Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 116(4): 110872, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849017

RESUMO

Cattle-yak is a hybrid offspring resulting from the crossbreeding of yak and cattle, and it exhibits substantial heterosis in production performance. However, male sterility in cattle-yak remains a concern. Reports suggest that noncoding RNAs are involved in the regulation of spermatogenesis. Therefore, in this study, we comprehensively compared testicular transcription profiles among cattle, yak, and cattle-yak. Numerous differentially expressed genes (DEGs), differentially expressed circRNAs (DECs), and differentially expressed miRNAs (DEMs) were identified in the intersection of two comparison groups, namely cattle versus cattle-yak and yak versus cattle-yak, with the number of DEGs, DECs, and DEMs being 4968, 360, and 59, respectively. The DEGs in cattle-yaks, cattle, and yaks were mainly associated with spermatogenesis, male gamete generation, and sexual reproduction. Concurrently, GO and KEGG analyses indicated that DEC host genes and DEM source genes were involved in the regulation of spermatogenesis. The construction of a potential competing endogenous RNA network revealed that some differentially expressed noncoding RNAs may be involved in regulating the expression of genes related to testicular spermatogenesis, including miR-423-5p, miR-449b, miR-34b/c, and miR-15b, as well as previously unreported miR-6123 and miR-1306, along with various miRNA-circRNA interaction pairs. This study serves as a valuable reference for further investigations into the mechanisms underlying male sterility in cattle-yaks.


Assuntos
Redes Reguladoras de Genes , MicroRNAs , RNA Circular , RNA Mensageiro , Testículo , Bovinos/genética , Bovinos/metabolismo , Animais , Masculino , Testículo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espermatogênese/genética , Transcriptoma , RNA Endógeno Competitivo
2.
Int J Biol Macromol ; 271(Pt 1): 132400, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759851

RESUMO

Alternative splicing is a prevalent phenomenon in testicular tissues. Due to the low assembly accuracy of short-read RNA sequencing technology in analyzing post-transcriptional regulatory events, full-length (FL) transcript sequencing is highly demanded to accurately determine FL splicing variants. In this study, we performed FL transcriptome sequencing of testicular tissues from 0.5, 1.5, 2.5, and 4-year-old yaks and 4-year-old cattle-yaks using Oxford Nanopore Technologies. The obtained sequencing data were predicted to have 47,185 open reading frames (ORFs), including 26,630 complete ORFs, detected 7645 fusion transcripts, 15,355 alternative splicing events, 25,798 simple sequence repeats, 7628 transcription factors, and 35,503 long non-coding RNAs. A total of 40,038 novel transcripts were obtained from the sequencing data, and the proportion was almost close to the number of known transcripts identified. Structural analysis and functional annotation of these novel transcripts resulted in the successful annotation of 9568 transcripts, with the highest and lowest annotation numbers in the Nr and KOG databases, respectively. Weighted gene co-expression network analysis revealed the key regulatory pathways and hub genes at various stages of yak testicular development. Our findings enhance our comprehension of transcriptome complexity, contribute to genome annotation refinement, and provide foundational data for further investigations into male sterility in cattle-yaks.


Assuntos
Anotação de Sequência Molecular , Testículo , Transcriptoma , Animais , Masculino , Bovinos , Testículo/metabolismo , Testículo/crescimento & desenvolvimento , Transcriptoma/genética , Fases de Leitura Aberta/genética , Perfilação da Expressão Gênica/métodos , Processamento Alternativo , RNA Longo não Codificante/genética , Redes Reguladoras de Genes , Análise de Sequência de RNA/métodos
3.
Animals (Basel) ; 14(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791628

RESUMO

Aberrant expression of the heat shock proteins and factors was revealed to be closely associated with male reproduction. Heat shock factor 2 (HSF2) is a transcription factor that is involved in the regulation of diverse developmental pathways. However, the role and the corresponding molecular mechanism of HSF2 in male cattle-yak sterility are still poorly understood. Therefore, the aim of this study was to obtain the sequence and the biological information of the cattle-yak HSF2 gene and to investigate the spatiotemporal expression profiles of the locus during the development of cattle-yak testes. Additionally, the differential expression was analyzed between the cattle-yak and the yak, and the methylation of corresponding promoter regions was compared. Our results showed an additional 54 bp fragment and a missense mutation (lysine to glutamic acid) were presented in the cattle-yak HSF2 gene, which correlated with enriched expression in testicular tissue. In addition, the expression of the HSF2 gene showed dynamic changes during the growth of the testes, reaching a peak in adulthood. The IHC indicated that HSF2 protein was primarily located in spermatocytes (PS), spermatogonia (SP), and Sertoli cells (SC) in cattle-yak testes, compared with the corresponding cells of cattle and the yak. Furthermore, bisulfite-sequencing PCR (BSP) revealed that the methylated CpG sites in the promoter region of the cattle-yak HSF2 were more numerous than in the yak counterpart, which suggests hypermethylation of this region in the cattle-yak. Taken together, the low expression abundance and hypermethylation of HSF2 may underpin the obstruction of spermatogenesis, which leads to male cattle-yak infertility. Our study provided a basic guideline for the HSF2 gene in male reproduction and a new insight into the mechanisms of male cattle-yak sterility.

4.
Int J Biol Macromol ; 262(Pt 1): 129985, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342263

RESUMO

Cattle-yak, which is the hybrid F1 generation of cattle and yak, demonstrates better production performance compared to yak. However, there is limited research on the molecular mechanisms responsible for the muscle development of cattle-yak. To address this knowledge gap, a comprehensive transcriptomic survey of the longissimus dorsi muscle in cattle-yak was conducted. Three transcript types, namely lncRNAs, miRNAs, and circRNAs, along with protein-coding genes were characterized at two developmental stages (6 m, 18 m) of cattle-yak. The results revealed significant enrichment of these transcripts into pathways related to myoblast differentiation and muscle development signaling. Additionally, the study identified the TCONS00024465/circHIPK3-bta-miR-499-ADAMTS6 regulatory network, which may play a crucial role in the muscle development of cattle-yak by combining the transcriptome data of yak and constructing the ceRNA co-expression network. HEK 293 T cells were used to validate that TCONS00024465 and circHIPK3 are located upstream of bta-miR-499, and can competitively bind to bta-miR-499 as ceRNA. The study also verified that ADAMTS6 regulates skeletal muscle development by inhibiting myoblast proliferation, promoting myoblast differentiation, and positively regulating the apoptosis of myoblasts. Taken together, this study provides new insights into the advantages of cattle-yak production performance and offers a molecular basis for further research on muscle development.


Assuntos
Perfilação da Expressão Gênica , MicroRNAs , Animais , Bovinos , Humanos , Células HEK293 , MicroRNAs/genética , Mioblastos/metabolismo , Músculo Esquelético/metabolismo
5.
Anim Reprod Sci ; 260: 107385, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056175

RESUMO

Cattleyak is a typically male sterile species. The meiosis process is blocked and the scarcity of spermatogenic stems cells are both contributing factors to the inability of male cattleyak to produce sperm. While Glial cell line-derived neurotrophic factor (GDNF) is the first discovered growth factor known to promote the proliferation and self-renewal of spermatogenic stem cells, its relationship to the spermatogenesis arrest of cattleyak remains unclear. In this report, we studied the differential expression of GDNF in the testis of yak and cattleyak, and discussed the optimal concentration of GDNF in the culture medium of undifferentiated spermatogonia (UDSPG) of cattleyak in vitro and the effect of GDNF on the proliferation of cattleyak UDSPG. The results indicated that GDNF expression in the testicular tissue of cattleyak was inferior to that of yak. Moreover, the optimum value for the UDSPG in vitro culture was determined to be 20-30 ng/mL for cattleyak. In vitro, the proliferation activity of UDSPG was observed to increase with additional GDNF due to the up-regulation of proliferation-related genes and the down-regulation of differentiation-related genes. We hereby report that the scarcity of cattleyak UDSPG is due to insufficient expression of GDNF, and that the addition of GDNF in vitro can promote the proliferation of cattleyak UDSPG by regulating the expression of genes related to proliferation and differentiation. This work provides a new insight to solve the issue of spermatogenic arrest in cattleyak.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Espermatogônias , Masculino , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Sêmen/metabolismo , Testículo , Proliferação de Células
6.
J Sci Food Agric ; 104(5): 3039-3046, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38057148

RESUMO

BACKGROUND: Postmortem muscle moisture loss leads to a decrease in carcass weight and can adversely impact overall meat quality. Therefore, it is critical to investigate water holding capacity (WHC) to enhance meat quality. Current research has primarily focused on examining the correlation between signaling molecules and meat quality in relation to the glycolysis effect on muscle WHC. But there exists a significant knowledge gap regarding the mechanism of WHC in Jersey cattle-yak meat. RESULTS: Jersey cattle-yak meat pH decreased and then increased during postmortem aging. Lactate content, cooking loss, pressing loss, drip loss and centrifuging loss of Jersey cattle-yak meat increased and then decreased during postmortem aging. The glycogen content of Jersey cattle-yak meat was significantly higher than that of yak meat at 6-120 h, being 8.40% higher than that of yak meat at 120 h. The activity of key glycolytic enzymes hexokinase (HK), pyruvate kinase (PK), phosphofructokinase (PFK) and lactate dehydrogenase (LDH) in Jersey cattle-yak meat was lower than that in yak meat. Correlation analysis showed that Jersey cattle-yak meat WHC was positively correlated with the activity of HK, PK, PFK and LDH. CONCLUSIONS: The WHC of Jersey cattle-yak meat was higher than that of Gannan yak meat, and it was significantly positively correlated with the activity of key enzymes of the glycolytic signaling pathway. Therefore, the glycolysis rate can be reduced by inhibiting enzyme activity to improve Jersey cattle-yak meat WHC and meat quality. © 2023 Society of Chemical Industry.


Assuntos
Culinária , Água , Animais , Bovinos , Água/análise , Carne/análise , Glicólise , Músculo Esquelético/química
7.
Food Res Int ; 173(Pt 1): 113253, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803567

RESUMO

In this study, proteins of cattle-yak longissimus thoracis (CYLT) and yak longissimus thoracis (YLT) were compared using tandem mass tag-labeled quantitative proteomic analysis. A total of 157 proteins were screened as differentially abundant proteins (DAPs) derived from 1551 quantitative proteins. Bioinformatics analysis revealed that the upregulated DAPs in CYLT were mainly involved in energy metabolism, oxidative stress, muscle fiber structure, and extracellular matrix (ECM), while the downregulated DAPs were mainly involved in energy metabolism and ECM function. The upregulated myoglobin, downregulation of NADH dehydrogenase, and upregulation of cytochrome oxidase indicated that CYLT initiates compensatory regulation in response to hypoxic high-altitude environments. Two differentially abundant myosins and five collagens suggested that CYLT and YLT may have distinct differences in the assembly structure of muscle fibers and connective tissue. These differences in energy metabolism and muscle structure will inevitably affect the postmortem physiology of "muscle to meat" and consequently the meat qualities. Therefore, our results will provide important clues to gain insight into the potential causes of meat quality differences between cattle-yak and yak based on high-altitude response.


Assuntos
Carne , Proteômica , Animais , Bovinos , Carne/análise , Metabolismo Energético , Músculos Paraespinais
8.
Int J Biol Macromol ; 253(Pt 3): 126831, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37716658

RESUMO

The variety of species can be efficiently increased by interspecific hybridization. However, because the males in the hybrid progeny are usually sterile, this heterosis cannot be employed when other cattle and yaks are hybridized. While some system-level studies have sought to explore the etiological basis for male cattle-yak sterility, no systematic cellular analyses of this phenomenon have yet been performed. Here, single-cell RNA sequencing and UPHLC-MS/MS targeted metabolomics methods were used to study the differences in testicular tissue between 4-year-old male yak and 4-year-old male cattle-yak, providing new and comprehensive insights into the causes of male cattle-yak sterility. Cattle-yak testes samples detected 6 somatic cell types and one mixed germ cell type. Comparisons of these cell types revealed the more significant differences in Sertoli cells (SCs) and [Leydig cells and myoid cells (LCs_MCs)] between yak and cattle-yak samples compared to other somatic cell clusters. Even though the LCs and MCs from yaks and cattle-yaks were derived from the differentiation of the same progenitor cells, a high degree of overlap between LCs and MCs was observed in yak samples. Still, only a small overlap between LCs and MCs was observed in cattle-yak samples. Functional enrichment analyses revealed that genes down-regulated in cattle-yak SCs were primarily enriched in biological activity, whereas up-regulated genes in these cells were enriched for apoptotic activity. Furthermore, the genes of up-regulated in LCs_MCs of cattle-yak were significantly enriched in enzyme inhibitor and molecular function inhibitor activity. On the other hand, the genes of down-regulated in these cells were enriched for signal receptor binding, molecular function regulation, positive regulation of biological processes, and regulation of cell communication activity. The most significant annotated differences between yak and cattle-yak LCs_MCs were associated with cell-to-cell communication. While yak LCs_MCs regulated spermatogenic cells at spermatogonia, spermatocyte, and spermatid levels, no such relationships were found between cattle-yak LCs_MCs and germ cells. This may suggest that the somatic niche in male cattle-yak testes is a microenvironment that is ultimately not favorable for spermatogenesis.


Assuntos
Infertilidade Masculina , Espectrometria de Massas em Tandem , Humanos , Animais , Bovinos , Masculino , Testículo/metabolismo , Infertilidade Masculina/metabolismo , Espermatogênese , Análise de Sequência de RNA
9.
J Agric Food Chem ; 71(30): 11740-11750, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37471694

RESUMO

In this study, the N-glycosylated protein profiles of cattle-yak longissimus thoracis (CYLT) and yak longissimus thoracis (YLT) were comparatively analyzed using quantitative proteomics techniques. A total of 76 differential N-glycosylated proteins (DGPs) were screened from 181 quantified N-glycoproteins, indicating that differences in N-glycosylation levels are key to the differences between CYLT and YLT. In particular, a variety of N-glycoproteins involved in the extracellular matrix were differentially N-glycosylated between CYLT and YLT, mainly including fibrillin-1, fibromodulin, collagen, and laminins. In addition, the N-glycosylation levels of several lysosomal-related proteolytic enzymes (cathepsin D, dipeptidyl peptidase 1, legumain, and aminopeptidases, etc.) were significantly higher in CYLT. These results indicated that the N-glycosylation of CYLT and YLT proteins plays a crucial role in the regulation of extracellular matrix organization (muscle fiber structure) and lysosomal activity (postmortem meat tenderness). The results remind us that posttranslation modifications, especially N-glycosylation, are still icebergs beneath the surface.


Assuntos
Colágeno , Músculo Esquelético , Animais , Bovinos , Colágeno/metabolismo , Músculo Esquelético/metabolismo , Carne/análise
10.
Proteomics ; 23(12): e2300107, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050850

RESUMO

Cattle-yak, the interspecific hybrid between yak and taurine cattle, exhibits male-specific sterility. Massive loss of spermatogenic cells, especially spermatocytes, results in azoospermia in these animals. Currently, the mechanisms underlying meiosis block and defects in spermatocyte development remain elusive. The present study was designed to investigate the differences in the protein composition of spermatocytes isolated from 12-month-old yak and cattle-yak testes. Histological analysis confirmed that spermatocytes were the most advanced germ cells in the testes of yak and cattle-yak at this developmental stage. Comparative proteomic analysis identified a total of 452 differentially abundant proteins (DAPs) in the fluorescence-activated cell sorting (FACS) isolated spermatocytes from cattle-yak and yak. A total of 291 proteins were only present in yak spermatocytes. Gene Ontology analysis revealed that the downregulated DAPs were mostly enriched in the cellular response to DNA damage stimulus and double-strand breaks (DSBs) repair via break-induced replication, while the proteins specific for yak were related to cell division and cycle, spermatogenesis, and negative regulation of the extrinsic apoptotic signaling pathway. Ultimately, these DAPs were related to the critical process for spermatocyte meiotic events, including DSBs, homologous recombination, synapsis, crossover formation, and germ cell apoptosis. The database composed of proteins associated with spermatogenesis, including KPNA2, HTATSF1, TRIP12, STIP1, LZTFL1, LARP7, MTCH2, STK31, ROMO1, CDK5AP2, DNMT1, RBM44, and CHRAC1, is the focus of further research on male hybrid sterility. In total, these results provide insight into the molecular mechanisms underlying failed meiotic processes and male infertility in cattle-yak.


Assuntos
Infertilidade Masculina , Proteômica , Animais , Humanos , Bovinos , Masculino , Testículo/metabolismo , Espermatogênese/genética , Infertilidade Masculina/genética , Infertilidade Masculina/veterinária , Infertilidade Masculina/patologia , Espermatócitos/metabolismo , Proteínas de Ligação a DNA/genética , Nucleoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
11.
BMC Genomics ; 24(1): 149, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973659

RESUMO

BACKGROUND: Interspecific hybridization plays vital roles in enriching animal diversity, while male hybrid sterility (MHS) of the offspring commonly suffered from spermatogenic arrest constitutes the postzygotic reproductive isolation. Cattle-yak, the hybrid offspring of cattle (Bos taurus) and yak (Bos grunniens) can serve as an ideal MHS animal model. Although meiotic arrest was found to contribute to MHS of cattle-yak, yet the cellular characteristics and developmental potentials of male germline cell in pubertal cattle-yak remain to be systematically investigated. RESULTS: Single-cell RNA-seq analysis of germline and niche cell types in pubertal testis of cattle-yak and yak indicated that dynamic gene expression of developmental germ cells was terminated at late primary spermatocyte (meiotic arrest) and abnormal components of niche cell in pubertal cattle-yak. Further in vitro proliferation and differentially expressed gene (DEG) analysis of specific type of cells revealed that undifferentiated spermatogonia of cattle-yak exhibited defects in viability and proliferation/differentiation potentials. CONCLUSION: Comparative scRNA-seq and in vitro proliferation analysis of testicular cells indicated that not only meiotic arrest contributed to MHS of cattle-yak. Spermatogenic arrest of cattle-yak may originate from the differentiation stage of undifferentiated spermatogonia and niche cells of cattle-yak may provide an adverse microenvironment for spermatogenesis.


Assuntos
Infertilidade Masculina , Testículo , Animais , Masculino , Humanos , Bovinos , Testículo/metabolismo , Análise da Expressão Gênica de Célula Única , Infertilidade Masculina/genética , Infertilidade Masculina/veterinária , Espermatogênese/genética , Espermatogônias
12.
Front Vet Sci ; 10: 1040419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825227

RESUMO

Circular RNAs (circRNAs), as endogenous non-coding RNA with unique closed ring structure, is closely related to animal reproduction, and understanding the expression of circRNA in yak and cattleyak epididymal tissues is of great significance for understanding cattleyak sterility. Based on this, we screened and identified the differentially expressed circRNA in the epididymis of three yaks and two cattleyak. A total of 1,298 circRNAs were identified in the epididymis of yak and cattleyak, of which 137 differentially expressed (DE) circRNAs and the functions of some of them were elucidated in this research, as well as qPCR verification to 6 circRNAs from the 137 DE circRNAs. Gene Ontology (GO) enrichment analysis suggested that DE circRNAs were mainly related to metabolic process, development process, immune system process, reproductive process, reproduction, biological adhesion and growth. COG classification analysis showed that the DE circRNAs derived genes were mainly related to replication, recombination and repair. KEGG pathway analysis suggested that DE circRNAs were mainly involved in RNA degradation. In addition, we also screened Bta-mir-103, which is a circRNA binding miRNA related to sperm activity.

13.
Animals (Basel) ; 13(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36670860

RESUMO

This study aimed to investigate the spatially and temporally expressed patterns and biological characteristics of TSSK1B in male yaks and explore the potential correlation between TSSK1B and male sterility of the yak hybrid offspring (termed cattle-yak). First, the coding sequence (CDS) of TSSK1B was cloned by RT-PCR, and bioinformatics analysis was conducted with relevant software. Quantitative real-time PCR (RT-qPCR) was employed to detect the expression profile of TSSK1B in various tissues of male adult yaks, the spatiotemporal expression of TSSK1B in different stages of yak testes, and the differential expression of TSSK1B between yak and cattle-yak testes. The cellular localization of TSSK1B was determined by immunohistochemistry (IHC). Furthermore, the methylation status of the TSSK1B promoter region was analyzed by bisulfite-sequencing PCR (BSP). The results showed that TSSK1B was 1235 bp long, including 1104 bp of the CDS region, which encoded 367 amino acids. It was a conserved gene sharing the highest homology with Bos mutus (99.67%). In addition, the bioinformatics analysis revealed that TSSK1B was an unstable hydrophilic protein mainly containing the alpha helix of 34.06% and a random coil of 44.41%, with a transmembrane structure of 29 amino acids long. The RT-qPCR results demonstrated that TSSK1B was specifically expressed in yak testes compared with that in other tissues and especially highly expressed in adult yak testes. On the contrary, TSSK1B was hardly expressed in the testis of adult cattle-yak. IHC confirmed that TSSK1B protein was more strongly expressed in the testes of adult yaks than in their fetal and juvenile counterparts. Interestingly, nearly no expression was observed in the testes of cattle-yak compared with the corresponding testes of yak. Bisulfite-sequencing PCR (BSP) revealed that the methylated CpG sites in the TSSK1B promoter region of cattle-yak was significantly higher than that in the yak. Taken together, this study revealed that TSSK1B was specifically expressed in yak testes and highly expressed upon sexual maturity. Moreover, the rare expression in cattle-yak may be related to the hypermethylation of the promoter region, thereby providing a basis for further studies on the regulatory mechanism of TSSK1B in male cattle-yak sterility.

14.
Theriogenology ; 195: 217-228, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368116

RESUMO

Cattleyaks are equally adaptable to harsh environment as yaks, but produce far more milk and meat in terms of quality and quantity. However, male cattleyaks with active secondary sexuality are infertile and have restricted productivity and breeding of yaks. Much researches continue to be done in regard to the differences in transcriptome profiling in cattleyak epididymis with respect to yak epididymis. The caput segment of the epididymis is highly specialized for the initiation of spermatozoa maturation, synthesis and secretion. We used RNA-Seq technology to comparatively analyze differentially expressed genes (DEGs) associated with sperm maturation between the caput epididymis of yak and cattleyak. Transcriptomic profiling identified 109 DEGs in which 44 were upregulated and 65 were downregulated. 8 DEGs were validated by quantitative real-time PCR. DEGs were analyzed by GO and KEGG analysis to screen the key genes involved in sperm maturation. The upregulation of PAOX and ATP2C2 may be associated with toxicity and apoptosis resistance in cattleyak with respect to yak. However, downregulated DEFB109, DEFB121, DEFB123, DEFA1, LY6G5C, SLC13A2, CST3, CRYBA4 and ADAM28 were associated with innate immune response, sperm maturation, motility and antimicrobial functions. AMPK and Hedgehog signaling pathways were involved in the top-listed five significantly enriched pathways, and the downregulation of HNF4α and LRP2 may have contributed to infertility in cattleyak. The data provide a powerful resource, contributing to the knowledge on the molecular mechanisms underlying male cattleyak infertility.


Assuntos
Doenças dos Bovinos , Infertilidade Masculina , Masculino , Animais , Bovinos/genética , Proteínas Hedgehog , Transcriptoma , Epididimo , Sêmen , Perfilação da Expressão Gênica/veterinária , Infertilidade Masculina/veterinária , Doenças dos Bovinos/genética
15.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555451

RESUMO

Cattle-yak, a crossbreed of yak and cattle, which can exhibit obvious heterosis and can adapt to the harsh environmental conditions of the Qinghai Tibet Plateau (QTP). However, F1 cattle-yak were found to be sterile because they were unable to produce sperm, which adversely restricted the fixation of heterosis. Many prior attempts have been made to decipher the mechanism underlying the spermatogenesis stagnation of cattle-yak. However, the open chromatin region (OCR) map of yak and cattle-yak testes has not been generated yet. Here, we have analyzed the OCRs landscape of testicular tissues of cattle-yak and yaks by performing ATAC-seq technology. The OCRs of cattle-yak and yak testes displayed similar genome distribution and showed priority in intergenic regions, introns and promoters. The pathway enrichment analysis indicated that the differential OCRs-related genes were involved in spermatogenesis, involving the cell cycle, as well as Hippo, mTOR, MAPK, Notch, and Wnt signaling pathways. The integration of ATAC-seq and mRNA-seq indicated that the majority of the gene expression levels were positively correlated with chromatin openness. At the same time, we have identified a number of transcription factors (TFs) related to spermatogenesis and the differential expression of these TFs may contribute to the spermatogenesis stagnation of the cattle-yak. Overall, the findings of this study provide valuable information for advancing the research related to yak crossbreeding improvement and sperm production stagnation of cattle-yak.


Assuntos
Cromatina , Testículo , Animais , Bovinos , Masculino , Testículo/metabolismo , Cromatina/genética , Cromatina/metabolismo , Sêmen , Espermatogênese/genética , Tibet
16.
Mol Reprod Dev ; 89(12): 632-645, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36409004

RESUMO

Hybrid male sterility (HMS) is a reproductive isolation mechanism limiting the formation of fertile offspring through interspecific fertilization. Cattleyak is the interspecific hybrid presenting significant heterosis in several economic traits, but HMS restricted its wide reproduction in cettleyak breeding. In this study, we detected the specifically expressed genes of a variety of cells (undifferentiated spermatogonia, primary spermatocytes, secondary spermatocytes, haploid spermatids, sperm, Sertoli cells, Leydig cells, and macrophages) in the testis of yak and cattleyak, and found that the spermatogenesis of cattleyak might be blocked at meiosis I, and the expression of niche factors (NR5A1, GATA4, STAR, CYP11A1, CD68, TNF, and CX3CR1) in undifferentiated spermatogonia niche was abnormal. Then we isolated the undifferentiated spermatogonia and Sertoli cells from yak and cattleyak by enzyme digestion, and detected the specific genes in the two bovid testicular cells as well as the proliferation capacity of the undifferentiated spermatogonia. These results indicated that weak proliferation ability and scarce number of undifferentiated spermatogonia and abnormal gene expressions in Sertoli cells may contribute to male sterility of cattleyak.


Assuntos
Infertilidade Masculina , Espermatogônias , Humanos , Masculino , Espermatogônias/metabolismo , Células de Sertoli/metabolismo , Sêmen , Testículo/metabolismo , Espermatogênese/genética , Infertilidade Masculina/metabolismo
17.
Cells ; 11(22)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36429081

RESUMO

Cattle-yak is a hybrid F1 generation of cattle and yak, which has a history of more than 3000 years and has shown better production performance and higher economic benefits than those of yaks. However, up to now, there has been no study on the transcriptome-wide m6A methylation profile of bovine skeletal muscle and its potential biological function during muscle development. Here, we observed significant changes in the expression levels of muscle-related marker genes and methylation-related enzymes during the development of cattle-yak, and the overall m6A content in the Longissimus dorsi muscle of 18-month-old cattle-yak decreased significantly. A total of 36,602 peaks, 11,223 genes and 8388 lncRNAs were identified in the two groups, including 2989 differential peaks (427 up-regulated peaks and 2562 down-regulated peaks), 1457 differentially expressed genes (833 up-regulated genes and 624 down-regulated genes) and 857 differentially expressed lncRNAs (293 up-regulated lncRNAs and 564 down-regulated lncRNAs). GO and KEGG analysis revealed that they were significantly enriched in some muscle-related pathways (Wnt signaling pathway and MAPK signaling pathway) and high-altitude adaptation-related pathway (HIF-1 signaling pathway). Moreover, m6A abundance was positively correlated with gene expression levels, while it was negatively correlated with lncRNA expression levels. This indicates that m6A modification played an important role in the Longissimus dorsi muscle development of cattle-yak; however, the regulation mechanism of m6A-modified mRNA and lncRNA may be different. This study was the first report of transcriptome-wide m6A-modified mRNAs and lncRNAs atlas in the Longissimus dorsi muscle development of cattle-yak, one which will provide new perspectives for genetic improvement in bovines.


Assuntos
RNA Longo não Codificante , Bovinos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcriptoma/genética , RNA Mensageiro/metabolismo , Metilação , Músculo Esquelético/metabolismo
18.
Animals (Basel) ; 12(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36230452

RESUMO

Male-derived sterility in cattle-yaks, a hybrid deriving from yak and cattle, is a challenging problem. This study compared and analyzed the histomorphological differences in testis between sexually mature yak and cattle-yak, and examined the transcriptome differences employing RNA-seq. The study found that yak seminiferous tubules contained spermatogenic cells at all levels, while cattle-yak seminiferous tubules had reduced spermatogonia (SPG) and primary spermatocyte (Pri-SPC), fewer secondary spermatocytes (Sec-SPC), an absence of round spermatids (R-ST) and sperms (S), and possessed large vacuoles. All of these conditions could have significantly reduced the volume and weight of cattle-yak testis compared to that of yak. RNA-seq analysis identified 8473 differentially expressed genes (DEGs; 3580 upregulated and 4893 downregulated). GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment evaluations for DEGs found their relation mostly to spermatogenesis and apoptosis. Among the DEGs, spermatogonia stem cell (SSCs) marker genes (Gfra1, CD9, SOHLH1, SALL4, ID4, and FOXO1) and genes involved in apoptosis (Fas, caspase3, caspase6, caspase7, caspase8, CTSK, CTSB and CTSC) were significantly upregulated, while differentiation spermatogenic cell marker genes (Ccna1, PIWIL1, TNP1, and TXNDC2) and meiosis-related genes (TEX14, TEX15, MEIOB, STAG3 and M1AP) were significantly downregulated in cattle-yak. Furthermore, the alternative splicing events in cattle-yak were substantially decreased than in yak, suggesting that the lack of protein subtypes could be another reason for spermatogenic arrest in cattle-yak testis.

19.
Front Vet Sci ; 9: 974703, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277066

RESUMO

Cattle-yak, the first-generation offspring of cattle and yak, inherited many excellent characteristics from their parents. However, F1 male hybrid infertility restricts the utilization of heterosis greatly. In this study, we first compared the testicular tissue histological characteristics of three cattle, three yaks, and three cattle-yak. Then we explored the miRNA profiles and the target functions of nine samples with RNA-seq technology. We further analyzed the function of DE gene sets of mRNA profiles identified previously with GSEA. Testicular histology indicated that the seminiferous tubules became vacuolated and few active germ cells can be seen. RNA-seq results showed 47 up-regulated and 34 down-regulated, 16 up-regulated and 21 down-regulated miRNAs in cattle and yaks compared with cattle-yak, respectively. From the intersection of DE miRNAs, we identified that bta-miR-7 in cattle-yak is down-regulated. Target prediction indicated that the filtered genes especially MYRFL, FANCA, INSL3, USP9X, and SHF of bta-miR-7 may play crucial roles in the reproductive process. With further network analysis and GSEA, we screened such hub genes and function terms, we also found some DE gene sets that enriched in ATP binding, DNA binding, and reproduction processes. We concluded that bta-miR-7 may play an important role in influencing fecundity. Our study provides new insights for explaining the molecular mechanism of cattle-yak infertility.

20.
Theriogenology ; 194: 46-57, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36209544

RESUMO

Cattleyaks, a hybrid of (♂) and yak (♀), exhibit the marked productivity and adaptability of plateau, but suffer from male infertility. Small non-coding RNAs, especially miRNAs, play crucial roles in spermatogenesis and affect the growth of Sertoli cells (SCs). The objective of the present study was to explore the interaction between miR-34b-5p and protein phosphatase 1 regulatory inhibitor subunit 11 (PPP1R11) and its effect on cattleyak SCs. RT-qPCR was used to determine the expression pattern of miR-34b-5p and PPP1R11, while the cellular and subcellular localization of PPP1R11 was determined by immunohistochemistry and immunocytochemistry. The interaction between MiR-34b-5p and PPP1R11 was evaluated by immunofluorescence, proliferation, apoptosis, and western blotting assays. The potential binding sites between miR-34b-5p and PPP1R11 were uncovered through targeted search of an online database, and verified using a dual luciferase reporter system. Our data show that miR-34b-5p is differentially expressed in the testes and SCs of cattleyaks compared to yaks. Overexpression of miR-34b-5p in SCs suppressed proliferation and induced apoptosis, while the effects of miR-34b-5p knockdown were the reverse. The 3'UTR of PPP1R11 was identified as a potential target site of miR-34b-5p, and this was validated by online database searches and our data from the dual-luciferase reporter assay, and it displayed an inverse expression pattern to miR-34b-5p in SCs. The effects of silencing PPP1R11 by siRNA were similar to the results of miR-34b-5p upregulation, but significantly different from miR-34b-5p downregulation in cattleyak SCs. The effects with PPP1R11 overexpression were opposite, suggesting a novel biofunctional role of PPP1R11 inactivation in depressing cattleyak SCs growth. Lastly, we confirmed that miR-34b-5p inhibited PPP1R11 expression and induced apoptosis by regulating proliferation- and apoptosis-related genes in SCs. Thus, miR-34b-5p regulates the apoptosis and proliferation of cattleyak SCs via targeting PPP1R11, which can provide an innovative direction for exploring the mechanism of cattleyak male sterility.


Assuntos
MicroRNAs , Células de Sertoli , Masculino , Animais , Células de Sertoli/metabolismo , Apoptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Transdução de Sinais , Luciferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA