-DR and CD8+ T cell levels and plays an anti-infective role, reducing disease severity. (Chictr.org.cn, ID Number: ChiCTR2000032339).


Assuntos
Neoplasias , Sepse , Humanos , Linfócitos T CD8-Positivos , Biomarcadores , Antígenos HLA-DR , Sepse/tratamento farmacológico , Inflamação/tratamento farmacológico , Imunidade , Neoplasias/tratamento farmacológico , Método Duplo-Cego
6.
Cancer Pathog Ther ; 1(2): 111-115, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37750087

RESUMO

Carrimycin is a synthetic macrolide antibiotic that has been shown to have anti-cancer activity; however, its exact mechanism of action and molecular target were previously unknown. It was recently elucidated that Isovalerylspiramycin I (ISP I), the active component of carrimycin, targets selenoprotein H (SelH), a nucleolar reactive oxygen species-scavenging enzyme in the selenoprotein family. ISP I treatment accelerates SelH degradation, resulting in oxidative stress, disrupted ribosomal biogenesis, and apoptosis in tumor cells. Specifically, ISP I disrupts the association between RNA polymerase I and ribosomal DNA in the nucleolus. This inhibits ribosomal RNA transcription and subsequent ribosomal assembly, which prevents cancer cells from sustaining elevated rates of protein synthesis and cellular proliferation that are necessary for tumor growth and malignancy. In this review, we (1) describe the historical categorization and evolution of anti-cancer agents, including macrolide antibiotics, (2) outline the discovery of SelH as a target of ISP I, and (3) summarize the ways in which carrimycin has been used both clinically and at the bench to date and propose additional potential therapeutic uses.

7.
World J Gastroenterol ; 29(14): 2134-2152, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37122599

RESUMO

BACKGROUND: New drugs are urgently needed for the treatment of liver cancer, a feat that could be feasibly accomplished by finding new therapeutic purposes for marketed drugs to save time and costs. As a new class of national anti-infective drugs, carrimycin (CAM) has strong activity against gram-positive bacteria and no cross resistance with similar drugs. Studies have shown that the components of CAM have anticancer effects. AIM: To obtain a deeper understanding of CAM, its distribution, metabolism and anti-inflammatory effects were assessed in the organs of mice, and its mechanism of action against liver cancer was predicted by a network pharmacology method. METHODS: In this paper, the content of isovaleryl spiramycin III was used as an index to assess the distribution and metabolism of CAM and its effect on inflammatory factors in various mouse tissues and organs. Reverse molecular docking technology was utilized to determine the target of CAM, identify each target protein based on disease type, and establish a target protein-disease type network to ascertain the effect of CAM in liver cancer. Then, the key action targets of CAM in liver cancer were screened by a network pharmacology method, and the core targets were verified by molecular docking and visual analyses. RESULTS: The maximum CAM concentration was reached in the liver, kidney, lung and spleen 2.5 h after intragastric administration. In the intestine, the maximum drug concentration was reached 0.5 h after administration. In addition, CAM significantly reduced the interleukin-4 (IL-4) levels in the lung and kidney and especially the liver and spleen; moreover, CAM significantly reduced the IL-1ß levels in the spleen, liver, and kidney and particularly the small intestine and lung. CAM is predicted to regulate related pathways by acting on many targets, such as albumin, estrogen receptor 1, epidermal growth factor receptor and caspase 3, to treat cancer, inflammation and other diseases. CONCLUSION: We determined that CAM inhibited inflammation. We also predicted the complex multitargeted effects of CAM that involve multiple pathways and the diversity of these effects in the treatment of liver cancer, which provides a basis and direction for further clinical research.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Animais , Camundongos , Simulação de Acoplamento Molecular , Neoplasias Hepáticas/tratamento farmacológico , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
8.
Infect Drug Resist ; 16: 2365-2369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113529

RESUMO

One of the most pressing emerging issues in bacterial resistance is multidrug-resistant Klebsiella pneumoniae. The treatment of K. pneumoniae infections is often problematic because of the lack of available therapeutic options, leading to negative effects on morbidity, mortality, and healthcare-associated costs. Carrimycin is a macrolide antibiotic with good antibacterial effects. In this study, we report a patient diagnosed with multidrug-resistant K. pneumoniae infection who was treated with carrimycin. The patient presented with cough, expectoration, dyspnea, and severe hypoxemia requiring noninvasive ventilation. We successively used a variety of antibiotics, including meropenem, tigecycline, and polymyxin, with unsatisfactory results. Finally, we used carrimycin, and the patient's condition improved, resulting in hospital discharge. Therefore, for patients with multidrug-resistant K. pneumoniae infection that does not respond to conventional anti-infective treatments, carrimycin can be considered a treatment option.

9.
J Exp Clin Cancer Res ; 41(1): 126, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387667

RESUMO

BACKGROUND: Compared to normal cells, cancer cells exhibit a higher level of oxidative stress, which primes key cellular and metabolic pathways and thereby increases their resilience under oxidative stress. This higher level of oxidative stress also can be exploited to kill tumor cells while leaving normal cells intact. In this study we have found that isovalerylspiramycin I (ISP I), a novel macrolide antibiotic, suppresses cancer cell growth and tumor metastases by targeting the nucleolar protein selenoprotein H (SELH), which plays critical roles in keeping redox homeostasis and genome stability in cancer cells. METHODS: We developed ISP I through genetic recombination and tested the antitumor effects using primary and metastatic cancer models. The drug target was identified using the drug affinity responsive target stability (DARTS) and mass spectrum assays. The effects of ISP I were assessed for reactive oxygen species (ROS) generation, DNA damage, R-loop formation and its impact on the JNK2/TIF-IA/RNA polymerase I (POLI) transcription pathway. RESULTS: ISP I suppresses cancer cell growth and tumor metastases by targeting SELH. Suppression of SELH induces accumulation of ROS and cancer cell-specific genomic instability. The accumulation of ROS in the nucleolus triggers nucleolar stress and blocks ribosomal RNA transcription via the JNK2/TIF-IA/POLI pathway, causing cell cycle arrest and apoptosis in cancer cells. CONCLUSIONS: We demonstrated that ISP I links cancer cell vulnerability to oxidative stress and RNA biogenesis by targeting SELH. This suggests a potential new cancer treatment paradigm, in which the primary therapeutic agent has minimal side-effects and hence may be useful for long-term cancer chemoprevention.


Assuntos
Nucléolo Celular , RNA Ribossômico , Nucléolo Celular/metabolismo , Instabilidade Genômica , Humanos , Proteínas Nucleares/metabolismo , RNA Ribossômico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo
10.
Front Pharmacol ; 12: 774231, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899336

RESUMO

Hepatocellular carcinoma results in a high risk of second primary malignancies and has prominent morbidity and mortality. There is a lack of effective treatment and prognosis is poor. Therefore, effective drugs need to be discovered. Carrimycin is a 16-member macrolide antibiotic with anticancer activity, and monomeric isovalerylspiramycin I is a main component. The aim of this study was to determine the anti-tumor effects of carrimycin and monomeric isovalerylspiramycin I on hepatocellular carcinoma through in vivo and in vitro experiments. In vitro, changes in cellular proliferation, migration, invasion, and apoptosis were analyzed by MTT, colony formation, EdU labeling, wound-healing, matrigel transwell invasion, and flow cytometric assays using SK-Hep1, Hep3B, SNU-354, SNU-387 hepatocellular carcinoma cell lines. Western blotting and RT-PCR were used to detect the effects of carrimycin and monomeric isovalerylspiramycin I on the expression levels of vascular endothelial growth factor (VEGF) and programmed death ligand 1 (PD-L1). Nude mice were subcutaneously transplanted with SK-Hep1 cells or C57BL/6J mice were orthotopically transplanted with hepatocarcinoma H22 cells. Tumor volume, pathological changes in tumor tissues, and the concentration of VEGF in mouse serum were measured after treatments. Carrimycin and monomeric isovalerylspiramycin I dose-dependently inhibited hepatocellular carcinoma cell viability, colony formation, and DNA replication. These agents markedly suppressed migration and invasion and promoted apoptosis of the cell lines. Western blotting and RT-PCR demonstrated that carrimycin and monomeric isovalerylspiramycin I reduced VEGF and PD-L1 protein and mRNA levels in a dose-dependent manner. In vivo studies further confirmed that carrimycin and monomeric isovalerylspiramycin I could significantly inhibit tumor growth, tumor histopathological alterations, and the concentration of VEGF in both mouse tumor models. These results show that carrimycin and monomeric isovalerylspiramycin I promoted apoptosis and inhibited proliferation, migration, and invasion of hepatocellular carcinoma cells. Therefore, our discovery suggests anti-tumor capacity for carrimycin and monomeric isovalerylspiramycin I and provides data on potential new drugs for inhibiting hepatocellular carcinoma.

11.
Sheng Wu Gong Cheng Xue Bao ; 37(6): 2116-2126, 2021 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-34227298

RESUMO

Carrimycin (CAM) is a new antibiotics with isovalerylspiramycins (ISP) as its major components. It is produced by Streptomyces spiramyceticus integrated with a heterogenous 4″-O-isovaleryltransferase gene (ist). However, the present CAM producing strain carries two resistant gene markers, which makes it difficult for further genetic manipulation. In addition, isovalerylation of spiramycin (SP) could be of low efficiency as the ist gene is located far from the SP biosynthesis gene cluster. In this study, ist and its positive regulatory gene acyB2 were inserted into the downstream of orf54 gene neighboring to SP biosynthetic gene cluster in Streptomyces spiramyceticus 1941 by using the CRISPR-Cas9 technique. Two new markerless CAM producing strains, 54IA-1 and 54IA-2, were obtained from the homologous recombination and plasmid drop-out. Interestingly, the yield of ISP in strain 54IA-2 was much higher than that in strain 54IA-1. Quantitative real-time PCR assay showed that the ist, acyB2 and some genes associated with SP biosynthesis exhibited higher expression levels in strain 54IA-2. Subsequently, strain 54IA-2 was subjected to rifampicin (RFP) resistance selection for obtaining high-yield CAM mutants by ribosome engineering. The yield of ISP in mutants resistant to 40 µg/mL RFP increased significantly, with the highest up to 842.9 µg/mL, which was about 6 times higher than that of strain 54IA-2. Analysis of the sequences of the rpoB gene of these 7 mutants revealed that the serine at position 576 was mutated to alanine existed in each sequenced mutant. Among the mutants carrying other missense mutations, strain RFP40-6-8 which carries a mutation of glutamine (424) to leucine showed the highest yield of ISP. In conclusion, two markerless novel CAM producing strains, 54IA-1 and 54IA-2, were successfully developed by using CRISPR-Cas9 technique. Furthermore, a novel CAM high-yielding strain RFP40-6-8 was obtained through ribosome engineering. This study thus demonstrated a useful combinatory approach for improving the production of CAM.


Assuntos
Espiramicina , Streptomyces , Sistemas CRISPR-Cas/genética , Engenharia Genética , Ribossomos , Streptomyces/genética
12.
Sheng Wu Gong Cheng Xue Bao ; 37(5): 1737-1747, 2021 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-34085452

RESUMO

14- to 16-membered macrolide antibiotics (MA) are clinically important anti-infective drugs. With the rapid emergence of bacterial resistance, there is an urgent need to develop novel MA to counter drug-resistant bacteria. The targeted optimization of MA can be guided by analyzing the interaction between the MA and its ribosomal targets, and the desired MA derivatives can be obtained efficiently when combining with the rapidly developed metabolic engineering approaches. In the past 30 years, metabolic engineering approaches have shown great advantages in engineering the biosynthesis of MA to create new derivatives and to improve their production. These metabolic engineering approaches include modification of the structural domains of the polyketide synthase (PKS) and post-PKS modification enzymes as well as combinatorial biosynthesis. In addition, the R&D (including the evaluation of its antimicrobial activities and the optimization through metabolic engineering) of carrimycin, a new 16-membered macrolide drug, are described in details in this review.


Assuntos
Macrolídeos , Engenharia Metabólica , Antibacterianos , Bactérias/genética , Policetídeo Sintases
13.
Transl Oncol ; 14(6): 101074, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33744726

RESUMO

PURPOSE: Carrimycin is a newly synthesized macrolide antibiotic with good antibacterial effect. Exploratory experiments found its function in regulating cell physiology, proliferation and immunity, suggesting its potential anti-tumor capacity. The aim of this study is to investigate the anti-tumor effect of carrimycin against human oral squamous cell carcinoma cells in vitro and in vivo. METHODS: Human oral squamous cell carcinoma cells (HN30/HN6/Cal27/HB96 cell lines) were treated with gradient concentration of carrimycin. Cell proliferation, colony formation and migration ability were analyzed. Cell cycle and apoptosis were assessed by flow cytometry. The effect of carrimycin on OSCC in vivo was investigated in tumor xenograft models. Immunohistochemistry, western blot assay and TUNEL assays of tissue samples from xenografts were performed. The key proteins in PI3K/AKT/mTOR pathway and MAPK pathway were examined by western blot. RESULTS: As the concentration of carrimycin increased, the proliferation, colony formation and migration ability of OSCC cells were inhibited. After treating with carrimycin, cell cycle was arrested in G0/G1 phase and cell apoptosis was promoted. The tumor growth of xenografts was significantly suppressed. Furthermore, the expression of p-PI3K, p-AKT, p-mTOR, p-S6K, p-4EBP1, p-ERK and p-p38 were down-regulated in vitro and in vivo. CONCLUSIONS: Carrimycin can inhibit the biological activities of OSCC cells in vitro and in vivo, and regulate the PI3K/AKT/mTOR and MAPK pathways.

14.
Acta Pharm Sin B ; 11(9): 2850-2858, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33723501

RESUMO

COVID-19 pandemic caused by SARS-CoV-2 infection severely threatens global health and economic development. No effective antiviral drug is currently available to treat COVID-19 and any other human coronavirus infections. We report herein that a macrolide antibiotic, carrimycin, potently inhibited the cytopathic effects (CPE) and reduced the levels of viral protein and RNA in multiple cell types infected by human coronavirus 229E, OC43, and SARS-CoV-2. Time-of-addition and pseudotype virus infection studies indicated that carrimycin inhibited one or multiple post-entry replication events of human coronavirus infection. In support of this notion, metabolic labelling studies showed that carrimycin significantly inhibited the synthesis of viral RNA. Our studies thus strongly suggest that carrimycin is an antiviral agent against a broad-spectrum of human coronaviruses and its therapeutic efficacy to COVID-19 is currently under clinical investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA