Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 207: 108204, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313093

RESUMO

Microcycle conidiation has displayed the greater potential than normal conidiation in large-scale production of mycopesticides. Fungi require partial hydrolysis of the cell wall to achieve the necessary plasticity during their morphological changes. Therefore, various cell wall-associated hydrolases are crucial for fungal morphogenesis. Eng1, as an endo-ß-1,3-glucanase, is involved in the cell separation of fungi, but its role in morphological changes of entomopathogenic fungi is not yet clear. Here, the endo-ß-1,3-glucanase gene MaEng1 was characterized in the model entomopathogenic fungi M. acridum. MaEng1 possesses a typical carbohydrate hydrolase domain and belongs to the GH81 family. The functions of MaEng1 in fungal growth, stress tolerance, pathogenicity, and conidiation capacity were analyzed using targeted gene disruption. The results displayed that the absence of MaEng1 does not affect the fungal growth, stress tolerances, and pathogenicity in M. acridum. However, the knockout of MaEng1 led to the normal conidiation of M. acridum on the SYA medium, which can induce the microcycle conidiation. Moreover, the content of ß-1,3-glucan in the cell wall of the MaEng1-disruption strain were significantly reduced and the exposures of ß-1,3-glucan on the surface of the mature conidia and mycelia in ΔMaEng1 were declined, indicating that MaEng1 contributes to the conversion of conidiation mode in M. acridum by affecting the cell wall structure.

2.
J Exp Bot ; 74(21): 6448-6467, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37539735

RESUMO

Years ago, a classic textbook would define plant cell walls based on passive features. For instance, a sort of plant exoskeleton of invariable polysaccharide composition, and probably painted in green. However, currently, this view has been expanded to consider plant cell walls as active, heterogeneous, and dynamic structures with a high degree of complexity. However, what do we mean when we refer to a cell wall as a dynamic structure? How can we investigate the different implications of this dynamism? While the first question has been the subject of several recent publications, defining the ideal strategies and tools needed to address the second question has proven to be challenging due to the myriad of techniques available. In this review, we will describe the capacities of several methodologies to study cell wall composition, structure, and other aspects developed or optimized in recent years. Keeping in mind cell wall dynamism and plasticity, the advantages of performing long-term non-invasive live-imaging methods will be emphasized. We specifically focus on techniques developed for Arabidopsis thaliana primary cell walls, but the techniques could be applied to both secondary cell walls and other plant species. We believe this toolset will help researchers in expanding knowledge of these dynamic/evolving structures.


Assuntos
Arabidopsis , Plantas , Parede Celular/metabolismo , Membrana Celular , Transporte Proteico
3.
Biotechnol J ; 18(8): e2300091, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37182226

RESUMO

Accumulation of intracellular lipid bodies in oleaginous yeast cells is highly restricted by their natural intracellular space. Here we show a cellulase mediated adaptive evolution with ultra-centrifugation fractionation of oleaginous yeast Trichosporon cutaneum to obtain the favorable cell structure for lipid accumulation. Cellulase was added to the wheat straw hydrolysate during long-term adaptive evolution for disruption of cell wall integrity of T. cutaneum cells. The cellulase, together with ultracentrifugation force, triggered multiple mutations and transcriptional expression changes of the functional genes associated with cell wall integrity and lipid synthesis metabolism. The fractionated mutant T. cutaneum YY52 demonstrated the heavily weakened cell wall and high lipid accumulation by the super-large expanded spindle cells (two orders of magnitude greater than the parental). A record-high lipid production by T. cutaneum YY52 was achieved (55.4 ± 0.5 g L-1 from wheat straw and 58.4 ± 0.1 g L-1 from corn stover). This study not only obtained an oleaginous yeast strain with industrial application potential for lipid production but also provided a new method for generation of mutant cells with high intracellular metabolite accumulation.


Assuntos
Celulase , Trichosporon , Trichosporon/genética , Trichosporon/metabolismo , Celulase/genética , Celulase/metabolismo , Lipídeos , Mutação
4.
Food Res Int ; 169: 112912, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254345

RESUMO

Studies have shown that the structure, composition, and bioavailability of compounds in whole grains are affected by processing and the role of cells walls. In this study, the effects of different processing methods on highland barley, one of the mostly widely produced whole grains worldwide, were investigated. The processing methods applied were flaking-boiling (HB flake), sand-roasting (Puffed HB), and sand-roasting-milling (Tsamba). Results showed Puffed HB and Tsamba had higher levels of damaged starch content, starch short-range molecular order, and relative crystallinity than HB flake. The half-time of gastric emptying (t1/2) was the slowest for Tsamba (132.3 min) compared to HB flake (122.5 min) and Puffed HB (84.0 min), indicating the slowest gastric emptying rate, which could be attributed to its high viscosity of gastric digesta. After in vitro gastroduodenal digestion, Puffed HB exhibited the lowest starch digestibility and the least amount of ß-glucan due to its less damaged cellular structure. Furthermore, Puffed HB resulted in a 21% and 18% higher in vitro production of total short-chain fatty acids than Tsamba and HB flake, respectively. Besides, undigested starch of Puffed HB after in vitro gastroduodenal digestion delayed in vitro fecal fermentation of ß-glucan. Our study provided insight into the potential mechanisms of how cell wall integrity affected the gastric emptying, in vitro starch digestibility, and in vitro fecal fermentation of highland barley foods.


Assuntos
Hordeum , beta-Glucanas , Amido/química , Hordeum/química , Dieta , Digestão , Esvaziamento Gástrico , Fermentação , Areia , Parede Celular/metabolismo , beta-Glucanas/farmacologia
5.
Planta ; 256(4): 75, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36087126

RESUMO

MAIN CONCLUSION: TEM and AFM imaging reveal radial orientations and whorl-like arrangements of cellulose microfibrils near the S1/S2 interface. These are explained by wrinkling during lamellar cell growth. In the most widely accepted model of the ultrastructure of wood cell walls, the cellulose microfibrils are arranged in helical patterns on concentric layers. However, this model is contradicted by a number of transmission electron microscopy (TEM) studies which reveal a radial component to the microfibril orientations in the cell wall. The idea of a radial component of the microfibril directions is not widely accepted, since it cannot easily be explained within the current understanding of lamellar cell growth. To help clarify the microfibril arrangements in wood cell walls, we have investigated various wood cell wall sections using both transmission electron microscopy and atomic force microscopy, and using various imaging and specimen preparation methods. Our investigations confirm that the microfibrils have a radial component near the interface between the S1 and S2 cell wall layers, and also reveal a whorl-like microfibril arrangement at the S1/S2 interface. These whorl-like structures are consistent with cell wall wrinkling during growth, allowing the radial microfibril component to be reconciled with the established models for lamellar cell growth.


Assuntos
Microfibrilas , Madeira , Parede Celular/ultraestrutura , Celulose/análise , Microscopia de Força Atômica , Madeira/ultraestrutura
6.
Food Res Int ; 157: 111245, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761557

RESUMO

Nowadays, pulse flours are ingredients that are more and more used as substitutes in traditional staples (i.e., pasta, bread). In this study, cellular chickpea-flour was used as an ingredient to replace conventional raw-milled chickpea-flour in suspensions and semi-solid purees. The contribution of cellular integrity on in vitro macronutrient digestion and the subsequent effect on in vivo appetite sensations were investigated. Alternating the flour preparation sequence by interchanging hydrothermal treatment and mechanical disintegration (thermo-mechanical treatment) resulted in three chickpea-flours with distinct levels of cellular integrity, and thus nutrient accessibility. The study showed that cellular integrity in chickpea-flours was preserved upon secondary hydrothermal treatment and led to significant attenuation of in vitro macronutrient digestion as compared to conventional chickpea-flour. In a randomized crossover design, significant increase of mean in vivo subjective appetite sensations satiety and fullness along with decreases in hunger, desire to eat, and prospective food consumption were achieved when cellular integrity was kept without an effect on palatability and appearance of the purees (n = 22). In vitro digestion along with microstructural assessment confirmed the importance of cellular integrity for attenuating macronutrient digestion and thereby contributing to enhanced subjective satiety and fullness in pulses. Overall, this study highlights the promising potential of altarenating the flour preparation sequence resulting in macronutrient and energy-matched flours with different nutrient encapsulation which lead to different in vitro digestion kinetics and in vivo appetite sensations.


Assuntos
Cicer , Farinha , Apetite , Estudos Cross-Over , Digestão , Sensação
7.
Int J Biol Macromol ; 213: 27-42, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35623455

RESUMO

The water-insoluble part of Parachlorella kessleri HY1 biomass was subjected to the extraction of cell-wall polysaccharides using polar aprotic solvents (DMSO, LiCl/DMSO) and aqueous alkaline solutions (0.1, 1 and 4 mol·l-1 of NaOH). Proteins predominated in all the crude extracts and in the insoluble residues were partially removed by treatment with proteolytic enzymes (pepsin and pronase), and in some cases with the HCl/H2O2 reagent, yielding purified polysaccharide-enriched fractions. These treatments led to the solubilisation of some products in water. The composition and structure of isolated polysaccharides were characterised based on monosaccharide composition, glycosidic linkage and spectroscopic analyses. The DMSO extract contained mainly proteins, and polysaccharides were not detected. The water-soluble parts isolated from the LiCl/DMSO extract contained α-l-rhamnan, α-d-glucan and ß-d-glucogalactan; the water-insoluble part contained (1 â†’ 4)-ß-d-xylan, first isolated from the biomass of green microalgae. The alkali extracts contained polysaccharides of similar structure, and also water-insoluble (1 â†’ 4)-ß-d-mannan. The insoluble part after all extractions contained α-chitin as the main polysaccharide, which was confirmed by spectroscopic methods. All these polysaccharides can play a certain role in the cell wall structure of this microalga.


Assuntos
Clorófitas , Microalgas , Biomassa , Parede Celular/química , Dimetil Sulfóxido , Peróxido de Hidrogênio/análise , Microalgas/genética , Polissacarídeos/química , Água/análise
8.
Appl Environ Microbiol ; 88(1): e0172321, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34669424

RESUMO

Four bacteriophage-insensitive mutants (BIMs) of the dairy starter bacterium Streptococcus thermophilus UCCSt50 were isolated following challenge with Brussowvirus SW13. The BIMs displayed an altered sedimentation phenotype. Whole-genome sequencing and comparative genomic analysis of the BIMs uncovered mutations within a family 2 glycosyltransferase-encoding gene (orf06955UCCSt50) located within the variable region of the cell wall-associated rhamnose-glucose polymer (Rgp) biosynthesis locus (designated the rgp gene cluster here). Complementation of a representative BIM, S. thermophilus B1, with native orf06955UCCSt50 restored phage sensitivity comparable to that of the parent strain. Detailed bioinformatic analysis of the gene product of orf06955UCCSt50 identified it as a functional homolog of the Lactococcus lactis polysaccharide pellicle (PSP) initiator WpsA. Biochemical analysis of cell wall fractions of strains UCCSt50 and B1 determined that mutations within orf06955UCCSt50 result in the loss of the side chain decoration from the Rgp backbone structure. Furthermore, it was demonstrated that the intact Rgp structure incorporating the side chain structure is essential for phage binding through fluorescence labeling studies. Overall, this study confirms that the rgp gene cluster of S. thermophilus encodes the biosynthetic machinery for a cell surface-associated polysaccharide that is essential for binding and subsequent infection by Brussowviruses, thus enhancing our understanding of S. thermophilus phage-host dynamics. IMPORTANCE Streptococcus thermophilus is an important starter culture bacterium in global dairy fermentation processes, where it is used for the production of various cheeses and yogurt. Bacteriophage predation of the species can result in substandard product quality and, in rare cases, complete fermentation collapse. To mitigate these risks, it is necessary to understand the phage-host interaction process, which commences with the recognition of, and adsorption to, specific host-encoded cell surface receptors by bacteriophage(s). As new groups of S. thermophilus phages are being discovered, the importance of underpinning the genomic elements that specify the surface receptor(s) is apparent. Our research identifies a single gene that is critical for the biosynthesis of a saccharidic moiety required for phage adsorption to its S. thermophilus host. The acquired knowledge provides novel insights into phage-host interactions for this economically important starter species.


Assuntos
Bacteriófagos , Siphoviridae , Fagos de Streptococcus , Bacteriófagos/genética , Polissacarídeos , Fagos de Streptococcus/genética , Streptococcus thermophilus/genética
9.
J Sci Food Agric ; 102(8): 3140-3149, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34791654

RESUMO

BACKGROUND: Phomopsis stem-end rot caused by Diaporthe citri, causes significant commercial postharvest losses of pummelo fruit during storage. Carvacrol (CVR) is a known generally recognized as safe and has the ability to prolong the preservation of harvested fruits. In the present study, the inhibitory effects of CVR treatment at the appropriate concentration on Phomopsis stem-end rot development of harvested pummelo fruit inoculated with D. citri were evaluated by the amounts of cell wall components, the activities and gene expressions of related enzymes involved in cell wall modification and lignin biosynthesis. RESULTS: Results indicated that CVR completely inhibited D. citri growth in vitro at 200 mg L-1 and significantly controlled Phomopsis stem-end rot development in harvested pummelo. The CVR treatment delayed peel softening and browning, and retarded electrolyte leakage, superoxide radical (O2 •- ) production, and malondialdehyde content. The CVR-treated fruit maintained higher amounts of cell wall material, protopectin, hemicelluloses, and cellulose, but exhibited lower water-soluble pectin amount. Moreover, in D. citri-inoculated fruit, CVR treatment suppressed the activities and gene expressions of cell wall disassembling-enzymes, including pectin methylesterase, polygalacturonase, cellulase, and ß-galactosidase, while the development of cell wall degradation was reduced. Meanwhile, the CVR treatment enhanced the lignin biosynthesis by increasing the activities and up-regulating the gene expressions of phenylalanine ammonialyase, cinnamic alcohol dehydrogenase, and peroxidase accompanied with elevated level of lignin in pummelo fruit. CONCLUSION: The disease resistance to D. citri in pummelo fruit elicited by CVR treatment is related to delaying cell wall degradation and enhancing lignin biosynthesis. © 2021 Society of Chemical Industry.


Assuntos
Citrus , Frutas , Ascomicetos , Parede Celular/metabolismo , Citrus/metabolismo , Cimenos , Resistência à Doença , Lignina/metabolismo
10.
Int J Biol Macromol ; 193(Pt A): 27-37, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34687763

RESUMO

Exploration of the application prospects of cattail fibers (CFs) in natural composites, and other fields is important for the sustainable development of new, green, light-weight, functional biomass materials. In this study, the physical and chemical properties, micro/nano structure, and mechanical characteristics of CFs were investigated. The CFs have a low density (618.0 kg m-3). The results of transmission electron microscopy and tensile testing data indicated that the cattail trunk fiber (CTF) bundle is composed of parenchyma cells and solid stone cells, demonstrating high specific modulus (10.1 MPa∙m3·kg-1) and high elongation at break (3.9%). In turn, the cattail branch fiber (CBF) bundle is composed of parenchyma cells with specific "half-honeycomb" shape. The inner diaphragms divide these cells into the open cavities. This structural feature endows the CTF bundles with stable structure, good oil absorption and storage capacities. The chemical component and the Fourier transform infrared spectroscopy analyses show that the CFs have higher lignin content (20.6%) and wax content (11.5%), which are conducive to the improvement of corrosion resistance, thermal stability and lipophilic-hydrophobic property of CF. Finally, the thermogravimetric analysis indicates that its final degradation temperature is 404.5 °C, which is beneficial to the increase in processability of CFs-reinforced composites.


Assuntos
Celulose , Nanoestruturas , Typhaceae , Celulose/química , Celulose/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Temperatura , Resistência à Tração , Typhaceae/química , Typhaceae/ultraestrutura
11.
Plants (Basel) ; 10(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34579500

RESUMO

The process of pit formation in plants still has various questions unaddressed and unknown, which opens up many interesting and new research opportunities. The aim of this work was elucidation of the mechanism for the formation of bordered pits of the spruce (Picea abies (L.) Karst.) tracheid with exosomes participation and mechanical deformation of the cell wall. Sample sections were prepared from spruce stem samples after cryomechanical destruction with liquid nitrogen. The study methods included scanning electron microscopy and enzymatic treatment. Enzymatic treatment of the elements of the bordered pit made it possible to clarify the localization of cellulose and pectin. SEM images of intermediate stages of bordered pit formation in the radial and tangential directions were obtained. An asynchronous mechanism of formation of bordered-pit pairs in tracheids is proposed. The formation of the pit pair begins from the side of the initiator cell and is associated with enzymatic hydrolysis of the secondary cell wall and subsequent mechanical deformation of the primary cell walls. Enzymatic hydrolysis of the S1 layer of the secondary cell wall is carried out by exosome-delivered endoglucanases.

12.
J Food Biochem ; : e13858, 2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34251032

RESUMO

Tomato is usually harvested at an early ripening stage with high firmness suitable for storage and transportation but lacks many quality parameters such as sugars, organic acids, and phenolics. In a recent study, we have selected introgression lines (ILs) IL4-2 and IL5-1, developed from a cross between the Solanum pennellii and the Solanum lycopersicum M82, that exhibit differentiated postharvest shelf-life characteristics in the fruit compared to M82 and the rest of the ILs. Here, we first structurally and biochemically characterized IL4-2, IL5-1, and their parent M82 to decipher the cell wall mechanistic difference between soft (IL4-2) and firm (IL5-1) lines at two postharvest ripening periods. Generally, IL4-2 had more active cell wall modifications in terms of ripening-related gene expression, water-soluble pectin, and cell wall structure under the microscope, which probably makes this line softer than IL5-1. We also evaluated these lines based on commercial quality parameters, sugars, phenolics, organic, and amino acids to gain insight into their commercial and functional quality and reveal noticeable differences. In summary, the contribution of the S. pennellii IL5-1 and IL4-2 to the shelf life of the tomato was structurally characterized, and the component differences meeting the quality criteria were revealed.

13.
Plant Cell Rep ; 40(1): 127-142, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33068174

RESUMO

KEY MESSAGE: The HbCAld5H1 gene cloned from Hevea brasiliensis regulates the cambial activity, xylem differentiation, syringyl-guaiacyl ratio, secondary wall structure, lignification pattern and xylan distribution in xylem fibres of transgenic tobacco plants. Molecular characterization of lignin biosynthesis gene coniferaldehyde-5-hydroxylase (CAld5H) from Hevea brasiliensis and its functional validation was performed. Both sense and antisense constructs of HbCAld5H1 gene were introduced into tobacco through Agrobacterium-mediated genetic transformation for over expression and down-regulation of this key enzyme to understand its role affecting structural and cell wall chemistry. The anatomical studies of transgenic tobacco plants revealed the increase of cambial activity leading to xylogenesis in sense lines and considerable reduction in antisense lines. The ultra-structural studies showed that the thickness of secondary wall (S2 layer) of fibre had been decreased with non-homogenous lignin distribution in antisense lines, while sense lines showed an increase in S2 layer thickness. Maule color reaction revealed that syringyl lignin distribution in the xylem elements was increased in sense and decreased in antisense lines. The immunoelectron microscopy revealed a reduction in LM 10 and LM 11 labelling in the secondary wall of antisense tobacco lines. Biochemical studies showed a radical increase in syringyl lignin in sense lines without any significant change in total lignin content, while S/G ratio decreased considerably in antisense lines. Our results suggest that CAld5H gene plays an important role in xylogenesis stages such as cambial cell division, secondary wall thickness, xylan and syringyl lignin distribution in tobacco. Therefore, CAld5H gene could be considered as a promising target for lignin modification essential for timber quality improvement in rubber.


Assuntos
Parede Celular/química , Oxigenases de Função Mista/genética , Nicotiana/genética , Proteínas de Plantas/genética , Xilema/citologia , Acroleína/análogos & derivados , Acroleína/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/genética , Lignina/metabolismo , Oxigenases de Função Mista/metabolismo , Fenótipo , Células Vegetais/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/citologia , Nicotiana/metabolismo , Xilanos/genética , Xilanos/metabolismo , Xilema/metabolismo
14.
Molecules ; 25(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138153

RESUMO

Structural and chemical deterioration and its impact on cell wall mechanics were investigated for visually intact cell walls (VICWs) in waterlogged archaeological wood (WAW). Cell wall mechanical properties were examined by nanoindentation without prior embedding. WAW showed more than 25% decrease of both hardness and elastic modulus. Changes of cell wall composition, cellulose crystallite structure and porosity were investigated by ATR-FTIR imaging, Raman imaging, wet chemistry, 13C-solid state NMR, pyrolysis-GC/MS, wide angle X-ray scattering, and N2 nitrogen adsorption. VICWs in WAW possessed a cleavage of carboxyl in side chains of xylan, a serious loss of polysaccharides, and a partial breakage of ß-O-4 interlinks in lignin. This was accompanied by a higher amount of mesopores in cell walls. Even VICWs in WAW were severely deteriorated at the nanoscale with impact on mechanics, which has strong implications for the conservation of archaeological shipwrecks.


Assuntos
Arqueologia/métodos , Parede Celular/química , Madeira/química , Módulo de Elasticidade , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
15.
Molecules ; 25(4)2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102256

RESUMO

The cooperative thermomechanical properties of plant-derived polymers have been studied insufficiently, although this feedstock has a very high potential. In the present paper, we analyzed the changes in the structure and physicochemical properties of lignin-rich biomass induced by thermomechanical pretreatment. Low-temperature treatment allows one to retain the original supramolecular structure of the cell walls, while an appreciably high disintegration degree is reached. This increases the reactivity of the material in the subsequent heterogeneous reactions. Mechanical pretreatment at medium temperatures (10 °C), when almost all cell wall polymers except for low-molecular-weight lignin are in the glassy state, enhances the mobility of cell wall polymers and causes sufficient cellulose disordering, while the specific surface area is not significantly increased. High-temperature pretreatment of reed biomass is accompanied by pore formation and lignin release from the cell wall structure, which opens up new prospects for using this biomass as a matrix to produce core-shell-structured sorbents of heavy metals. The energy consumed by mechanochemical equipment for the activation of reed biomass was determined.


Assuntos
Lignina/química , Poaceae/química , Biomassa , Fenômenos Biomecânicos , Parede Celular/química , Temperatura
16.
Curr Top Microbiol Immunol ; 425: 297-330, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31781866

RESUMO

The fungal cell wall is an essential organelle that maintains cellular morphology and protects the fungus from environmental insults. For fungal pathogens such as Candida albicans, it provides a degree of protection against attack by host immune defences. However, the cell wall also presents key epitopes that trigger host immunity and attractive targets for antifungal drugs. Rather than being a rigid shield, it has become clear that the fungal cell wall is an elastic organelle that permits rapid changes in cell volume and the transit of large liposomal particles such as extracellular vesicles. The fungal cell wall is also flexible in that it adapts to local environmental inputs, thereby enhancing the fitness of the fungus in these microenvironments. Recent evidence indicates that this cell wall adaptation affects host-fungus interactions by altering the exposure of major cell wall epitopes that are recognised by innate immune cells. Therefore, we discuss the impact of environmental adaptation upon fungal cell wall structure, and how this affects immune recognition, focussing on C. albicans and drawing parallels with other fungal pathogens.


Assuntos
Candida albicans/citologia , Candida albicans/imunologia , Parede Celular/imunologia , Candida albicans/patogenicidade , Candidíase/imunologia , Candidíase/microbiologia , Humanos
17.
Front Plant Sci ; 10: 1205, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681352

RESUMO

Grasses and related commelinid monocot species synthesize cell walls distinct in composition from other angiosperm species. With few exceptions, the genomes of all angiosperms contain the genes that encode the enzymes for synthesis of all cell-wall polysaccharide, phenylpropanoid, and protein constituents known in vascular plants. RNA-seq analysis of transcripts expressed during development of the upper and lower internodes of maize (Zea mays) stem captured the expression of cell-wall-related genes associated with primary or secondary wall formation. High levels of transcript abundances were not confined to genes associated with the distinct walls of grasses but also of those associated with xyloglucan and pectin synthesis. Combined with proteomics data to confirm that expressed genes are translated, we propose that the distinctive cell-wall composition of grasses results from sorting downstream from their sites of synthesis in the Golgi apparatus and hydrolysis of the uncharacteristic polysaccharides and not from differential expression of synthases of grass-specific polysaccharides.

18.
Planta ; 250(4): 1325-1337, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31273443

RESUMO

MAIN CONCLUSION: Identification of the structural changes and cell wall-related genes likely involved in cell wall extension, cellular water balance and cell wall biosynthesis on embryonic axes during germination of soybean seeds. Cell wall is a highly organized and dynamic structure that provides mechanical support for the cell. During seed germination, the cell wall is critical for cell growth and seedling establishment. Although seed germination has been widely studied in several species, key aspects regarding the regulation of cell wall dynamics in germinating embryonic axes remain obscure. Here, we characterize the gene expression patterns of cell wall pathways and investigate their impact on the cell wall dynamics of embryonic axes of germinating soybean seeds. We found 2143 genes involved in cell wall biosynthesis and assembly in the soybean genome. Key cell wall genes were highly expressed at specific germination stages, such as expansins, UDP-Glc epimerases, GT family, cellulose synthases, peroxidases, arabinogalactans, and xyloglucans-related genes. Further, we found that embryonic axes grow through modulation of these specific cell wall genes with no increment in biomass. Cell wall structural analysis revealed a defined pattern of cell expansion and an increase in cellulose content during germination. In addition, we found a clear correlation between these structural changes and expression patterns of cell wall genes during germination. Taken together, our results provide a better understanding of the complex transcriptional regulation of cell wall genes that drive embryonic axes growth and expansion during soybean germination.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Glycine max/genética , Parede Celular/metabolismo , Germinação , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento
19.
Ecotoxicol Environ Saf ; 165: 202-210, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30196002

RESUMO

Aluminum toxicity limits the plant growth by inducing inhibition of root elongation. Although several mechanisms have been proposed regarding the phytotoxic effects of aluminum on inhibition of root elongation; the primary causes of aluminum induced root inhibition and its mitigation by boron (B) are still elusive. The present study was carried out to explore the mechanisms of B induced mitigation of aluminum toxicity and to investigate the changes in well wall structure under aluminum toxicity coupled with the techniques of confocal laser microscope, lumogallion and transmission electron microscope. The results revealed that aluminum toxicity severely hampered the root elongation and plant biomass. Moreover, alteration in subcellular structure were observed under aluminum toxicity, however, such negative effects were further exacerbated with B deficiency. Aluminum toxicity indicated disorganized distribution of HG (homogalacturonan) epitopes with higher accumulation of apoplastic aluminum. Nevertheless, B supply improved root elongation, and reduced the aluminum uptake. Taken together, it is concluded that B application can reduce aluminum toxicity and improve root elongation by decreasing Al3+ accumulation to cell wall, alteration in the cell wall structure and reducing the distribution of HG epitopes in the roots of trifoliate (Poncirus trifoliate) orange.


Assuntos
Alumínio/química , Boro/farmacologia , Parede Celular/efeitos dos fármacos , Epitopos/química , Raízes de Plantas/efeitos dos fármacos , Poncirus/efeitos dos fármacos , Benzenossulfonatos/química , Parede Celular/ultraestrutura , Microscopia Confocal , Pectinas/química , Raízes de Plantas/crescimento & desenvolvimento , Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Front Microbiol ; 9: 719, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706940

RESUMO

Coccoid green algae can be divided in two groups based on their cell wall structure. One group has a highly chemical resistant cell wall (HR-cell wall) containing algaenan. The other group is more susceptible to chemicals (LR-cell wall - Low resistant cell wall). Algaenan is considered as important molecule to explain cell wall resistance. Interestingly, cell wall types (LR- and HR-cell wall) are not in accordance with the taxonomic classes Chlorophyceae and Trebouxiophyceae, which makes it even more interesting to consider the ecological function. It was already shown that algaenan helps to protect against virus, bacterial and fungal attack, but in this study we show for the first time that green algae with different cell wall properties show different sensitivity against interference competition with the cyanobacterium Microcystis aeruginosa. Based on previous work with co-cultures of M. aeruginosa and two green algae (Acutodesmus obliquus and Oocystis marssonii) differing in their cell wall structure, it was shown that M. aeruginosa could impair only the growth of the green algae if they belong to the LR-cell wall type. In this study it was shown that the sensitivity to biotic interference mechanism shows a more general pattern within coccoid green algae species depending on cell wall structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA