Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.012
Filtrar
1.
Front Pharmacol ; 15: 1417834, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39380904

RESUMO

Caveolin-1 (Cav-1), a structural and functional component in the caveolae, plays a critical role in transcytosis, endocytosis, and signal transduction. Cav-1 has been implicated in the mediation of cellular processes by interacting with a variety of signaling molecules. Cav-1 is widely expressed in the endothelial cells, smooth muscle cells, and fibroblasts in the various organs, including the lungs. The Cav-1-mediated internalization and regulation of signaling molecules participate in the physiological and pathological processes. Particularly, the MAPK, NF-κB, TGFß/Smad, and eNOS/NO signaling pathways have been involved in the regulatory effects of Cav-1 in lung diseases. The important effects of Cav-1 on the lungs indicate that Cav-1 can be a potential target for the treatment of lung diseases. A Cav-1 scaffolding domain peptide CSP7 targeting Cav-1 has been developed. In this article, we mainly discuss the structure of Cav-1 and its critical roles in lung diseases, such as pneumonia, acute lung injury (ALI), asthma, chronic obstructive pulmonary disease (COPD), pulmonary hypertension, pulmonary fibrosis, and lung cancer.

2.
Cell Commun Signal ; 22(1): 489, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39394159

RESUMO

Lipid rafts are dynamic microdomains enriched with cholesterol and sphingolipids that play critical roles in cellular processes by organizing and concentrating specific proteins involved in signal transduction. The interplay between lipid rafts, raft-associated caveolae and the human epidermal growth factor receptors has significant implications in cancer biology, particularly in breast and gastric cancer therapy resistance. This review examines the structural and functional characteristics of lipid rafts, their involvement in EGFR and HER2 signaling, and the impact of lipid rafts/CXCL12/CXCR4/HER2 axis on bone metastasis. We also discuss the potential of targeting lipid rafts and caveolin-1 to enhance therapeutic strategies against HER2-positive cancers and the impact of co-localization of trastuzumab or antibody drug conjugates with caveolin-1 on therapy response. Emerging evidence suggests that disrupting lipid raft integrity or silencing caveolin-1, through several strategies including cholesterol-lowering molecules, can influence HER2 availability and internalization, enhancing anti-HER2 targeted therapy and offering a novel approach to counteract drug resistance and improve treatment efficacy.


Assuntos
Cavéolas , Receptores ErbB , Microdomínios da Membrana , Humanos , Cavéolas/metabolismo , Receptores ErbB/metabolismo , Microdomínios da Membrana/metabolismo , Animais , Transdução de Sinais , Neoplasias/metabolismo , Neoplasias/patologia , Receptor ErbB-2/metabolismo
3.
Pancreatology ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39395872

RESUMO

BACKGROUND/OBJECTIVE: Caveolin-1 (Cav1) expressed in cancer cells (cCav1) or cancer-associated fibroblasts (fCav1) exerts either pro- or anti-tumorigenic effects depending on the cancer type or stage of cancer. We aimed to clarify the impact of cCav1 or fCav1 on survival, recurrence patterns, and efficacy of neoadjuvant chemotherapy (NAC) in resected pancreatic ductal adenocarcinoma (PDAC). METHODS: Tissue microarrays were constructed including 615 patients who underwent curative resection for PDAC. Cav1 expression was evaluated by immunohistochemistry. Patients were divided into two groups based on Cav1 expression in cancer cells (cCav1high vs. cCav1low) or cancer-associated fibroblasts (fCav1high vs. fCav1low). RESULTS: Among all 615 patients, 40.7% were cCav1high and 72.7% were fCav1high. cCav1high was associated with worse overall survival (OS) (p = 0.001) and recurrence-free survival (RFS) (p = 0.001) than cCav1low, and was an independent prognostic factor in multivariate analysis of OS and RFS (OS: p = 0.001, hazard ratio [HR] 1.361; RFS: p = 0.001, HR 1.348). Among 596 patients with resectable/borderline resectable PDAC, cCav1high patients with NAC showed better OS than those without, while there was no significant difference between cCav1low patients with NAC and those without. cCav1high was associated with early recurrence (< 6 months) and liver metastasis after resection. Multivariate analysis revealed cCav1high as an independent predictor of liver metastasis. CONCLUSIONS: cCav1high correlated with worse survival, early recurrence, and liver metastasis after resection for PDAC, while NAC improved survival in cCav1high patients. The Evaluation of cCav1 status could provide additional information contributing to the personalized management of PDAC.

4.
Cell Mol Life Sci ; 81(1): 435, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412594

RESUMO

Staphylococcus aureus is a pathogen associated with severe respiratory infections. The ability of S. aureus to internalize into lung epithelial cells complicates the treatment of respiratory infections caused by this bacterium. In the intracellular environment, S. aureus can avoid elimination by the immune system and the action of circulating antibiotics. Consequently, interfering with S. aureus internalization may represent a promising adjunctive therapeutic strategy to enhance the efficacy of conventional treatments. Here, we investigated the host-pathogen molecular interactions involved in S. aureus internalization into human lung epithelial cells. Lipid raft-mediated endocytosis was identified as the main entry mechanism. Thus, bacterial internalization was significantly reduced after the disruption of lipid rafts with methyl-ß-cyclodextrin. Confocal microscopy confirmed the colocalization of S. aureus with lipid raft markers such as ganglioside GM1 and caveolin-1. Adhesion of S. aureus to α5ß1 integrin on lung epithelial cells via fibronectin-binding proteins (FnBPs) was a prerequisite for bacterial internalization. A mutant S. aureus strain deficient in the expression of alpha-hemolysin (Hla) was significantly impaired in its capacity to enter lung epithelial cells despite retaining its capacity to adhere. This suggests a direct involvement of Hla in the bacterial internalization process. Among the receptors for Hla located in lipid rafts, caveolin-1 was essential for S. aureus internalization, whereas ADAM10 was dispensable for this process. In conclusion, this study supports a significant role of lipid rafts in S. aureus internalization into human lung epithelial cells and highlights the interaction between bacterial Hla and host caveolin-1 as crucial for the internalization process.


Assuntos
Caveolina 1 , Colesterol , Endocitose , Células Epiteliais , Proteínas Hemolisinas , Pulmão , Microdomínios da Membrana , Staphylococcus aureus , Humanos , Staphylococcus aureus/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas Hemolisinas/metabolismo , Caveolina 1/metabolismo , Colesterol/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Pulmão/metabolismo , Pulmão/microbiologia , Toxinas Bacterianas/metabolismo , Interações Hospedeiro-Patógeno , beta-Ciclodextrinas/farmacologia , Aderência Bacteriana , Integrina alfa5beta1/metabolismo , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Células A549 , Proteína ADAM10/metabolismo
5.
Int J Mol Sci ; 25(19)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39408723

RESUMO

There is an increasing prevalence of diabetes mellitus (DM), particularly type 2 DM (T2DM), and its associated complications. T2DM is linked to insulin resistance, chronic inflammation, and oxidative stress, which can lead to both macrovascular and microvascular complications, including peripheral diabetic neuropathy (PDN). Inflammatory processes play a key role in the development and progression of T2DM and its complications, with specific markers like C-reactive protein (CRP), interleukins (ILs), and tumor necrosis factor (TNF)-α being associated with increased risk. Other key inflammatory markers such as nuclear factor kappa B (NF-κB) are activated under hyperglycemic and oxidative stress conditions and contribute to the aggravation of PDN by regulating inflammatory gene expression and enhancing endothelial dysfunction. Other important roles in the inflammatory processes are played by Toll-like receptors (TLRs), caveolin 1 (CAV1), and monocyte chemoattractant protein 1 (MCP1). There is a relationship between vitamin D deficiency and PDN, highlighting the critical role of vitamin D in regulating inflammation and immune responses. The involvement of macrophages in PDN is also suspected, emphasizing their role in chronic inflammation and nerve damage in diabetic patients. Vitamin D supplementation has been found to reduce neuropathy severity, decrease inflammatory markers, and improve glycemic control. These findings suggest that addressing vitamin D deficiency could offer therapeutic benefits for PDN. These molecular pathways are critical in understanding the pathogenesis of DM complications and may offer potential biomarkers or therapeutic targets including anti-inflammatory treatments, vitamin D supplementation, macrophage phenotype modulation, and lifestyle modifications, aimed at reducing inflammation and preventing PDN. Ongoing and more extensive clinical trials with the aim of investigating anti-inflammatory agents, TNF-α inhibitors, and antioxidants are needed to advance deeper into the understanding and treatment of painful diabetic neuropathy.


Assuntos
Biomarcadores , Neuropatias Diabéticas , Inflamação , Humanos , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/etiologia , Inflamação/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Estresse Oxidativo , Animais
6.
FEBS J ; 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39279038

RESUMO

Disrupted cholesterol homeostasis plays a critical role in the development of multiple diseases, such as cardiovascular disease and cancer. However, the role of cholesterol in inflammatory bowel disease (IBD) remains unclear. In the present study, we investigated whether and how high levels of cholesterol in the diet affect experimental colitis in mice. A normal diet supplemented with 1.25% cholesterol (high cholesterol diet) caused more severe colitis and aggravated the disruption of intestinal tight junction structure, accompanied by higher colonic tissue total cholesterol (TC) levels in a dextran sulfate sodium (DSS)-induced experimental colitis mouse model. Cholesterol aggravated DSS-induced intestinal epithelial barrier impairment and nuclear sterol regulatory element-binding protein 2 (nSREBP2) inhibition both in vivo and in vitro. In addition, nSREBP2 overexpression ameliorated cholesterol-induced intestinal epithelial barrier disruption in Caco2 cells. Interestingly, inhibition of SREBP2 disrupted intestinal epithelial barrier in the absence of cholesterol. Furthermore, SREBP2 regulated the protein expression of tight junction proteins (occludin/Zo-1) via modulating caveolin-1-mediated endocytosis and lysosomal degradation. Analysis of UK Biobank data indicated that, in fully adjusted models, higher serum TC concentrations were an independent protective factor for IBD incidence. The sterol regulatory element-binding factor 2 (SREBF2) gene rs2228313 (G/C) genetic variant was associated with the incidence of IBD and the CC genotype of SREBF2 rs2228313 was associated with higher serum TC levels and decreased the risk of IBD. In summary, a high cholesterol diet aggravates DSS-induced colitis in mice by down-regulating nSREBP2 expression, thereby promoting the endocytic degradation of tight junction proteins. In humans, SREBF2 gene single nucleotide polymorphism rs2228313 and serum TC levels are associated with IBD incidence.

7.
Sci Rep ; 14(1): 20553, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232048

RESUMO

The plasma membrane protein caveolin-1 (CAV-1) regulates signaling by inhibiting a wide range of kinases and other enzymes. Our previous study demonstrated that the downregulation of CAV-1 in psoriatic epidermal cells contributes to inflammation by enhancing JAK/STAT signaling, cell proliferation, and chemokine production. Administration of the CAV-1 scaffolding domain (CSD) peptide suppressed imiquimod (IMQ)-induced psoriasis-like dermatitis. To identify an optimal therapeutic peptide derived from CAV-1, we have compared the efficacy of CSD and subregions of CSD that have been modified to make them water soluble. We refer to these modified peptides as sCSD, sA, sB, and sC. In IMQ-induced psoriasis-like dermatitis, while all four peptides showed major beneficial effects, sB caused the most significant improvements of skin phenotype and number of infiltrating cells, comparable or superior to the effects of sCSD. Phosphorylation of STAT3 was also inhibited by sB. Furthermore, sB suppressed angiogenesis both in vivo in the dermis of IMQ-induced psoriasis mice and in vitro by blocking the ability of conditioned media derived from CAV-1-silenced keratinocytes to inhibit tube formation by HUVEC. In conclusion, sB had similar or greater beneficial effects than sCSD not only by cytokine suppression but by angiogenesis inhibition adding to its ability to target psoriatic inflammation.


Assuntos
Caveolina 1 , Citocinas , Imiquimode , Neovascularização Patológica , Psoríase , Fator de Transcrição STAT3 , Psoríase/tratamento farmacológico , Psoríase/induzido quimicamente , Psoríase/patologia , Psoríase/metabolismo , Caveolina 1/metabolismo , Animais , Camundongos , Citocinas/metabolismo , Humanos , Fator de Transcrição STAT3/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Modelos Animais de Doenças , Água/química , Solubilidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Angiogênese
8.
Phytomedicine ; 135: 156055, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39326140

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is defined as cardiac dysfunction involving changes in structure, function, and metabolism in the absence of coronary artery disease, which eventually developed into heart failure. There is still a lack of effective drugs for the treatment of DCM, while the ameliorative effects of traditional herbs on DCM have been commonly reported. Polydatin (PD) is a glucoside derivative of traditional herbs of resveratrol, which has been shown to ameliorate the pathological development of DCM. However, the cardioprotective effect and mechanism of PD in the improvement of myocardial injury are still unclear. AIM OF STUDY: This study aimed to investigate the cardio-protective role of PD on DCM and reveal the critical effect of Cav1 in PD' regulation of DCM. MATERIALS AND METHODS: The Cav1-/- and Cav1+/+mice and H9C2 cells were used to induce DCM models and then given PD treatment (150 mg/kg) or not. The cardiac functions of all mice were checked via echocardiography, and myocardial histological changes were measured by H&E, periodic acid-schiff (PAS) and Masson staining. The markers expression of heart fibrosis and inflammation, and hypertrophic factors were detected using western blotting. The NF-κB signaling activation was performed by confocal, immunohistochemical, Electrophoretic mobility shift assay (EMSA) and western blotting. RESULTS: Here, we found that PD significantly improved the cardiac function and injury of diabetic Cav1+/+ mice, and enhanced the expression of Cav1 in the cardiac tissues of diabetic Cav1+/+ mice and HG-induced H9C2 cells. Further investigation showed that when Cav1 was knocked down, PD no longer plays the cardioprotective effect and inhibits the NF-κB signaling pathway activation in HFD/stz-treated diabetic mice and HG-induced H9C2 cells. CONCLUSION: These results demonstrated that PD inhibited the hyperglycemia-induced myocardial injury and inflammatory fibrosis of DCM models in vivo and in vitro, and targeting Cav1 may provide a novel understanding the mechanism of the treatment of PD in DCM.

9.
Biochem Biophys Res Commun ; 733: 150586, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39197200

RESUMO

The modified cell-penetrating peptide Pas2r12 can deliver antibodies (IgG, 150 kDa) and enhanced green fluorescent protein (EGFP1, 27 kDa) into the cytosol through caveolae-dependent endocytosis. In this study, we determined the effect of Caveolin-1 overexpression on the cytosolic delivery of EGFP by Pas2r12. Three types of Caveolin-1 overexpressing strains were isolated, including Cav1L (low), Cav1M (medium), and Cav1H (high), using HEK293 as the parent cell line. We found that the number of caveolae on the surface of the Caveolin-1-overexpressing strains was similar to that of HEK293. We examined the cytosolic delivery rate of EGFP by Pas2r12. In the Cav1L and Cav1M cells, there was little change compared with HEK293; however, in Cav1H, the rate was significantly decreased. Moreover, the amount of EGFP uptake into the cells (total intracellular EGFP) showed an increasing trend in Cav1H compared with HEK293. These results indicate that in Cav1H, the amount of EGFP uptake into the cells increases, whereas the cytosolic delivery rate of EGFP decreases. This suggests that high overexpression of Caveolin-1 inhibits the transition of EGFP from endosomes to the cytosol.


Assuntos
Caveolina 1 , Peptídeos Penetradores de Células , Citosol , Proteínas de Fluorescência Verde , Caveolina 1/metabolismo , Caveolina 1/genética , Humanos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Citosol/metabolismo , Células HEK293 , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/química , Endocitose , Transporte Proteico , Cavéolas/metabolismo
10.
J Biol Chem ; 300(9): 107705, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39178948

RESUMO

The cell signaling molecules nitric oxide (NO) and Ca2+ regulate diverse biological processes through their closely coordinated activities directed by signaling protein complexes. However, it remains unclear how dynamically the multicomponent protein assemblies behave within the signaling complexes upon the interplay between NO and Ca2+ signals. Here we demonstrate that TRPC5 channels activated by the stimulation of G-protein-coupled ATP receptors mediate Ca2+ influx, that triggers NO production from endothelial NO synthase (eNOS), inducing secondary activation of TRPC5 via cysteine S-nitrosylation and eNOS in vascular endothelial cells. Mutations in the caveolin-1-binding domains of TRPC5 disrupt its association with caveolin-1 and impair Ca2+ influx and NO production, suggesting that caveolin-1 serves primarily as the scaffold for TRPC5 and eNOS to assemble into the signal complex. Interestingly, during ATP receptor activation, eNOS is dissociated from caveolin-1 and in turn directly associates with TRPC5, which accumulates at the plasma membrane dependently on Ca2+ influx and calmodulin. This protein reassembly likely results in a relief of eNOS from the inhibitory action of caveolin-1 and an enhanced TRPC5 S-nitrosylation by eNOS localized in the proximity, thereby facilitating the secondary activation of Ca2+ influx and NO production. In isolated rat aorta, vasodilation induced by acetylcholine was significantly suppressed by the TRPC5 inhibitor AC1903. Thus, our study provides evidence that dynamic remodeling of the protein assemblies among TRPC5, eNOS, caveolin-1, and calmodulin determines the ensemble of Ca2+ mobilization and NO production in vascular endothelial cells.


Assuntos
Cálcio , Caveolina 1 , Óxido Nítrico Sintase Tipo III , Óxido Nítrico , Canais de Cátion TRPC , Óxido Nítrico Sintase Tipo III/metabolismo , Caveolina 1/metabolismo , Caveolina 1/genética , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/genética , Animais , Óxido Nítrico/metabolismo , Humanos , Ratos , Cálcio/metabolismo , Masculino , Sinalização do Cálcio/fisiologia , Células Endoteliais/metabolismo , Transdução de Sinais , Retroalimentação Fisiológica , Células HEK293
11.
Pathol Res Pract ; 262: 155552, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39180803

RESUMO

Glaucoma is a degenerative disease characterized by retinal ganglion cell (RGC) death and visual impairment caused by elevated intraocular pressure (IOP). Elevated IOP can activate microglia, which participate in ganglion cell injury. Based on the study of caveolin-1 (Cav-1) in glaucoma, we aimed to explore the effect and mechanism of Cav-1 on RGC apoptosis in mice with acute ocular hypertension (AOH). AOH mice were established, and Cav-1 was intravitreally injected. Retinal microglia and RGCs were isolated from neonatal mice. TUNEL staining, hematoxylin-eosin staining, immunohistochemistry, flow cytometry, PCR and western blotting were used to observe the effect of Cav-1 on RGCs and mouse retinas. The thickness of the whole retina and the inner retinal sublayer decreased significantly, retinal cell apoptosis increased after AOH injury, and Cav-1 treatment reversed the effect of AOH injury. In addition, Cav-1 treatment promoted the conversion of proinflammatory M1 microglia to anti-inflammatory M2 microglia. Microglia and RGCs were isolated from neonatal mice. Cav-1 protects RGCs from OGD/R-induced injury by changing the polarization status of retinal microglia in vitro. Further studies revealed that Cav-1 activated the Akt/PTEN signaling pathway and inhibited TLR4. Our study provides evidence that Cav-1 may be a promising therapeutic target for glaucoma.


Assuntos
Caveolina 1 , Glaucoma , PTEN Fosfo-Hidrolase , Proteínas Proto-Oncogênicas c-akt , Células Ganglionares da Retina , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Caveolina 1/metabolismo , Transdução de Sinais/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Glaucoma/metabolismo , Glaucoma/patologia , Receptor 4 Toll-Like/metabolismo , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Modelos Animais de Doenças
12.
Exp Eye Res ; 247: 110063, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39216638

RESUMO

The main symptom of acute glaucoma is acute ocular hypertension (AOH), which leads to the death of retinal ganglion cells (RGCs) and permanent loss of vision. However, effective treatments for these conditions are lacking. This study aimed to identify major regulators and overall protein changes involved in AOH-induced RGC death. Proteomic patterns of the retinal protein extracts from the AOH and sham groups were analyzed using mass spectrometry (MS), followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Proteomic analysis revealed 92 proteins in the AOH group compared to the control group; 58 proteins were upregulated and 34 were downregulated. Alterations in fatty acid-binding protein 7 (FABP7) and caveolin-1 (Cav-1), which are related to fatty acid metabolism and ocular inflammatory signaling, were detected using western blotting and biochemical assays. Variations in the expression of galectin-1 (Gal-1), S100 calcium-binding protein A6 (S100a6), and visinin-like protein-1 (VILIP) have been associated with neuronal ischemia. Our investigation demonstrates that neuroinflammation and fatty acid metabolism are involved in retinal impairment following AOH, suggesting a possible treatment approach for acute glaucoma.


Assuntos
Western Blotting , Modelos Animais de Doenças , Hipertensão Ocular , Proteômica , Células Ganglionares da Retina , Espectrometria de Massas em Tandem , Animais , Proteômica/métodos , Hipertensão Ocular/metabolismo , Doença Aguda , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Pressão Intraocular/fisiologia , Ratos , Masculino , Proteínas do Olho/metabolismo , Hipóxia/metabolismo , Ratos Sprague-Dawley , Isquemia/metabolismo
13.
J Oral Maxillofac Pathol ; 28(2): 200-204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39157842

RESUMO

Context: Caveolin-1 is a surface protein that is a major structural component of caveolae, which are vesicles of the plasma membrane integral to a variety of signal transduction molecules and transport functions. Caveolin-1 is a biomarker undergoing research & studies have shown an increased expression of Cav-1 in the stepwise carcinogenesis from the normal oral mucosa, hyperplastic mucosa, dysplastic mucosa, precancerous lesions to Oral Squamous Cell Carcinoma. In the present study Correlation between Caveolin-1 expression and grade of tumor was established statistically. Aims: To study immunohistochemical expression of Caveolin-1 in Oral Squamous Cell Carcinoma. Settings and Design: Cross sectional study carried out in a tertiary care hospital. Materials and Methods: A total of 90 cases of histopathologically diagnosed oral squamous cell carcinoma was evaluated. Grading of the cases into well, moderate and poorly differentiated carcinomas was done as per WHO guidelines . Margin and lymph node status were evaluated. Anti- Caveolin-1 antibody (E249)- Caveolae marker ab32577 was used in the dilution of 1:100. Results were expressed taking reference of the methodology used by Hung et al 2003. Statistical Analysis Used: Statistical Package for the Social Sciences (SPSS 25.0). Results: Correlation of tumor grade and lymph node metastasis was statistically significant p=0.0006. There was a significant statistical correlation between tumor grade and immunohistochemical expression of Caveolin-1, p- value=0.00. Correlation between Lymph node metastasis and Caveolin-1 was statistically significant, p-value=0.008. Conclusions: Caveolin-1 expression correlates with aggressive tumor behavior and poor prognostic outcome.

14.
J Agric Food Chem ; 72(36): 19786-19799, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39187786

RESUMO

Bioactive peptides, derived from short protein fragments, are recognized for their neuroprotective properties and potential therapeutic applications in treating central nervous system (CNS) diseases. However, a significant challenge for these peptides is their ability to penetrate the blood-brain barrier (BBB). EVSGPGYSPN (EV-10) peptide, a walnut-derived peptide, has demonstrated promising neuroprotective effects in vivo. This study aimed to investigate the transportability of EV-10 across the BBB, explore its capacity to penetrate this barrier, and elucidate the regulatory mechanisms underlying peptide-induced cellular internalization and transport pathways within the BBB. The results indicated that at a concentration of 100 µM and osmotic time of 4 h, the apparent permeability coefficient of EV-10 was Papp = 8.52166 ± 0.58 × 10-6 cm/s. The penetration efficiency of EV-10 was influenced by time, concentration, and temperature. Utilizing Western blot analysis, immunofluorescence, and flow cytometry, in conjunction with the caveolin (Cav)-specific inhibitor M-ß-CD, we confirmed that EV-10 undergoes transcellular transport through a Cav-dependent endocytosis pathway. Notably, the tight junction proteins ZO-1, occludin, and claudin-5 were not disrupted by EV-10. Throughout its transport, EV-10 was localized within the mitochondria, Golgi apparatus, endoplasmic reticulum, lysosomes, endosomes, and cell membranes. Moreover, Cav-1 overexpression facilitated the release of EV-10 from lysosomes. Evidence of EV-10 accumulation was observed in mouse brains using brain slice scans. This study is the first to demonstrate that Cav-1 can facilitate the targeted delivery of walnut-derived peptide to the brain, laying a foundation for the development of functional foods aimed at CNS disease intervention.


Assuntos
Barreira Hematoencefálica , Juglans , Peptídeos , Juglans/química , Juglans/metabolismo , Barreira Hematoencefálica/metabolismo , Animais , Camundongos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Transporte Biológico , Caveolinas/metabolismo , Caveolinas/química , Humanos , Endocitose , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Nozes/química , Nozes/metabolismo
15.
Redox Biol ; 75: 103277, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39059206

RESUMO

Sepsis is a common complication of infections that significantly impacts the survival of critically patients. Currently, effective pharmacological treatment strategies are lacking. Auranofin, known as an inhibitor of Thioredoxin reductase (TrxR), exhibits anti-inflammatory activity, but its role in sepsis is not well understood. Here, we demonstrate the significant inhibitory effect of Auranofin on sepsis in a cecal ligation and puncture (CLP) mouse model. In vitro, Auranofin inhibits pyroptosis triggered by Caspase-11 activation. Further investigations reveal that inhibiting TrxR1 suppresses macrophage pyroptosis induced by E. coli, while TrxR2 does not exhibit this effect. TrxR1, functioning as a reductase, regulates the oxidative-reductive status of Thioredoxin-1 (Trx-1). Mechanistically, the modulation of Trx-1's reductive activity by TrxR1 may be involved in Caspase-11 activation-induced pyroptosis. Additionally, inhibiting TrxR1 maintains Trx-1 in its oxidized state. The oxidized form of Trx-1 interacts with Caveolin-1 (CAV1), regulating outer membrane vesicle (OMV) internalization. In summary, our study suggests that inhibiting TrxR1 suppresses OMV internalization by maintaining the oxidized form of Trx-1, thereby restricting Caspase-11 activation and alleviating sepsis.


Assuntos
Auranofina , Oxirredução , Piroptose , Sepse , Tiorredoxinas , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Animais , Camundongos , Oxirredução/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Auranofina/farmacologia , Sepse/metabolismo , Humanos , Caspases Iniciadoras/metabolismo , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Redutase 1/genética , Modelos Animais de Doenças , Masculino , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos
16.
bioRxiv ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39026816

RESUMO

Caveolins are lipid-binding proteins that can organize membrane remodeling and oligomerize into the 8S-complex. The CAV1 8S-complex comprises a disk-like structure, about 15nm in diameter, with a central beta barrel. Further oligomerization of 8S-complexes remodels the membrane into caveolae vessels, with a dependence on cholesterol concentration. However, the molecular mechanisms behind membrane remodeling and cholesterol filtering are still not understood. Performing atomistic Molecular Dynamics simulations in combination with advanced sampling techniques, we describe how the CAV1-8S complex bends the membrane and accumulates cholesterol. Here, our simulations show an enhancing effect by the palmitoylations of CAV1, and we predict that the CAV1-8S complex can extract cholesterol molecules from the lipid bilayer and accommodate them in its beta barrel. Through backmapping to the all-atom level we also conclude that the Martini v2 coarse-grained forcefield overestimates membrane bending, as the atomistic simulations exhibit only very localized bending.

17.
Biomedicines ; 12(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062115

RESUMO

Our study examines the immunoexpression patterns of Megalin, Cubilin, Caveolin-1, Gipc1 and Dab2IP in the embryonic development (E) and postnatal (P) mouse kidney, with a focus on differentiating patterns between wild-type (wt) and yotari, Dab1-/- (yot) mice. Immunofluorescence revealed raised immunoexpression of receptors Megalin and Cubilin at the ampulla/collecting ducts and convoluted tubules across all developmental stages, with the most prominent immunoexpression observed in the convoluted tubules and the parietal epithelium of the Bowman's capsule. Quantitative analysis showed a higher percentage of Megalin and Cubilin in wt compared to yot mice at E13.5. Co-expression of Megalin and Cubilin was observed at the apical membrane of convoluted tubules and the parietal layer of the Bowman's capsule. The staining intensity of Megalin varied across developmental stages, with the strongest reactivity observed at the ampulla and collecting ducts at embryonic day (E) 13.5 in wt mice. In contrast, Caveolin-1 exhibited high immunoexpression in the metanephric mesenchyme, blood vessels, and the border area between the metanephric mesenchyme and renal vesicle, with a decrease in immunoexpression as development progressed. Gipc1 showed diffuse cytoplasmic staining in metanephric mesenchyme, convoluted tubules and collecting ducts, with significant differences in immunoexpression between wild-type and yot mice at both investigated embryonic time points. Dab2IP immunofluorescent staining was most prominent in renal vesicle/glomeruli and ampulla/collecting ducts at E13.5, with mild staining intensity observed in the distal convoluted tubules postnatally. Our findings elucidate distinct immunoexpression of patterns and potential parts of these proteins in the development and function of the kidney, highlighting the importance of further investigation into their regulatory mechanisms.

18.
Mol Biol Rep ; 51(1): 829, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037581

RESUMO

BACKGROUND: The roles of Caveolin-1 (Cav-1) and the Wnt/ß-catenin signaling pathways in cerebral ischemia-reperfusion (I/R) injury are well established. The translocation of ß-catenin into the nucleus is critical for regulating neuronal apoptosis, repair, and neurogenesis within the ischemic brain. It has been reported that the scaffold domain of Caveolin-1 (Cav-1) (residues 95-98) interacts with ß-catenin (residues 330-337). However, the specific contribution of the Cav-1/ß-catenin complex to I/R injury remains unknown. METHODS AND RESULTS: To investigate the mechanism underlying the involvement of the Cav-1/ß-catenin complex in the subcellular translocation of ß-catenin and its subsequent effects on cerebral I/R injury, we treated ischemic brains with ASON (Cav-1 antisense oligodeoxynucleotides) or FTVT (a competitive peptide antagonist of the Cav-1 and ß-catenin interaction). Our study demonstrated that the binding of Cav-1 to ß-catenin following I/R injury prevented the nuclear accumulation of ß-catenin. Treatment with ASON or FTVT after I/R injury significantly increased the levels of nuclear ß-catenin. Furthermore, ASON reduced the phosphorylation of ß-catenin at Ser33, Ser37, and Thr41, which contributes to its proteasomal degradation, while FTVT increased phosphorylation at Tyr333, which is associated with its nuclear translocation. CONCLUSIONS: The above results indicate that the formation of the Cav-1/ß-catenin complex anchors ß-catenin in the cytoplasm following I/R injury. Additionally, both ASON and FTVT treatments attenuated neuronal death in ischemic brains. Our study suggests that targeting the interaction between Cav-1 and ß-catenin serve as a novel therapeutic strategy to protect against neuronal damage during cerebral injury.


Assuntos
Caveolina 1 , Núcleo Celular , Neurônios , Traumatismo por Reperfusão , beta Catenina , beta Catenina/metabolismo , Animais , Traumatismo por Reperfusão/metabolismo , Caveolina 1/metabolismo , Caveolina 1/genética , Neurônios/metabolismo , Neurônios/patologia , Núcleo Celular/metabolismo , Masculino , Ratos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Apoptose , Via de Sinalização Wnt , Ratos Sprague-Dawley , Ligação Proteica , Transporte Proteico , Morte Celular
19.
Proc Natl Acad Sci U S A ; 121(30): e2319267121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39008679

RESUMO

Migrasomes, vesicular organelles generated on the retraction fibers of migrating cells, play a crucial role in migracytosis, mediating intercellular communication. The cargoes determine the functional specificity of migrasomes. Migrasomes harbor numerous intraluminal vesicles, a pivotal component of their cargoes. The mechanism underlying the transportation of these intraluminal vesicles to the migrasomes remains enigmatic. In this study, we identified that Rab10 and Caveolin-1 (CAV1) mark the intraluminal vesicles in migrasomes. Transport of Rab10-CAV1 vesicles to migrasomes required the motor protein Myosin Va and adaptor proteins RILPL2. Notably, the phosphorylation of Rab10 by the kinase LRRK2 regulated this process. Moreover, CSF-1 can be transported to migrasomes through this mechanism, subsequently fostering monocyte-macrophage differentiation in skin wound healing, which served as a proof of the physiological importance of this transporting mechanism.


Assuntos
Caveolina 1 , Movimento Celular , Proteínas rab de Ligação ao GTP , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Humanos , Caveolina 1/metabolismo , Caveolina 1/genética , Macrófagos/metabolismo , Fosforilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Miosina Tipo V/metabolismo , Miosina Tipo V/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Transporte Biológico , Cicatrização/fisiologia , Organelas/metabolismo
20.
Biol Chem ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38970809

RESUMO

Caveolae are 50-80 nm sized plasma membrane invaginations found in adipocytes, endothelial cells or fibroblasts. They are involved in endocytosis, lipid uptake and the regulation of the cellular lipid metabolism as well as sensing and adapting to changes in plasma membrane tension. Caveolae are characterized by their unique lipid composition and their specific protein coat consisting of caveolin and cavin proteins. Recently, detailed structural information was obtained for the major caveolae protein caveolin1 showing the formation of a disc-like 11-mer protein complex. Furthermore, the importance of the cavin disordered regions in the generation of cavin trimers and caveolae at the plasma membrane were revealed. Thus, finally, structural insights about the assembly of the caveolar coat can be elucidated. Here, we review recent developments in caveolae structural biology with regard to caveolae coat formation and caveolae curvature generation. Secondly, we discuss the importance of specific lipid species necessary for caveolae curvature and formation. In the last years, it was shown that specifically sphingolipids, cholesterol and fatty acids can accumulate in caveolae invaginations and may drive caveolae endocytosis. Throughout, we summarize recent studies in the field and highlight future research directions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA