Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Biomolecules ; 14(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39062478

RESUMO

ACE2, part of the angiotensin-converting enzyme family and the renin-angiotensin-aldosterone system (RAAS), plays vital roles in cardiovascular and renal functions. It is also the primary receptor for SARS-CoV-2, enabling its entry into cells. This project aimed to study ACE2's cellular trafficking and maturation to the cell surface and assess the impact of various drugs and compounds on these processes. We used cellular and biochemical analyses to evaluate these compounds as potential leads for COVID-19 therapeutics. Our screening assay focused on ACE2 maturation levels and subcellular localization with and without drug treatments. Results showed that ACE2 maturation is generally fast and robust, with certain drugs having a mild impact. Out of twenty-three tested compounds, eight significantly reduced ACE2 maturation levels, and three caused approximately 20% decreases. Screening trafficking inhibitors revealed significant effects from most molecular modulators of protein trafficking, mild effects from most proposed COVID-19 drugs, and no effects from statins. This study noted that manipulating ACE2 levels could be beneficial or harmful, depending on the context. Thus, using this approach to uncover leads for COVID-19 therapeutics requires a thorough understanding ACE2's biogenesis and biology.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Transporte Proteico , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Transporte Proteico/efeitos dos fármacos , Antivirais/farmacologia , COVID-19/virologia , COVID-19/metabolismo , Células HEK293 , Avaliação Pré-Clínica de Medicamentos
2.
Mol Biol Rep ; 51(1): 97, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194130

RESUMO

BACKGROUND: Interferon regulatory factors (IRF-1 and IRF-2) are transcription factors widely implicated in various cellular processes, including regulation of inflammatory responses to pathogens, cell proliferation, oncogenesis, differentiation, autophagy, and apoptosis. METHODS: We have studied the expression of IRF-1, IRF-2 mRNAs by RT-PCR, cellular localization of the proteins by immunofluorescence, and expression of mRNAs of genes regulated by IRF-1, IRF-2 by RT-PCR in mouse bone marrow cells (BMCs) and mesenchymal stem cells (MSCs). RESULTS: Higher level of IRF-1 mRNA was observed in BMCs and MSCs compared to that of IRF-2. Similarly, differential expression of IRF-1 and IRF-2 proteins was observed in BMCs and MSCs. IRF-1 was predominantly localized in the cytoplasm, whereas IRF-2 was localized in the nuclei of BMCs. MSCs showed nucleo-cytoplasmic distribution of IRF-1 and nuclear localization of IRF-2. Constitutive expression of IRF-1 and IRF-2 target genes: monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), cyclooxygenase-2 (COX-2), matrix metalloproteinase-9 (MMP-9), and caspase-1 was observed in both BMCs and MSCs. MSCs showed constitutive expression of the pluripotency-associated factors, Oct3/4 and Sox-2. Lipopolysaccharide (LPS)-treatment of MSCs induced prominent cellular localization of IRF-1 and IRF-2. CONCLUSIONS: Our results suggest that IRF-1 and IRF-2 exhibit differential expression of their mRNAs and subcellular localization of the proteins in BMCs and MSCs. These cells also show differential levels of constitutive expression of IRF-1 and IRF-2 target genes. This may regulate immune-responsive properties of BMCs and MSCs through IRF-1, IRF-2-dependent gene expression and protein-protein interaction. Regulating IRF-1 and IRF-2 may be helpful for immunomodulatory functions of MSCs for cell therapy and regenerative medicine.


Assuntos
Medula Óssea , Fatores Reguladores de Interferon , Células-Tronco Mesenquimais , Animais , Camundongos , Células da Medula Óssea , Citoplasma , Fatores Reguladores de Interferon/genética
3.
Plant Physiol Biochem ; 207: 108329, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184883

RESUMO

Abiotic stress is one of the main threats affecting crop growth and production. Nitric oxide (NO), an important signaling molecule involved in wide range of plant growth and development as well as in response to abiotic stress. NO can exert its biological functions through protein S-nitrosylation, a redox-based posttranslational modification by covalently adding NO moiety to a reactive cysteine thiol of a target protein to form an S-nitrosothiol (SNO). Protein S-nitrosylation is an evolutionarily conserved mechanism regulating multiple aspects of cellular signaling in plant. Recently, emerging evidence have elucidated protein S-nitrosylation as a modulator of plant in responses to abiotic stress, including salt stress, extreme temperature stress, light stress, heavy metal and drought stress. In addition, significant mechanism has been made in functional characterization of protein S-nitrosylated candidates, such as changing protein conformation, and the subcellular localization of proteins, regulating protein activity and influencing protein interactions. In this study, we updated the data related to protein S-nitrosylation in plants in response to adversity and gained a deeper understanding of the functional changes of target proteins after protein S-nitrosylation.


Assuntos
Óxido Nítrico , Plantas , Plantas/metabolismo , Óxido Nítrico/metabolismo , Desenvolvimento Vegetal , Transdução de Sinais , Estresse Fisiológico , Processamento de Proteína Pós-Traducional
4.
J Ovarian Res ; 17(1): 27, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38281964

RESUMO

BACKGROUND: Polycystic Ovary Syndrome (PCOS) affects a significant proportion of human females worldwide and is characterized by hormonal, metabolic, and reproductive dysfunctions, including infertility, irregular menstrual cycles, acanthosis nigricans, and hirsutism. Mutations in the estrogen receptor genes ESR1 and ESR2, involved in normal follicular development and ovulation, can contribute to development of the PCOS. The present study focuses on investigating the potential correlation between single nucleotide polymorphisms (SNPs) of ESR1 and ESR2 genes and the incidence of this syndrome. METHODS: For this study, SNPs in ESR1 and ESR2 genes were retrieved from the ENSEMBL database and analyzed for their effect on mutated proteins using different bioinformatics tools including SIFT, PolyPhen, CADD, REVEL, MetaLR, I-Mutant, CELLO2GO, ProtParam, SOPMA, SWISS-MODEL and HDDOCK. RESULTS: All the SNPs documented in the present study were deleterious. All the SNPs except rs1583384537, rs1450198518, and rs78255744 decreased protein stability. Two variants rs1463893698 and rs766843910 in the ESR2 gene altered the localization of mutated proteins i.e. in addition to the nucleus, proteins were also found in mitochondria and extracellular, respectively. SNPs rs104893956 in ESR1 and rs140630557, rs140630557, rs1596423459, rs766843910, rs1596405923, rs762454979 and rs1384121511 in ESR2 gene significantly changed the secondary structure of proteins (2D). SNPs that markedly changed 3D configuration included rs1554259481, rs188957694 and rs755667747 in ESR1 gene and rs1463893698, rs140630557, rs1596423459, rs766843910, rs1596405923, rs762454979 and rs1384121511 in ESR2 gene. Variants rs1467954450 (ESR1) and rs140630557 (ESR2) were identified to reduce the binding tendency of ESRα and ß receptors with estradiol as reflected by the docking scores i.e. -164.97 and -173.23, respectively. CONCLUSION: Due to the significant impact on the encoded proteins, these variants might be proposed as biomarkers to predict the likelihood of developing PCOS in the future and for diagnostic purposes.


Assuntos
Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Síndrome do Ovário Policístico , Polimorfismo de Nucleotídeo Único , Feminino , Humanos , Estradiol , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Síndrome do Ovário Policístico/genética
5.
Gene ; 897: 148075, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086454

RESUMO

To solve the high mortality rate of early-stage larval feed conversion during aquaculture in Oplegnathus punctatus, the investigation of the structural and functional characteristics of the gastric tissue was conducted. Histological results showed that the gastric gland rudiment appeared at 17 dph. The basic structure of the stomach was fully developed between 26 and 35 dph. Two pepsinogen genes, named OpPGA1 and OpPGA2, were identified in the spotted knifejaw genome. qPCR results of developmental period showed that the two genes were low in expression during early development (5 and 15 dph). At 20 dph, the two genes started to show trace expression, and at 30 dph the mRNA expression levels of OpPGA1 and OpPGA2 reached the highest levels. Results of pepsin activity detection during the development period showed lower activity was detected 22 dph, followed by a peak at 30 dph. Under different feeding inductions, OpPGA1 showed the highest expression in the basic diet group and hard-shell group, while the expression level in the phytophagous group remained consistently low. The mRNA expression level of OpPGA2 in the phytophagous group was significantly higher than in other groups. Enzyme activity determination under different feeding inductions showed slightly higher enzyme activity in the basic diet group and crustacean group. The results of in situ hybridization showed that the mRNA of both OpPGA1 and OpPGA2 genes was both expressed in gastric gland cells. These information can contribute to the development of practical feeding methods in terms of digestive physiology for the development of larvae.


Assuntos
Peixes , Pepsinogênio A , Animais , Pepsinogênio A/genética , Pepsinogênio A/metabolismo , Peixes/genética , Estômago , Larva/genética , Larva/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Cells ; 12(24)2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132122

RESUMO

The SORL1 gene encodes LR11/SorLA, a protein that binds ß-amyloid precursor protein (APP) and drives its intracellular trafficking. SORL1 mutations, occurring frequently in a subset of familial cases of Alzheimer's disease (AD), have been documented, but their pathogenic potential is not yet clear and questions remain concerning their putative influence on the physiopathological processing of APP. We have assessed the influence of two SORL1 mutations that were described as likely disease-causing and that were associated with either benign (SorLA924) or severe (SorLA511) AD phenotypes. We examined the influence of wild-type and mutants SorLA in transiently transfected HEK293 cells expressing either wild-type or Swedish mutated APP on APP expression, secreted Aß and sAPPα levels, intracellular Aß 40 and Aß42 peptides, APP-CTFs (C99 and C83) expressions, α-, ß- and γ-secretases expressions and activities as well as Aß and CTFs-degrading enzymes. These paradigms were studied in control conditions or after pharmacological proteasomal modulation. We also established stably transfected CHO cells expressing wild-type SorLA and established the colocalization of APP and either wild-type or mutant SorLA. SorLA mutations partially disrupt co-localization of wild-type sorLA with APP. Overall, although we mostly confirmed previous data concerning the influence of wild-type SorLA on APP processing, we were unable to evidence significant alterations triggered by our set of SorLA mutants, whatever the cells or pharmacological conditions examined. Our study , however, does not rule out the possibility that other AD-linked SORL1 mutations could indeed affect APP processing, and that pathogenic mutations examined in the present study could interfere with other cellular pathways/triggers in AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Animais , Cricetinae , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Cricetulus , Células HEK293 , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutação/genética
7.
Front Plant Sci ; 14: 1261518, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900740

RESUMO

Although Brassica juncea has demonstrated potential as a hyperaccumulator crop, it was not entirely clear how cadmium (Cd) accumulates in plants. Here, we found that BjNRAMP1 (Natural Resistance-Associated Macrophage Protein 1) plays a crucial role in the accumulation of Cd and manganese (Mn) through its expression in yeast and Arabidopsis thaliana. The high concentration of Cd exposure could induce the expression of BjNRAMP1. The ectopic expression of BjNRAMP1 in yeast led to higher accumulation of Cd and Mn compared to the vector control. BjNARAMP1 was localized to the plasma membrane and expressed in the vascular system of roots, leaves, and flowers. The overexpression of BjNRAMP1 in A. thaliana resulted in an increased accumulation of Cd in both roots and shoots, which inhibited the normal growth of transgenic lines. Moreover, Mn uptake in roots was activated by the increase in Cd stress. Together, our results indicated that BjNRAMP1 significantly contributes to the uptake of Mn and Cd in B. juncea.

8.
Biochem J ; 480(20): 1693-1717, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37903110

RESUMO

As cell signaling research has advanced, it has become clearer that signal transduction has complex spatiotemporal regulation that goes beyond foundational linear transduction models. Several technologies have enabled these discoveries, including fluorescent biosensors designed to report live biochemical signaling events. As genetically encoded and live-cell compatible tools, fluorescent biosensors are well suited to address diverse cell signaling questions across different spatial scales of regulation. In this review, methods of examining spatial signaling regulation and the design of fluorescent biosensors are introduced. Then, recent biosensor developments that illuminate the importance of spatial regulation in cell signaling are highlighted at several scales, including membranes and organelles, molecular assemblies, and cell/tissue heterogeneity. In closing, perspectives on how fluorescent biosensors will continue enhancing cell signaling research are discussed.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Transdução de Sinais , Corantes Fluorescentes
9.
Microbiol Spectr ; : e0266823, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37754766

RESUMO

For many bacterial proteins, specific localizations within the cell have been demonstrated, but enzymes involved in central metabolism are usually considered to be homogenously distributed within the cytoplasm. Here, we provide an example for a spatially defined localization of a unique enzyme complex found in actinobacteria, the hybrid pyruvate/2-oxoglutarate dehydrogenase complex (PDH-ODH). In non-actinobacterial cells, PDH and ODH form separate multienzyme complexes of megadalton size composed of three different subunits, E1, E2, and E3. The actinobacterial PDH-ODH complex is composed of four subunits, AceE (E1p), AceF (E2p), Lpd (E3), and OdhA (E1oE2o). Using fluorescence microscopy, we observed that in Corynebacterium glutamicum, all four subunits are co-localized in distinct spots at the cell poles, and in larger cells, additional spots are present at mid-cell. These results further confirm the existence of the hybrid complex. The unphosporylated OdhI protein, which binds to OdhA and inhibits ODH activity, was co-localized with OdhA at the poles, whereas phosphorylated OdhI, which does not bind OdhA, was distributed in the entire cytoplasm. Isocitrate dehydrogenase and glutamate dehydrogenase, both metabolically linked to ODH, were evenly distributed in the cytoplasm. Based on the available structural data for individual PDH-ODH subunits, a novel supramolecular architecture of the hybrid complex differing from classical PDH and ODH complexes has to be postulated. Our results suggest that localization at the poles or at mid-cell is most likely caused by nucleoid exclusion and results in a spatially organized metabolism in actinobacteria, with consequences yet to be studied. IMPORTANCE Enzymes involved in the central metabolism of bacteria are usually considered to be distributed within the entire cytoplasm. Here, we provide an example for a spatially defined localization of a unique enzyme complex of actinobacteria, the hybrid pyruvate dehydrogenase/2-oxoglutarate dehydrogenase (PDH-ODH) complex composed of four different subunits. Using fusions with mVenus or mCherry and fluorescence microscopy, we show that all four subunits are co-localized in distinct spots at the cell poles, and in larger cells, additional spots were observed at mid-cell. These results clearly support the presence of the hybrid PDH-ODH complex and suggest a similar localization in other actinobacteria. The observation of a defined spatial localization of an enzyme complex catalyzing two key reactions of central metabolism poses questions regarding possible consequences for the availability of substrates and products within the cell and other bacterial enzyme complexes showing similar behavior.

10.
ChemMedChem ; 18(21): e202300347, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37574460

RESUMO

Ruthenium(II) trisdiimine complexes of the formula, [Ru(dip)n (L-L)3-n ]2+ , where n=0-3; dip=4,7-diphenyl-1,10-phenanthroline; L-L=2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen) were prepared and tested for cytotoxicity in two cell lines (H358, MCF7). Cellular uptake and subcellular localization were determined by harvesting treated cells and determining the ruthenium concentration in whole or fractionated cells (cytosolic, nuclear, mitochondrial/ ER/Golgi, and cytoskeletal proteins) by Ru ICP-MS. The logP values for the chloride salts of these complexes were measured and the data were analyzed to determine the role of lipophilicity versus structure in the various biological assays. Cellular uptake increased with lipophilicity but shows the biggest jump when the complex contains two or more dip ligands. Significantly, preferential cytoskeletal localization is also correlated with increased cytotoxicity. All of the RPCs promote tubulin polymerization in vitro, but [Ru(dip)2 phen]2+ and [Ru(dip)3 ]2+ show the strongest activity. Analysis of the pellet formed by centrifugation of MTs formed in the presence of [Ru(dip)2 phen]2+ establish a binding stoichiometry of one RPC per tubulin heterodimer. Complexes of the general formula [Ru(dip)2 (L-L)]2+ possess the necessary characteristics to target the cytoskeleton in live cells and increase cytotoxicity, however the nature of the L-L ligand does influence the extent of the effect.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Rutênio/farmacologia , Rutênio/química , Farmacóforo , Tubulina (Proteína) , Mitocôndrias , Citoesqueleto , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antineoplásicos/farmacologia , Antineoplásicos/química
11.
J Biol Chem ; 299(7): 104906, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37302555

RESUMO

The tumor suppressor Liver Kinase B1 (LKB1) is a multifunctional serine/threonine protein kinase that regulates cell metabolism, polarity, and growth and is associated with Peutz-Jeghers Syndrome and cancer predisposition. The LKB1 gene comprises 10 exons and 9 introns. Three spliced LKB1 variants have been documented, and they reside mainly in the cytoplasm, although two possess a nuclear-localization sequence (NLS) and are able to shuttle into the nucleus. Here, we report the identification of a fourth and novel LKB1 isoform that is, interestingly, targeted to the mitochondria. We show that this mitochondria-localized LKB1 (mLKB1) is generated from alternative splicing in the 5' region of the transcript and translated from an alternative initiation codon encoded by a previously unknown exon 1b (131 bp) hidden within the long intron 1 of LKB1 gene. We found by replacing the N-terminal NLS of the canonical LKB1 isoform, the N-terminus of the alternatively spliced mLKB1 variant encodes a mitochondrial transit peptide that allows it to localize to the mitochondria. We further demonstrate that mLKB1 colocalizes histologically with mitochondria-resident ATP Synthase and NAD-dependent deacetylase sirtuin-3, mitochondrial (SIRT3) and that its expression is rapidly and transiently upregulated by oxidative stress. We conclude that this novel LKB1 isoform, mLKB1, plays a critical role in regulating mitochondrial metabolic activity and oxidative stress response.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Mitocôndrias , Mutação , Estresse Oxidativo , Proteínas Serina-Treonina Quinases , Quinases Proteína-Quinases Ativadas por AMP/genética , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sirtuína 3/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Processamento Alternativo , Códon de Iniciação
12.
J Fish Dis ; 46(10): 1049-1064, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37357462

RESUMO

Classical major histocompatibility complex (MHC) class II molecules play an essential role in immune system. In this study, MHC IIα (Pf-MHC IIα) and MHC IIß (Pf-MHC IIß) homology genes from pufferfish (Takifugu obscurus) were cloned and their functional characterization in response to bacterial challenge was identified. The nucleotide sequences of the open reading frames (ORFs) of pufferfish Pf-MHC IIα and Pf-MHC IIß were 708 bp and 750 bp, encoding 235 aa and 249 aa, respectively. The structure of Pf-MHC IIα or Pf-MHC IIß contained a signal peptide, an α1/ß1 domain, an α2/ß2 domain, a transmembrane region and a cytoplasmic region. Multiple sequence alignment and phylogenetic analysis showed that Pf-MHC IIα and Pf-MHC IIß molecules had the highest similarity with Fugu rubripes (Takifugu rubripes). Cellular localization analysis indicated that the distribution of Pf-MHC IIα and Pf-MHC IIß was in the lymphocyte membrane and cytoplasm. qRT-PCR results showed that Pf-MHC IIα and Pf-MHC IIß expressed relatively high in skin, gills and gut. In addition, after stimulation challenge in vitro (lipopolysaccharide, or polyinosinic: polycytidylic acid) and in vivo (A. hydrophila), the mRNA expressions of Pf-MHC IIα and Pf-MHC IIß were significantly up-regulated in lymphocytes and in tissues of skin, gills, gut and head kidney. Moreover, Pf-MHC IIα or Pf-MHC IIß neutralization reduced the ability of A. hydrophila to induce the expressions of lymphocyte cytokines (TNF-α, IL-1ß and IL-10). Overall, it is speculated that Pf-MHC IIα and Pf-MHC IIß may play an important role in the host response against A. hydrophila in pufferfish.


Assuntos
Doenças dos Peixes , Takifugu , Animais , Takifugu/genética , Sequência de Aminoácidos , Filogenia , Doenças dos Peixes/microbiologia , Complexo Principal de Histocompatibilidade
13.
Clin Genet ; 104(2): 174-185, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157876

RESUMO

Wilson's disease (WD, MIM#277900) is an autosomal recessive disorder resulting in copper excess caused by biallelic variants in the ATP7B gene (MIM#606882) encoding a copper transporting P-type ATPase. ATP7B variants of unknown significance (VUS) are detected frequently, sometimes impeding a clear diagnosis. Functional analyses can help to classify these variants as benign or pathogenic. Additionally, variants already classified as (likely) pathogenic benefit from functional analyses to understand their pathomechanism, thus contribute to the development of personalized treatment approaches in the future. We described clinical features of six WD patients and functionally characterized five ATP7B missense variants (two VUS, three yet uncharacterized likely pathogenic variants), detected in these patients. We determined the protein level, copper export capacity, and cellular localization in an in vitro model and potential structural consequences using an ATP7B protein model based on AlphaFold. Our analyses give insight into the pathomechanism and allowed reclassification for the two VUS to likely pathogenic and for two of the three likely pathogenic variants to pathogenic.


Assuntos
ATPases Transportadoras de Cobre , Degeneração Hepatolenticular , Humanos , Cobre , ATPases Transportadoras de Cobre/genética , Degeneração Hepatolenticular/diagnóstico , Degeneração Hepatolenticular/genética , Mutação de Sentido Incorreto/genética
14.
Molecules ; 28(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37049670

RESUMO

Standard therapies for colorectal cancer cannot eliminate or sufficiently reduce the metastasis process. Photodynamic therapy (PDT) may be an alternative to minimizing this problem. Here, we examined the cellular localization of selected porphyrins and determined whether free-base and manganese (III) metallated porphyrins may limit colon cancer cells' (HT29) or normal colon epithelial cells' (CCD 841 CoTr) motility in vitro. White light irradiation was used to initiate the photodynamic effect. Porphyrin uptake by the cells was determined by porphyrin fluorescence measurements through the use of confocal microscopy. Free-base porphyrin was found in cells, where it initially localized at the edge of the cytoplasm and later in the perinuclear area. The concentrations of porphyrins had no effect on cancer cell migration but had a significant effect on normal cell motility. Due to the low concentrations of porphyrins used, no changes in F-actin filaments of the cellular cytoskeleton were detected. Signal transmission via connexons between neighbouring cells was limited to a maximum of 40 µm for HT29 and 30 µm for CCD 841 CoTr cells. The tested porphyrins differed in their activity against the tumor and normal cells' migration capacity. Depending on the porphyrin used and the type of cells, their migration changed in relation to the control sample. The use of white light may change the activity of the porphyrins relative to the migratory capacity of the cells. The aim of the present study was to analyse the intracellular localization of tested porphyrins and their influence on the mobility of cells after irradiation with harmless white light.


Assuntos
Neoplasias do Colo , Fotoquimioterapia , Porfirinas , Humanos , Porfirinas/farmacologia , Porfirinas/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Luz , Neoplasias do Colo/tratamento farmacológico
15.
Front Cell Dev Biol ; 11: 1028519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819105

RESUMO

Mortalin (GRP75, HSPA9A), a heat shock protein (HSP), regulates a wide range of cellular processes, including cell survival, growth, and metabolism. The regulatory functions of mortalin are mediated through a diverse set of protein partners associated with different cellular compartments, which allows mortalin to perform critical functions under physiological conditions, including mitochondrial protein quality control. However, alteration of mortalin's activities, its abnormal subcellular compartmentalization, and its protein partners turn mortalin into a disease-driving protein in different pathological conditions, including cancers. Here, mortalin's contributions to tumorigenic pathways are explained. Pathology information based on mortalin's RNA expression extracted from The Cancer Genome Atlas (TCGA) transcriptomic database indicates that mortalin has an independent prognostic value in common tumors, including lung, breast, and colorectal cancer (CRC). Subsequently, the binding partners of mortalin reported in different cellular models, from yeast to mammalian cells, and its regulation by post-translational modifications are discussed. Finally, we focus on colorectal cancer and discuss how mortalin and its tumorigenic downstream protein targets are regulated by a ubiquitin-like protein through the 26S proteasomal degradation machinery. A broader understanding of the function of mortalin and its positive and negative regulation in the formation and progression of human diseases, particularly cancer, is essential for developing new strategies to treat a diverse set of human diseases critically associated with dysregulated mortalin.

16.
Bioorg Med Chem ; 81: 117192, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780806

RESUMO

Herein, we describe the design and synthesis of multi-conjugatable fatty acid monomer phosphoramidites and their conjugation to antisense oligonucleotides (ASOs). Multivalent long-chain fatty acid conjugation improved the cellular uptake of ASOs but decreased in vitro activity due to alterations in physical properties and cellular localization. In addition, multivalently fatty acid-conjugated ASOs showed different organ specificity compared with that of unconjugated ASO in in vivo experiment. Although optimization of the linker structure between the fatty acid moiety and the ASO may be required, divalent long-chain fatty acid conjugation provides a new approach to increase endocytosis, thereby potentially improving the activity of therapeutic ASOs.


Assuntos
Ácidos Graxos , Oligonucleotídeos Antissenso , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/química , Endocitose , Transporte Biológico
17.
Plants (Basel) ; 12(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36840041

RESUMO

Xanthones are a class of secondary metabolites produced by plant organisms. They are characterized by a wide structural variety and numerous biological activities that make them valuable metabolites for use in the pharmaceutical field. This review shows the current knowledge of the xanthone biosynthetic pathway with a focus on the precursors and the enzymes involved, as well as on the cellular and organ localization of xanthones in plants. Xanthone biosynthesis in plants involves the shikimate and the acetate pathways which originate in plastids and endoplasmic reticulum, respectively. The pathway continues following three alternative routes, two phenylalanine-dependent and one phenylalanine-independent. All three routes lead to the biosynthesis of 2,3',4,6-tetrahydroxybenzophenone, which is the central intermediate. Unlike plants, the xanthone core in fungi and lichens is wholly derived from polyketide. Although organs and tissues synthesizing and accumulating xanthones are known in plants, no information is yet available on their subcellular and cellular localization in fungi and lichens. This review highlights the studies published to date on xanthone biosynthesis and trafficking in plant organisms, from which it emerges that the mechanisms underlying their synthesis need to be further investigated in order to exploit them for application purposes.

18.
Biochem Soc Trans ; 51(1): 13-20, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36688421

RESUMO

G protein-coupled receptor (GPCR) family members can sense an extraordinary variety of biomolecules to activate intracellular signalling cascades that modulate key aspects of cell physiology. Apart from their crucial role in maintaining cell homeostasis, these critical sensory and modulatory properties have made GPCRs the most successful drug target class to date. However, establishing direct links between receptor activation of specific intracellular partners and individual physiological outcomes is still an ongoing challenge. By studying this receptor signalling complexity at increasing resolution through the development of novel biosensors and high-throughput techniques, a growing number of studies are revealing how receptor function can be diversified in a spatial, temporal or cell-specific manner. This mini-review will introduce recent examples of this context-dependent receptor signalling and discuss how it can impact our understanding of receptor function in health and disease, and contribute to the search of more selective, efficacious and safer GPCR drug candidates.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Receptores Acoplados a Proteínas G/fisiologia , Membrana Celular , Sistemas de Liberação de Medicamentos , Ligantes
19.
Fish Shellfish Immunol ; 132: 108509, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36581254

RESUMO

Tumor necrosis factor α (TNFα), a cytokine mainly secreted by active macrophages and monocytes, causes hemorrhagic necrosis of tumor tissues, kills tumor cells, regulates inflammatory responses, and plays a crucial role in innate immunity. In this study, TNFα of Sepiella japonica (named as SjTNFα) was acquired, whose full-length cDNA was 1206 bp (GenBank accession no. ON357428), containing a 5' UTR of 185 bp, a 3' UTR of 137 bp and an open reading frame (ORF) of 1002bp to encode a putative peptide of 333 amino acids for constructing the transmembrane domain and the cytoplasmic TNF domain. Its predicted pI was 8.69 and the theoretical molecular weight was 44.72 KDa. Multiple sequence alignment and phylogenetic analysis showed that SjTNFα had the highest homology to Octopus sinensis, they fell into a unified branch and further clustered with other animals. Real-time PCR indicated that SjTNFα was widely expressed in all subject tissues, including spleen, pancreas, gill, heart, brain, optic lobe, liver and intestine, and exhibited the highest in the liver and the lowest in the brain. The relative expression of SjTNFα varied at the developmental period of juvenile stage, pre-spawning and oviposition in the squid, with the highest in the liver at the juvenile stage and oviposition, and in the optic lobe of pre-spawning. After being infected with Vibrio parahaemolyticus and Aeromonas hydrophila, the expression of SjTNFα in liver and gill were both upregulated with time, and the highest expression appeared at 24 h and 8 h in liver for different infection, and at 4 h in gill consistently. Cell localization showed that SjTNFα distributed on membrane of HEK293 cells because it was a type II soluble transmembrane protein. When HEK293 cells were stimulated with LPS of different concentrations, the NF-κB pathway was activated in the nucleus and the corresponding mRNA was transferred through the intracellular signal transduction pathway, resulting in the synthesis and release of TNFα, which made the expression of SjTNFα was up-regulated obviously. These findings showed that SjTNFα might play an essential role in the defense of S. japonica against bacteria challenge, which contributed to the understanding of the intrinsic immune signaling pathway of Cephalopoda and the further study of host-pathogen interactions.


Assuntos
Decapodiformes , Fator de Necrose Tumoral alfa , Feminino , Animais , Humanos , Fator de Necrose Tumoral alfa/genética , Sequência de Aminoácidos , Sequência de Bases , Filogenia , Células HEK293 , Decapodiformes/genética , Clonagem Molecular , Regulação da Expressão Gênica
20.
Curr Cancer Drug Targets ; 23(5): 388-399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36424771

RESUMO

BACKGROUND: Bacterial pore-forming toxins, BinA and BinB together known as the binary toxin are potent insecticidal proteins, that share structural homology with antitumor bacterial parasporin-2 protein. The underlying molecular mechanism of Bin toxin-induced cancer cell cytotoxicity requires more knowledge to understand whether the toxin induced human cytotoxic effects occur in the same way as that of parasporin-2 or not. METHODS: In this study, anticancer properties of Lysinibacillus sphaericus derived Bin toxin on HK1 were evaluated through MTT assay, morphological analysis and lactate dehydrogenase efflux assay. Induction of apoptosis was determined from RT-qPCR, caspase activity and cytochrome c release assay. Internalization pattern of Bin toxin in HK1 cells was studied by confocal laser-scanning microscopic analysis. RESULTS: Activated Bin toxin had strong cytocidal activity to HK1 cancer cell line at 24 h postinoculation. Both BinA and BinB treated HK1 cells showed significant inhibition of cell viability at 12 µM. Induction of apoptotic mediators from RT-qPCR and caspase activity analyses indicated the activation of programmed cell death in HK1 cells in response to Bin toxin treatment. Internalization pattern of Bin toxin studied by using confocal microscopy indicated the localization of BinA on cell surface and internalization of BinB in the cytoplasm of cancer cells as well as colocalization of BinA with BinB. Evaluation of cytochrome c release also showed the association of BinB and BinA+BinB with mitochondria. CONCLUSION: Bin toxin is a cytotoxic protein that induces cytotoxic and apoptotic events in HK1 cells, and may have high therapeutic potential as an anti-cancer agent.


Assuntos
Apoptose , Toxinas Bacterianas , Citocromos c , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Apoptose/efeitos dos fármacos , Caspases , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Toxinas Bacterianas/farmacologia , Toxinas Bacterianas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA