Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Virus Genes ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39378002

RESUMO

Mycoviruses pervade the fungal kingdom, yet their diversity within various fungal families and genera remains largely unexplored. In this study, 10 publicly available fungal transcriptomes from Ceratocystidaceae were analyzed for the presence of mycoviruses. Despite mycovirus associations being known in only four members of this family, our investigation unveiled the discovery of six novel mycoviruses. The majority of these mycoviruses are composed of positive sense single stranded RNA and are putatively assigned to the viral family Mitoviridae (with tentative classification into the genera Unuamitovirus and Duamitovirus). The double stranded RNA viruses, however, were associated with the family Totiviridae (with tentative classification into the genus Victorivirus). This study also revealed the discovery of an identical unuamitovirus in the fungal species Thielaviopsis ethacetica and Thielaviopsis paradoxa. This discovery was notable as these fungal isolates originated from distinct geographical locations, highlighting potential implications for the transmission of this mitovirus. Moreover, this investigation significantly expands the known host range for mycoviruses in this family, marking the initial identification of mycoviruses within Ceratocystis platani, Thielaviopsis paradoxa, Thielaviopsis ethacetica, and Huntiella omanensis. Future research should focus on determining the effects that these mycoviruses might have on their fungal hosts.

2.
Fungal Biol ; 128(6): 2062-2072, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39174241

RESUMO

Eucalyptus spp. in plantations are negatively affected by canker and wilt diseases caused by several species of Ceratocystis, particularly those in the Latin American Clade (LAC). Ceratocystis eucalypticola and Ceratocystis manginecans are of particular concern where disease epidemics are reported globally, with recent outbreaks emerging in South African and Indonesian Eucalyptus plantations. Consequently, a rapid screening protocol is required for these pathogens. In this study, a high-resolution melting curve analysis (HRMA) was developed to detect C. eucalypticola and C. manginecans that bypasses time-consuming isolation and post-PCR procedures. Primers targeting a 172 bp region of the cerato-platanin (CP) gene were designed. Using these primers, the accuracy of HRMA to detect and distinguish between these two LAC species was assessed using pure fungal DNA, and DNA extracted directly from Eucalyptus samples naturally infected with C. eucalypticola. The assay accurately detected the presence of C. eucalypticola and C. manginecans and quantifies their DNA, both from cultures, and directly from wood samples. HRMA further differentiated these two species from all other tested LAC individuals. This assay was also able to detect the presence of all the tested LAC species and distinguish seven of these, including C. fimbriata, to species level. Ceratocystis polyconidia was the only non-LAC off-target species detected. Based on these results, the developed assay can be used to rapidly identify C. eucalypticola and C. manginecans directly from infected plant material or fungal cultures, with the potential to also screen for several other LAC species.


Assuntos
Ascomicetos , DNA Fúngico , Eucalyptus , Doenças das Plantas , Eucalyptus/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/classificação , DNA Fúngico/genética , Primers do DNA/genética , Temperatura de Transição , Sensibilidade e Especificidade
3.
Fungal Genet Biol ; 170: 103859, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38114017

RESUMO

Unidirectional mating-type switching is a form of homothallic reproduction known only in a small number of filamentous ascomycetes. Their ascospores can give rise to either self-sterile isolates that require compatible partners for subsequent sexual reproduction, or self-fertile individuals capable of completing this process in isolation. The limited studies previously conducted in these fungi suggest that the differences in mating specificity are determined by the architecture of the MAT1 locus. In self-fertile isolates that have not undergone unidirectional mating-type switching, the locus contains both MAT1-1 and MAT1-2 mating-type genes, typical of primary homothallism. In the self-sterile isolates produced after a switching event, the MAT1-2 genes are lacking from the locus, likely due to a recombination-mediated deletion of the MAT1-2 gene information. To determine whether these arrangements of the MAT1 locus support unidirectional mating-type switching in the Ceratocystidaceae, the largest known fungal assemblage capable of this reproduction strategy, a combination of genetic and genomic approaches were used. The MAT1 locus was annotated in representative species of Ceratocystis, Endoconidiophora, and Davidsoniella. In all cases, MAT1-2 genes interrupted the MAT1-1-1 gene in self-fertile isolates. The MAT1-2 genes were flanked by two copies of a direct repeat that accurately predicted the boundaries of the deletion event that would yield the MAT1 locus of self-sterile isolates. Although the relative position of the MAT1-2 gene region differed among species, it always disrupted the MAT1-1-1 gene and/or its expression in the self-fertile MAT1 locus. Following switching, this gene and/or its expression was restored in the self-sterile arrangement of the locus. This mirrors what has been reported in other species capable of unidirectional mating-type switching, providing the strongest support for a conserved MAT1 locus structure that is associated with this process. This study contributes to our understanding of the evolution of unidirectional mating-type switching.


Assuntos
Ascomicetos , Genes Fúngicos Tipo Acasalamento , Humanos , Genes Fúngicos Tipo Acasalamento/genética , Reprodução , Fertilidade/genética , Sequências Repetitivas de Ácido Nucleico , Ascomicetos/genética
4.
Genes (Basel) ; 14(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37107606

RESUMO

Transcriptional regulation controls gene expression through regulatory promoter regions that contain conserved sequence motifs. These motifs, also known as regulatory elements, are critically important to expression, which is driving research efforts to identify and characterize them. Yeasts have been the focus of such studies in fungi, including in several in silico approaches. This study aimed to determine whether in silico approaches could be used to identify motifs in the Ceratocystidaceae family, and if present, to evaluate whether these correspond to known transcription factors. This study targeted the 1000 base-pair region upstream of the start codon of 20 single-copy genes from the BUSCO dataset for motif discovery. Using the MEME and Tomtom analysis tools, conserved motifs at the family level were identified. The results show that such in silico approaches could identify known regulatory motifs in the Ceratocystidaceae and other unrelated species. This study provides support to ongoing efforts to use in silico analyses for motif discovery.


Assuntos
Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição , Regiões Promotoras Genéticas , Sítios de Ligação , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35077565

RESUMO

Fungal species of the Ceratocystidaceae grow on their host plants using a variety of different lifestyles, from saprophytic to highly pathogenic. Although many genomes of fungi in the Ceratocystidaceae are publicly available, it is not known how the genes that encode catechol dioxygenases (CDOs), enzymes involved in the degradation of phenolic plant defense compounds, differ among members of the Ceratocystidaceae. The aim of this study was therefore to identify and characterize the genes encoding CDOs in the genomes of Ceratocystidaceae representatives. We found that genes encoding CDOs are more abundant in pathogenic necrotrophic species of the Ceratocystidaceae and less abundant in saprophytic species. The loss of the CDO genes and the associated 3-oxoadipate catabolic pathway appears to have occurred in a lineage-specific manner. Taken together, this study revealed a positive association between CDO gene copy number and fungal lifestyle in Ceratocystidaceae representatives.


Assuntos
Ascomicetos , Dioxigenases , Plantas , Ascomicetos/enzimologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Catecóis/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Dosagem de Genes , Plantas/microbiologia
6.
Plant Dis ; 106(2): 661-668, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34597147

RESUMO

The genus Ceratocystis contains several significant plant pathogens, causing wilt and canker disease on a wide range of plant species. There are >40 known species of Ceratocystis, some of which are becoming increasingly important in agricultural or natural ecosystems. The diagnostic procedures for most Ceratocystis species rely on time-consuming and labor-intensive culturing approaches. To provide more time-efficient and sensitive molecular diagnostic tools for Ceratocystis, a generic TaqMan real-time PCR assay was developed using the ITS gene. This novel two-probe TaqMan assay amplified DNA from all tested Ceratocystis species. Some nonspecific amplification of a few species from closely related genera was observed under certain conditions; however, these false-positive detections could be ruled out using the additional PCR primers developed for further sequence-based identification of the detected species. The assay was found to be highly sensitive, as it detected 0.2 pg/µl of Ceratocystis DNA in water as well as in host DNA matrix. Further validation with artificially inoculated fig stem tissue demonstrated that the assay was also able to effectively detect the pathogen in infected asymptomatic stem tissue. This newly developed real-time PCR assay has practical applications in biosecurity, conservation, and agriculture; it will enable the detection of Ceratocystis species directly from plant material to facilitate more sensitive screening of imported plant germplasm, and allow rapid tracking of pathogens in the case of disease outbreaks.


Assuntos
Ceratocystis , Ecossistema , Primers do DNA/genética , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase em Tempo Real
7.
Front Microbiol ; 12: 656609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149643

RESUMO

Two recently introduced fungal plant pathogens (Ceratocystis lukuohia and Ceratocystis huliohia) are responsible for Rapid 'ohi'a Death (ROD) in Hawai'i. Despite being sexually incompatible, the two pathogens often co-occur in diseased 'ohi'a sapwood, where genetic interaction is possible. We sequenced and annotated 33 mitochondrial genomes of the two pathogens and related species, and investigated 35 total Ceratocystis mitogenomes. Ten mtDNA regions [one group I intron, seven group II introns, and two autonomous homing endonuclease (HE) genes] were heterogeneously present in C. lukuohia mitogenomes, which were otherwise identical. Molecular surveys with specific primers showed that the 10 regions had uneven geographic distribution amongst populations of C. lukuohia. Conversely, identical orthologs of each region were present in every studied isolate of C. huliohia regardless of geographical origin. Close relatives of C. lukuohia lacked or, rarely, had few and dissimilar orthologs of the 10 regions, whereas most relatives of C. huliohia had identical or nearly identical orthologs. Each region included or worked in tandem with HE genes or reverse transcriptase/maturases that could facilitate interspecific horizontal transfers from intron-minus to intron-plus alleles. These results suggest that the 10 regions originated in C. huliohia and are actively moving to populations of C. lukuohia, perhaps through transient cytoplasmic contact of hyphal tips (anastomosis) in the wound surface of 'ohi'a trees. Such contact would allow for the transfer of mitochondria followed by mitochondrial fusion or cytoplasmic exchange of intron intermediaries, which suggests that further genomic interaction may also exist between the two pathogens.

8.
J Fungi (Basel) ; 7(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809900

RESUMO

Terpenes represent the biggest group of natural compounds on earth. This large class of organic hydrocarbons is distributed among all cellular organisms, including fungi. The different classes of terpenes produced by fungi are mono, sesqui, di- and triterpenes, although triterpene ergosterol is the main sterol identified in cell membranes of these organisms. The availability of genomic data from members in the Ceratocystidaceae enabled the detection and characterization of the genes encoding the enzymes in the mevalonate and ergosterol biosynthetic pathways. Using a bioinformatics approach, fungal orthologs of sterol biosynthesis genes in nine different species of the Ceratocystidaceae were identified. Ergosterol and some of the intermediates in the pathway were also detected in seven species (Ceratocystis manginecans, C. adiposa, Huntiella moniliformis, Thielaviopsis punctulata, Bretziella fagacearum, Endoconidiophora polonica and Davidsoniella virescens), using gas chromatography-mass spectrometry analysis. The average ergosterol content differed among different genera of Ceratocystidaceae. We also identified all possible terpene related genes and possible biosynthetic clusters in the genomes used in this study. We found a highly conserved terpene biosynthesis gene cluster containing some genes encoding ergosterol biosynthesis enzymes in the analysed genomes. An additional possible terpene gene cluster was also identified in all of the Ceratocystidaceae. We also evaluated the sensitivity of the Ceratocystidaceae to a triazole fungicide that inhibits ergosterol synthesis. The results showed that different members of this family behave differently when exposed to different concentrations of triazole tebuconazole.

9.
Zootaxa ; 4838(3): zootaxa.4838.3.7, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-33056816

RESUMO

Xylosandrus crassiusculus (Motchulsky) is a native Asian ambrosia beetle that has been accidentally introduced to many countries of the world, presumably through the international movement of nursery, timber, and wood products. The species is known in various tropical African countries but only as far south as Tanzania on the African continent. In this study, we report X. crassiusculus and its fungal symbiont for the first time from South Africa. The species was identified using both morphological characters and COI sequence data. Xylosandrus crassiusculus were obtained from three different provinces of South Africa and represent two distinct haplotypes. The fungal symbiont, Ambrosiella roeperi, was isolated and identified using DNA sequencing and morphological characterization.


Assuntos
Ambrosia , Besouros , Gorgulhos , Animais , África do Sul
10.
Fungal Syst Evol ; 6: 289-298, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32904100

RESUMO

Ceratocystis accommodates many important pathogens of agricultural crops and woody plants. Ceratocystis fimbriata, the type species of the genus is based on a type that is unsuitable for a precise application and interpretation of the species. This is because no culture or DNA data exist for the type specimen. The aim of this study was to select a reference specimen that can serve to stabilize the name of this important fungus. We selected a strain, CBS 114723, isolated from sweet potato in North Carolina, USA, in 1998 for this purpose. The strain was selected based on the availability of a living culture in a public depository. A draft genome sequence is also available for this strain. Its morphological characteristics were studied and compared with the existing and unsuitable type specimen as well as with the original descriptions of C. fimbriata. The selected strain fits the existing concept of the species fully and we have consequently designated it as an epitype to serve as a reference specimen for C. fimbriata.

11.
MycoKeys ; 69: 33-52, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733148

RESUMO

Huntiella species are wood-infecting, filamentous ascomycetes that occur in fresh wounds on a wide variety of tree species. These fungi are mainly known as saprobes although some have been associated with disease symptoms. Six fungal isolates with typical culture characteristics of Huntiella spp. were collected from wounds on native forest trees in Greece and South Africa. The aim of this study was to identify these isolates, using morphological characters and multigene phylogenies of the rRNA internal transcribed spacer (ITS) region, portions of the ß-tubulin (BT1) and translation elongation factor 1α (TEF-1α) genes. The mating strategies of these fungi were also determined through PCR amplification of mating type genes. The study revealed two new species; one from Platanus orientalis in Greece and one from Colophospermum mopane and Senegalia nigrescens in South Africa. These novel taxa have been provided with the names, H. hellenica sp. nov. and H. krugeri sp. nov., respectively. The former species was found to have a homothallic and the latter a heterothallic mating system.

12.
Fungal Genet Biol ; 143: 103433, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32652232

RESUMO

Ceratocystis fimbriata is a host specific fungal pathogen of sweet potato (Ipomoea batatas). The closely related species, C. manginecans, is an important pathogen of trees (e.g. Acacia mangium and Mangifera indica) but has never been isolated from tuber crops. The genetic factors that determine the host range and host specificity of these species have not been determined. The aim of this study was to compare the genomes of C. fimbriata and C. manginecans in order to identify species-specific genetic differences that could be associated with host specificity. This included whole-genome alignments as well as comparisons of gene content and transposable elements (TEs). The genomes of the two species were found to be very similar, sharing similar catalogues of CAZymes, peptidases and lipases. However, the genomes of the two species also varied, harbouring species-specific genes (e.g. small secreted effectors, nutrient processing proteins and stress response proteins). A portion of the TEs identified (17%) had a unique distribution in each species. Transposable elements appeared to have played a prominent role in the divergence of the two species because they were strongly associated with chromosomal translocations and inversions as well as with unique genomic regions containing species-specific genes. Two large effector clusters, with unique TEs in each species, were identified. These effectors displayed non-synonymous mutations and deletions, conserved within a species, and could serve as mutational hot-spots for the development of host specificity in the two species.


Assuntos
Ceratocystis/genética , Elementos de DNA Transponíveis/genética , Doenças das Plantas/genética , Adaptação Fisiológica/genética , Ceratocystis/patogenicidade , Genoma Fúngico/genética , Genômica , Adaptação ao Hospedeiro/genética , Ipomoea batatas/genética , Ipomoea batatas/microbiologia , Doenças das Plantas/microbiologia , Especificidade da Espécie
13.
Genes (Basel) ; 10(5)2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052158

RESUMO

In filamentous fungi, genes in secondary metabolite biosynthetic pathways are generally clustered. In the case of those pathways involved in nonribosomal peptide production, a nonribosomal peptide synthetase (NRPS) gene is commonly found as a main element of the cluster. Large multifunctional enzymes are encoded by members of this gene family that produce a broad spectrum of bioactive compounds. In this research, we applied genome-based identification of nonribosomal peptide biosynthetic gene clusters in the family Ceratocystidaceae. For this purpose, we used the whole genome sequences of species from the genera Ceratocystis,Davidsoniella,Thielaviopsis, Endoconidiophora,Bretziella, Huntiella, and Ambrosiella. To identify and characterize the clusters, different bioinformatics and phylogenetic approaches, as well as PCR-based methods were used. In all genomes studied, two highly conserved NRPS genes (one monomodular and one multimodular) were identified and their potential products were predicted to be siderophores. Expression analysis of two Huntiella species (H. moniliformis and H. omanensis) confirmed the accuracy of the annotations and proved that the genes in both clusters are expressed. Furthermore, a phylogenetic analysis showed that both NRPS genes of the Ceratocystidaceae formed distinct and well supported clades in their respective phylograms, where they grouped with other known NRPSs involved in siderophore production. Overall, these findings improve our understanding of the diversity and evolution of NRPS biosynthetic pathways in the family Ceratocystidaceae.


Assuntos
Ascomicetos/genética , Evolução Molecular , Peptídeo Sintases/genética , Filogenia , Ascomicetos/metabolismo , Vias Biossintéticas/genética , Biologia Computacional , Família Multigênica/genética , Peptídeo Sintases/classificação , Metabolismo Secundário/genética
14.
Fungal Syst Evol ; 3: 135-156, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32467899

RESUMO

The North American clade (NAC) of Ceratocystis includes pathogenic species that infect a wide range of woody hosts. Previous phylogenetic analyses have suggested that this clade includes cryptic species and a paraphyletic C. variospora. In this study, we used morphological data and phylogenetic analyses to characterize NAC taxa, including Ceratocystis isolates causing a serious disease of almond trees in California. Phylogenetic analyses based on six gene regions supported two new species of Ceratocystis. Ceratocystis destructans is introduced as the species causing severe damage to almond trees in California, and it has also been isolated from wounds on Populus and Quercus in Iowa. It is morphologically similar to C. tiliae, a pathogen on Tilia and the most recently characterized species in the NAC. Ceratocystis betulina collected from Betula platyphylla in Japan is also newly described and is the sister taxon to C. variospora. Our six-locus phylogenetic analyses and morphological characterization resolved several cryptic species in the NAC.

15.
Persoonia ; 40: 154-181, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30505000

RESUMO

The native 'ohi'a lehua (Metrosideros polymorpha) has cultural, biological and ecological significance to Hawai'i, but it is seriously threatened by a disease commonly referred to as rapid 'ohi'a death (ROD). Preliminary investigations showed that a Ceratocystis species similar to C. fimbriata s.lat. was the cause of the disease. In this study, we used a combination of the phylogenetic, morphological and biological species concepts, as well as pathogenicity tests and microsatellite analyses, to characterise isolates collected from diseased 'ohi'a trees across Hawai'i Island. Two distinct lineages, representing new species of Ceratocystis, were evident based on multigene phylogenetic analyses. These are described here as C. lukuohia and C. huliohia. Ceratocystis lukuohia forms part of the Latin American clade (LAC) and was most closely associated with isolates from Syngonium and Xanthosoma from the Caribbean and elsewhere, including Hawai'i, and C. platani, which is native to eastern USA. Ceratocystis huliohia resides in the Asian-Australian clade (AAC) and is most closely related to C. uchidae, C. changhui and C. cercfabiensis, which are thought to be native to Asia. Morphology and interfertility tests support the delineation of these two new species and pathogenicity tests show that both species are aggressive pathogens on seedlings of M. polymorpha. Characterisation of isolates using microsatellite markers suggest that both species are clonal and likely represent recently-introduced strains. Intensive research is underway to develop rapid screening protocols for early detection of the pathogens and management strategies in an attempt to prevent the spread of the pathogens to the other islands of Hawai'i, which are currently disease free.

16.
Mycologia ; 110(6): 1145-1171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30431409

RESUMO

The ascomycete genus Huntiella (Microascales) has a cosmopolitan distribution and occurs on a wide range of woody plants. Little is known regarding the identity, diversity, origin, or impact of these fungi in China. Recently, isolates of Huntiella spp. were collected from stumps of freshly felled trees or wounds on plantation-grown Eucalyptus in Guangdong, Guangxi, Fujian, and Hainan provinces of southern China. Additional isolates were obtained from stumps of Acacia confusa near Eucalyptus plantations in Hainan Province. The aim of this study was to identify these Huntiella species and to test their pathogenicity on Eucalyptus seedlings. Morphology and multigene phylogenies of the nuclear rDNA internal transcribed spacer (ITS1-5.8S-ITS2 = ITS) region and partial ß-tubulin (BT1) and translation elongation factor 1α (TEF1α) genes revealed nine previously unknown Huntiella species, eight from Eucalyptus and one from A. confusa. The mating types of these species were determined, showing that seven are heterothallic, one is homothallic, and one is unisexual (MAT1-2-1 gene). Pathogenicity tests showed that the nine Huntiella species can produce lesions on Eucalyptus seedlings, larger than wounds caused by controls on these plants. This study provides a basic understanding of the distribution, diversity, and pathogenicity of Huntiella species in southern China.


Assuntos
Ascomicetos/classificação , Ascomicetos/patogenicidade , Genes Fúngicos Tipo Acasalamento/genética , Doenças das Plantas/microbiologia , Plântula/microbiologia , Ascomicetos/isolamento & purificação , China , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Eucalyptus/microbiologia , Técnicas de Tipagem Micológica , Fator 1 de Elongação de Peptídeos/genética , Filogenia , Tubulina (Proteína)/genética , Virulência
17.
Fungal Biol ; 122(4): 222-230, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29551196

RESUMO

The African fungal tree pathogen, Ceratocystis albifundus, undergoes uni-directional mating type switching, giving rise to either self-fertile or self-sterile progeny. Self-sterile isolates lack the MAT1-2-1 gene and have reduced fitness such as slower growth and reduced pathogenicity, relative to self-fertile isolates. While it has been hypothesized that there is a 1:1 ratio of self-fertile to self-sterile ascospore progeny in relatives of C. albifundus, some studies have reported a significant bias in this ratio. This could be due to the fact that either fewer self-sterile ascospores are produced or that self-sterile ascospores have low viability. We quantified the percentage of self-sterile and self-fertile ascospores from ascospore masses in C. albifundus using real-time PCR. Primers were designed to distinguish between spores that contained the MAT1-2-1 gene and those where this gene had been deleted. A significant bias towards the self-fertile mating type was observed in all single ascospore masses taken from sexual structures produced in haploid-selfed cultures. The same result was observed from a disease outbreak situation in an intensively managed field of cultivated native trees, and this was coupled with very low population diversity in the pathogen. This was in contrast to the results obtained from ascospore masses taken from the crosses performed under laboratory conditions or ascomata on native trees in a non-disease situation, where either self-fertile or self-sterile ascospores were dominant. The results suggest that reproductive strategies play a significant role in the infection biology and genetic structure of C. albifundus populations.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Ascomicetos/genética , Doenças das Plantas/microbiologia , Recombinação Genética , Ascomicetos/classificação , Genes Fúngicos Tipo Acasalamento , Haplótipos , Reação em Cadeia da Polimerase em Tempo Real , Esporos Fúngicos/classificação , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Árvores/microbiologia
18.
IMA Fungus ; 8(2): 385-396, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29242781

RESUMO

The genomes of Cercospora zeina, Fusarium pininemorale, Hawksworthiomyces lignivorus, Huntiella decipiens, and Ophiostoma ips are presented in this genome announcement. Three of these genomes are from plant pathogens and otherwise economically important fungal species. Fusarium pininemorale and H. decipiens are not known to cause significant disease but are closely related to species of economic importance. The genome sizes range from 25.99 Mb in the case of O. ips to 4.82 Mb for H. lignivorus. These genomes include the first reports of a genome from the genus Hawksworthiomyces. The availability of these genome data will allow the resolution of longstanding questions regarding the taxonomy of these species. In addition these genome sequences through comparative studies with closely related organisms will increase our understanding of how these species or close relatives cause disease.

19.
Fungal Biol ; 121(1): 69-81, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007218

RESUMO

Ceratocystis tsitsikammensis was first isolated from bark harvesting wounds on two indigenous tree species in the Afromontane forests of the Western Cape Province of South Africa. Inoculation studies indicated that it is a potential pathogen of native Rapanea melanophloeos trees. In this study, we investigated the distribution, ecology and biology of C. tsitsikammensis in the Garden Route National Park of South Africa. Isolates were obtained from wounds on R. melanophloeos, three non-native hosts as well as from nitidulid and staphylinid beetles visiting wounds on these trees. The genetic diversity and population biology of the fungus was examined using microsatellite markers. Its mating strategy was also determined by amplifying its mating type genes and the fungus was shown to be homothallic. Despite the homothallic nature of the fungus, high levels of random mating and absence of genetic structure was found in the investigated population, suggesting a strong effect of gene flow, probably linked to insect dispersal. The gene diversity of C. tsitsikammensis was similar to that of a related fungus, Ceratocystis albifundus, that is known to be native in Africa. This, together with the fact that C. tsitiskamensis is not known elsewhere, within or outside South Africa, suggests that it is native and endemic to the Cape Afromontane region.


Assuntos
Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Besouros/microbiologia , Variação Genética , Doenças das Plantas/microbiologia , Árvores/microbiologia , Animais , Ascomicetos/genética , DNA Fúngico/genética , Florestas , Genes Fúngicos Tipo Acasalamento , Genótipo , Repetições de Microssatélites , África do Sul
20.
Fungal Biol ; 119(7): 615-30, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26058537

RESUMO

Little is known about the biology of the monotypic genus Cornuvesica (Microascales), apart from that isolates are notoriously difficult to culture on artificial media. A recent collection of material resembling this genus from freshly made wounds on Gmelina arborea in Indonesia, provided an opportunity to reconsider all available material of Cornuvesica falcata, type species of the genus. In addition to morphological comparisons, multigene phylogenetic analyses were made using sequences of the SSU, ITS, LSU and TEF-1α genes. Our results showed that the holotype of Cor. falcata from pine in Canada differed from all other material previously considered to represent this species and also from the new Indonesian collections. The collections considered represented three additional species that we describe here as new. Three New Zealand isolates and an isolate from UK were respectively described as Cor. acuminata and Cor. crypta, while the Indonesian isolates were described as Cor. magnispora. Phylogenies based on the SSU and LSU data sets showed that Cornuvesica spp. do not belong in the Ceratocystidaceae as previously suggested, but represent a distinct lineage in the Microascales that has yet to be named. Results showed that culture filtrates from other fungi or ferric chloride markedly stimulated the growth of Cor. magnispora.


Assuntos
Lamiaceae/microbiologia , Ophiostomatales/isolamento & purificação , DNA Fúngico/genética , DNA Ribossômico/genética , Dados de Sequência Molecular , Ophiostomatales/classificação , Ophiostomatales/genética , Ophiostomatales/crescimento & desenvolvimento , Filogenia , Casca de Planta/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA