Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.288
Filtrar
1.
Front Physiol ; 15: 1464326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39371600

RESUMO

An increasing body of evidence confirms the effectiveness of physical exercise (PE) in promoting brain health by preventing age-related cognitive decline and reducing the risk of neurodegenerative diseases. The benefits of PE are attributed to neuroplasticity processes which have been reported to enhance cerebral health. However, moderate to high-intensity PE is necessary to induce these responses and these intensities cannot always be achieved especially by people with physical limitations. As a countermeasure, electrical stimulation (ES) offers several benefits, particularly for improving physical functions, for various neurological diseases. This review aims to provide an overview of key mechanisms that could contribute to the enhancement in brain health in response to ES-induced exercise, including increases in cerebral blood flow, neuronal activity, and humoral pathways. This narrative review also focuses on the effects of ES protocols, applied to both humans and animals, on cognition. Despite a certain paucity of research when compared to the more classical aerobic exercise, it seems that ES could be of interest for improving cerebral health, particularly in people who have difficulty engaging in voluntary exercise.

2.
Front Physiol ; 15: 1456690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39371598

RESUMO

Background: Sleep problem is a common complication of Alzheimer's disease (AD). Extensive preclinical studies have been performed to investigate the AD pathology. However, the pathophysiological consequence of AD complicated by sleep problem remains to be further determined. Purpose: To investigate brain metabolism and perfusion in an AD mouse model complicated by sleep problem, and subsequently identify potential imaging markers to better understand the associated pathophysiology. Methods: We examined the oxygen extraction fraction (OEF), cerebral metabolic rate of oxygen (CMRO2), and cerebral blood flow (CBF) using state-of-the-art MRI techniques in a cohort of 5xFAD model mice. Additionally, neuroinflammation, indicated by activated microglia, was assessed using histology techniques. Sleep fragmentation (SF) was utilized as a representative for sleep problems. Results: SF was associated with significant increases in OEF (P = 0.023) and CMRO2 (P = 0.029), indicating a state of hypermetabolism. CBF showed a significant genotype-by-sleep interaction effect (P = 0.026), particularly in the deep brain regions such as the hippocampus and thalamus. Neuroinflammation was primarily driven by genotype rather than SF, especially in regions with significant interaction effect in CBF measurements. Conclusion: These results suggest that brain metabolism and perfusion measurements are promising markers for studying the co-pathogenesis of AD and SF.

3.
Neurophotonics ; 11(4): 045002, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39372121

RESUMO

Significance: The ability to monitor cerebral blood flow (CBF) at the bedside is essential to managing critical-care patients with neurological emergencies. Diffuse correlation spectroscopy (DCS) is ideal because it is non-invasive, portable, and inexpensive. We investigated a near-infrared spectroscopy (NIRS) approach for converting DCS measurements into physiological units of blood flow. Aim: Using magnetic resonance imaging perfusion as a reference, we investigated the accuracy of absolute CBF measurements from a bolus-tracking NIRS method that used transient hypoxia as a flow tracer and hypercapnia-induced increases in CBF measured by DCS. Approach: Twelve participants (7 female, 28 ± 6 years) completed a hypercapnia protocol with simultaneous CBF recordings from DCS and arterial spin labeling (ASL). Nine participants completed the transient hypoxia protocol while instrumented with time-resolved NIRS. The estimate of baseline CBF was subsequently used to calibrate hypercapnic DCS data. Results: Moderately strong correlations at baseline ( slope = 0.79 and R 2 = 0.59 ) and during hypercapnia ( slope = 0.90 and R 2 = 0.58 ) were found between CBF values from calibrated DCS and ASL (range 34 to 85 mL / 100 g / min ). Conclusions: Results demonstrated the feasibility of an all-optics approach that can both quantify CBF and perform continuous perfusion monitoring.

4.
J Headache Pain ; 25(1): 167, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363159

RESUMO

BACKGROUND: Migraine-related perfusion changes are documented but inconsistent across studies due to limited sample size and insufficient phenotyping. The phasic and spatial dynamics across migraine subtypes remains poorly characterized. This study aimed to determine spatiotemporal dynamics of gray matter (GM) perfusion in migraine. METHODS: We prospectively recruited episodic (EM) and chronic migraine (CM) patients, diagnosed with the International Headache Society criteria and healthy controls (HCs) between 2021 and 2023 from the headache center in a tertiary medical center, and adjacent communities. Magnetic resonance (3-tesla) arterial spin labeling (ASL) was conducted for whole brain cerebral blood flow (CBF) in all participants. The voxel-wise and whole brain gray matter (GM) CBF were compared between subgroups. Spatial pattern analysis of CBF and its correlations with headache frequency were investigated regarding different migraine phases and subtypes. Sex- and age-adjusted voxel-wise and whole brain GM comparisons were performed between HCs and different EM and CM phases. Spatial pattern analysis was conducted by CBF clusters with phasic differences and spin permutation test. Correlations between headache frequency and CBF were investigated regarding different EM and CM phases. RESULTS: Totally 344 subjects (172 EM, 120 CM, and 52 HCs) were enrolled. Higher CBF in different anatomical locations was identified in ictal EM and CM. The combined panels of the specific locations with altered CBF in ictal EM on receiver operating characteristic curve analysis demonstrated areas under curve of 0.780 (vs. HCs) and 0.811 (vs. preictal EM). The spatial distribution of ictal-interictal CBF alteration of EM and CM were not correlated with each other (p = 0.665; r = - 0.018). Positive correlations between headache frequency and CBF were noted in ictal EM and CM regarding whole GM and specific anatomical locations. CONCLUSIONS: Patients with migraine exhibited unique spatiotemporal CBF dynamics across different phases and distinct between subtypes. The findings provide neurobiological insights into how selected anatomical structures engage in a migraine attack and adapt to plastic change of repeated attacks along with chronicity.


Assuntos
Circulação Cerebrovascular , Substância Cinzenta , Imageamento por Ressonância Magnética , Transtornos de Enxaqueca , Marcadores de Spin , Humanos , Masculino , Feminino , Transtornos de Enxaqueca/fisiopatologia , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/classificação , Adulto , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiopatologia , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/irrigação sanguínea
5.
Brain Res ; : 149259, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39368592

RESUMO

BACKGROUND AND PURPOSE: The oxygen extraction fraction is an essential biomarker for the assessment of brain metabolism. A recently proposed method combined with quantitative susceptibility mapping and quantitative blood oxygen level-dependent magnitude enables noninvasive mapping of the oxygen extraction fraction. Our study investigated the oxygen extraction fraction mapping variations of single-delay and multi-delay arterial spin-labeling. MATERIALS AND METHODS: A total of twenty healthy participants were enrolled. The multi-echo spoiled gradient-echo, multi-delay arterial spin-labeling, and magnetization-prepared rapid gradient echo sequences were acquired at 3.0 T. The mean oxygen extraction fraction was generated under a single delay time of 1780 ms, multi-delay arterial spin-labeling of transit-corrected cerebral blood flow, and multi-delay arterial spin-labeling of arterial cerebral blood volume. The results were compared via paired t tests and the Wilcoxon test. Linear regression analyses were used to investigate the relationships among the oxygen extraction fraction, cerebral blood flow, and venous cerebral blood volume. RESULTS: The oxygen extraction fraction estimate with multi-delay arterial spin-labeling yielded a significantly lower value than that with single-delay arterial spin-labeling. The average values for the whole brain under single-delay arterial spin-labeling, multi-delay arterial spin-labeling of transit-corrected cerebral blood flow, and multi-delay arterial spin-labeling of arterial cerebral blood volume were 41.5 ±â€¯1.7 % (P < 0.05), 41.3 ±â€¯1.9 % (P < 0.001), and 40.9 ±â€¯1.9 % (N = 20), respectively. The oxygen extraction fraction also showed a significant inverse correlation with the venous cerebral blood volume under steady-state conditions when multi-delay arterial spin-labeling was used (r = 0.5834, p = 0.0069). CONCLUSION: These findings suggest that the oxygen extraction fraction is significantly impacted by the arterial spin-labeling methods used in the quantitative susceptibility mapping plus the quantitative blood oxygen level-dependent model, indicating that the differences should be accounted for when employing oxygen extraction fraction mapping based on this model in diseases.

7.
World J Radiol ; 16(9): 429-438, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39355390

RESUMO

BACKGROUND: Global and regional cerebral blood flow (CBF) changes in patients with unilateral internal carotid artery occlusion (ICAO) are unclear when the dual post-labeling delays (PLD) arterial spin labeling (ASL) magnetic resonance imaging (MRI) technique is used. Manual delineation of regions of interest for CBF measurement is time-consuming and laborious. AIM: To assess global and regional CBF changes in patients with unilateral ICAO with the ASL-MRI perfusion technique. METHODS: Twenty hospitalized patients with ICAO and sex- and age-matched controls were included in the study. Regional CBF was measured by Dr. Brain's ASL software. The present study evaluated differences in global, middle cerebral artery (MCA) territory, anterior cerebral artery territory, and Alberta Stroke Program Early Computed Tomography Score (ASPECTS) regions (including the caudate nucleus, lentiform nucleus, insula ribbon, internal capsule, and M1-M6) and brain lobes (including frontal, parietal, temporal, and insular lobes) between ICAO patients and controls at PLD 1.5 s and PLD 2.5 s. RESULTS: When comparing CBF between ICAO patients and controls, the global CBF in ICAO patients was lower at both PLD 1.5 s and PLD 2.5 s; the CBF on the occluded side was lower in 15 brain regions at PLD 1.5 s, and it was lower in 9 brain regions at PLD 2.5 s; the CBF in the contralateral hemisphere was lower in the caudate nucleus and internal capsule at PLD 1.5 s and in M6 at PLD 2.5 s. The global CBF in ICAO patients was lower at PLD 1.5 s than at PLD 2.5 s. The ipsilateral CBF at PLD 1.5 s was lower than that at PLD 2.5 s in 15 regions, whereas the contralateral CBF was lower at PLD 1.5 s than at PLD 2.5 s in 12 regions. The ipsilateral CBF was lower than the contralateral CBF in 15 regions at PLD 1.5 s, and in M6 at PLD 2.5 s. CONCLUSION: Unilateral ICAO results in hypoperfusion in the global and MCA territories, especially in the ASPECTS area. Dual PLD settings prove more suitable for accurate CBF quantification in ICAO.

8.
Cell Metab ; 36(10): 2173-2189, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39357509

RESUMO

Readily available nutrient-rich foods exploit our inherent drive to overconsume, creating an environment of overnutrition. This transformative setting has led to persistent health issues, such as obesity and metabolic syndrome. The development of glucagon-like peptide-1 receptor (GLP-1R) agonists reveals our ability to pharmacologically manage weight and address metabolic conditions. Obesity is directly linked to chronic low-grade inflammation, connecting our metabolic environment to neurodegenerative diseases. GLP-1R agonism in curbing obesity, achieved by impacting appetite and addressing associated metabolic defects, is revealing additional benefits extending beyond weight loss. Whether GLP-1R agonism directly impacts brain health or does so indirectly through improved metabolic health remains to be elucidated. In exploring the intricate connection between obesity and neurological conditions, recent literature suggests that GLP-1R agonism may have the capacity to shape the neurovascular landscape. Thus, GLP-1R agonism emerges as a promising strategy for addressing the complex interplay between metabolic health and cognitive well-being.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Obesidade/metabolismo , Encéfalo/metabolismo
9.
Nitric Oxide ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39369814

RESUMO

Aneurysmal subarachnoid haemorrhage (SAH) is a devastating subset of stroke. One of the major determinants of outcome is an evolving multifactorial injury occurring in the first 72 hours, known as early brain injury. Reduced nitric oxide (NO) bioavailability and an associated disruption to cerebral perfusion is believed to play an important role in this process. We sought to explore this relationship, by examining the effect on cerebral perfusion of the in vivo manipulation of NO levels using an exogenous NO donor (sodium nitrite). We performed a double blind placebo controlled randomised experimental medicine study of the cerebral perfusion response to sodium nitrite infusion during the early brain injury period in 15 low grade (World Federation of Neurosurgeons grade 1-2) SAH patients. Patients were randomly assigned to receive sodium nitrite at 10 mcg/kg/min or saline placebo. Assessment occurred following endovascular aneurysm occlusion, mean time after ictus 66h (range 34-90h). Cerebral perfusion was quantified before infusion commencement and after 3 hours, using multi-post labelling delay (multi-PLD) vessel encoded pseudocontinuous arterial spin labelling (VEPCASL) magnetic resonance imaging (MRI). Administration of sodium nitrite was associated with a significant increase in average grey matter cerebral perfusion. Group level voxelwise analysis identified that increased perfusion occurred within regions of the brain known to exhibit enhanced vulnerability to injury. These findings highlight the role of impaired NO bioavailability in the pathophysiology of early brain injury.

10.
Eur J Neurosci ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358672

RESUMO

Pain catastrophizing is a prominent psychological factor that is strongly correlated with pain. Although the complex properties of pain catastrophizing vary across different pain phases, the contribution of chronic pain to its progression from a general trait to a higher state remains unclear. This study aimed to examine the neural mechanisms and degree to which pain catastrophizing is reinforced in the context of primary dysmenorrhea (PDM), one of the most prevalent gynaecological complaints experienced by women of reproductive age. Altogether, 29 women with moderate-to-severe PDM were included in this study. Arterial spin labelling was used to quantify the cerebral blood flow (CBF) in each participant in both the pain-free and painful phases. The pain catastrophizing scale (PCS) was completed in two phases, and the Short-Form McGill Pain Questionnaire was completed in the painful phase. Compared with pain catastrophizing in the pain-free phase (PCSpf), pain catastrophizing in the painful phase (PCSp) is higher and positively correlated with the composite factor of menstrual pain. CBF analysis indicated that the PCSp is positively associated with CBF in the frontal cortex, hippocampus and amygdala. The reinforcement of pain catastrophizing correlates with CBF in the prefrontal cortex. Specifically, the medial prefrontal cortex, which correlates with pain state, plays a crucial role in mediating the reinforcing effect of pain in the PCSp. These results promote the mechanical comprehension of pain catastrophizing management in individuals with chronic pain.

11.
EJNMMI Res ; 14(1): 83, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264384

RESUMO

BACKGROUND: Ictal brain perfusion SPECT provides higher sensitivity for the identification of the epileptic seizure onset zone (SOZ) than interictal SPECT. However, ictal SPECT is demanding due to the unpredictable waiting period for the next seizure to allow for ictal tracer injection. Thus, starting with an interictal scan and skipping the ictal scan if the interictal scan provides a SOZ candidate with high confidence could be an efficient approach. The current study estimated the rate of high-confidence SOZ candidates and the false lateralization rate among them for interictal and ictal SPECT. METHODS: 177 patients (48% females, median age 38y, interquartile range 27-48y) with ictal and interictal SPECT acquired with 99mTc-HMPAO (n = 141) or -ECD (n = 36) were included retrospectively. The vast majority of the patients was suspected to have temporal lobe epilepsy. Visual interpretation of the SPECT data was performed independently by 3 readers in 3 settings: "interictal only" (interictal SPECT and statistical hypoperfusion map), "ictal only" (ictal SPECT and hyperperfusion map), and "full" setting (side-by-side interpretation of ictal and interictal SPECT including statistical maps and SISCOM analysis). The readers lateralized the SOZ (right, left, none) and characterized their confidence using a 5-score. A case was considered "lateralizing with high confidence" if all readers lateralized to the same hemisphere with at least 4 of 5 confidence points. Lateralization of the SOZ in the "full" setting was used as reference standard. RESULTS: The proportion of "lateralizing with high confidence" cases was 4.5/31.6/38.4% in the "interictal only"/"ictal only"/"full" setting. One (12.5%) of the 8 cases that were "lateralizing with high confidence" in the "interictal only" setting lateralized to the wrong hemisphere. Among the 56 cases that were "lateralizing with high confidence" in the "ictal only" setting, 54 (96.4%) were also lateralizing in the "full" setting, all to the same hemisphere. CONCLUSIONS: Starting brain perfusion SPECT in the presurgical evaluation of epilepsy with an interictal scan to skip the ictal scan in case of a high-confidence interictal SOZ candidate is not a useful approach. In contrast, starting with an ictal scan to skip the interictal scan in case of a high-confidence ictal SOZ candidate can be recommended.

12.
Radiol Case Rep ; 19(11): 4736-4740, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39228953

RESUMO

According to the most recent edition of the DSM V, neurocognitive disorder (NCD), formerly referred to as dementia, is a debilitating condition that progressively diminishes quality of life. It impacts both physical and cognitive domains, including memory and aberrant behavior. If usual presentation is uncertain, perfusion, functional, and molecular imaging are useful. Gold standard marker for the diagnosis of Alzheimer's disease (AD) is FDG PET imaging. Recent studies have shown promising results, whereby the cerebral blood flow in arterial spin labeling (ASL) of MRI and the hypometabolism FDG PET both show a consistent regional abnormality. Therefore, ASL MRI imaging carries a potential role in assisting diagnosis of neurocognitive disorder.

13.
Front Aging Neurosci ; 16: 1437567, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39246594

RESUMO

Introduction: Patients with coronary artery disease (CAD) have a higher risk of developing cognitive impairment and mental health disorders compared to the general population. Physical exercise might improve their brain health. The overall goal of the HEART-BRAIN randomized controlled trial (RCT) is to investigate the effects of different types of exercise on brain health outcomes in patients with CAD, and the underlying mechanisms. Methods: This three-arm, single-blinded RCT will include 90 patients with CAD (50-75 years). Participants will be randomized into: (1) control group-usual care (n = 30), (2) aerobic high-intensity interval training (HIIT) (n = 30), or (3) HIIT combined with resistance exercise training (n = 30). The 12-week intervention includes 3 supervised sessions (45-min each) per week for the exercise groups. Outcomes will be assessed at baseline and post-intervention. The primary outcome is to determine changes in cerebral blood flow assessed by magnetic resonance imaging. Secondary outcomes include changes in brain vascularization, cognitive measures (i.e., general cognition, executive function and episodic memory), and cardiorespiratory fitness. Additional health-related outcomes, and several potential mediators and moderators will be investigated (i.e., brain structure and function, cardiovascular and brain-based biomarkers, hemodynamics, physical function, body composition, mental health, and lifestyle behavior). Conclusion: The HEART-BRAIN RCT will provide novel insights on how exercise can impact brain health in patients with CAD and the potential mechanisms explaining the heart-brain connection, such as changes in cerebral blood flow. The results may have important clinical implications by increasing the evidence on the effectiveness of exercise-based strategies to delay cognitive decline in this high-risk population. Clinical trial registration: ClinicalTrials.gov, identifier [NCT06214624].

14.
Neuroradiology ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230717

RESUMO

BACKGROUND: Neuropsychiatric Systemic Lupus Erythematosus (NPSLE) is a complex manifestation of Systemic Lupus Erythematosus (SLE) characterized by a wide range of neurological and psychiatric symptoms. This study aims to elucidate the patterns of Perfusion-Weighted MRI (PWI) in NPSLE patients compared to SLE patients without neuropsychiatric manifestations (non-NPSLE) and healthy controls (HCs). MATERIAL AND METHODS: A systematic search was conducted in PubMed/Medline, Embase, Web of Science, and Scopus for studies utilizing PWI in NPSLE patients published through April 14, 2024. Cerebral blood flow (CBF) data from NPSLE, non-NPSLE patients, and HCs were extracted for meta-analysis, using standardized mean difference (SMD) as an estimate measure. For studies lacking sufficient data for inclusion, CBF, cerebral blood volume (CBV), and mean transit time (MTT) were reviewed qualitatively. RESULTS: Our review included eight observational studies employing PWI techniques, including dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL). The meta-analysis of NPSLE compared to non-NPSLE incorporated four studies, encompassing 104 NPSLE patients and 90 non-NPSLE patients. The results revealed an SMD of -1.42 (95% CI: -2.85-0.00, I2: 94%) for CBF in NPSLE compared to non-NPSLE. CONCLUSION: PWI reveals informative patterns of cerebral perfusion, showing a significant reduction in mean CBF in NPSLE patients compared to non-NPSLE patients. Our qualitative synthesis highlights these changes, particularly in the frontal and temporal lobes. However, the existing data exhibits considerable heterogeneity and limitations.

15.
Artigo em Russo | MEDLINE | ID: mdl-39248587

RESUMO

There is a long-observed relationship between the pathology of the spine and arterial hypertension. There are a number of explanations for this, including one based on reflex effects and obstruction of blood flow to the cerebral vasodilatory centre localized in the rhomboid fossa projection. Obstruction can be absolute and relative, preventing the increase of blood flow during stress, when the brain turns on additional energy demand (phenomenon of «selfish brain¼). In conditions of insufficient blood supply anaerobic metabolism is included, requiring in the future, the addition of anaerobic glycolysis products. This leads to the persistence of an elevated level of AD and is part of the theory of centralized compensation of aerobic-anaerobic balance (theoretical aerobic-anaerobic energy concept, TAAEBC). The existing methods of manual manipulation and physical action on the spine, mainly the atlantoacral section of the cervical spine, have, according to existing publications, varying degrees of effectiveness. The modern approach to treatment of arterial hypertension and correction of metabolic disorders by A. Shishonin is promising. It is based on the TAAEBC concept and assumes a system approach and long-term effect through a consistent three-step manual and physical interventions aimed at restoring, retaining and long-term support of the vertebral blood flow.


Assuntos
Hipertensão , Manipulação da Coluna , Humanos , Manipulação da Coluna/métodos , Hipertensão/terapia , Hipertensão/fisiopatologia
16.
NMR Biomed ; : e5256, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252500

RESUMO

Water exchange rate (Kw) across the blood-brain barrier (BBB) is an important physiological parameter that may provide new insight into ageing and neurodegenerative disease. Recently, two non-invasive arterial spin labelling (ASL) MRI methods have been developed to measure Kw, but results from the different methods have not been directly compared. Furthermore, the association of Kw with age for each method has not been investigated in a single cohort. Thirty participants (70% female, 63.8 ± 10.4 years) were scanned at 3 T with Diffusion-Prepared ASL (DP-ASL) and Multi-Echo ASL (ME-ASL) using previously implemented acquisition and analysis protocols. Grey matter Kw, cerebral blood flow (CBF) and arterial transit time (ATT) were extracted. CBF values were consistent; approximately 50 ml/min/100 g for both methods, and a strong positive correlation in CBF from both methods across participants (r = 0.82, p < 0.001). ATT was significantly different between methods (on average 147.7 ms lower when measured with DP-ASL compared to ME-ASL) but was positively correlated across participants (r = 0.39, p < 0.05). Significantly different Kw values of 106.6 ± 19.7 min-1 and 306.8 ± 71.7 min-1 were measured using DP-ASL and ME-ASL, respectively, and DP-ASL Kw and ME-ASL Kw were negatively correlated across participants (r = -0.46, p < 0.01). Kw measured using ME-ASL had a significant linear relationship with age (p < 0.05). In conclusion, DP-ASL and ME-ASL provided estimates of Kw with significantly different quantitative values and inconsistent dependence with age. We propose future standardisation of modelling and fitting methods for DP-ASL and ME-ASL, to evaluate the effect on Kw quantification. Also, sensitivity and bias analyses should be performed for both approaches, to assess the effect of varying acquisition and fitting parameters. Lastly, comparison with independent measures of BBB water transport, and with physiological and clinical biomarkers known to be associated with changes in BBB permeability, are essential to validate the ASL methods, and to demonstrate their clinical utility.

17.
J Cereb Blood Flow Metab ; : 271678X241270283, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39253827

RESUMO

Sickle cell disease (SCD) is the most common genetic blood disorder, characterized by red cell hemolysis, anemia, and corresponding increased compensatory cerebral blood flow (CBF). SCD patients are at high risk for cerebral infarcts and CBF quantification is likely critical to assess infarct risk. Infarcts primarily localize to white matter (WM), yet arterial spin labeling (ASL) MRI, the most common non-invasive CBF approach, has poor WM CBF sensitivity owing to low WM CBF and long WM bolus arrival time (BAT). We hypothesize that anemia, and associated cerebral hyperemia, in SCD leads to improved WM detection with ASL. We performed 3-Tesla multi-delay pulsed ASL in SCD (n = 35; age = 30.5 ± 8.3 years) and control (n = 15; age = 28.7 ± 4.5 years) participants and applied t-tests at each inversion time within different flow territories, and determined which regions were significantly above noise floor (criteria: one-sided p < 0.05). Total WM CBF-weighted signal was primarily detectable outside of borderzone regions in SCD (CBF = 17.7 [range = 12.9-25.0] mL/100 g/min), but was largely unphysiological in control (CBF = 8.1 [range = 7.6-9.9)] mL/100 g/min) participants. WM BAT was reduced in SCD versus control participants (ΔBAT = 37 [range = 46-70] ms) and BAT directly correlated with hematocrit (Spearman's-ρ = 0.62; p < 0.001). Findings support the feasibility of WM CBF quantification using ASL in SCD participants for appropriately parameterized protocols.

18.
NMR Biomed ; : e5260, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254055

RESUMO

Isoflurane is one of the most widely used anesthetic agents in rodent imaging studies. However, the impact of isoflurane on brain metabolism has not been fully characterized to date, primarily due to a scarcity of noninvasive technologies to quantitatively measure the brain's metabolic rate in vivo. In this study, using noncontrast MRI techniques, we dynamically measured cerebral metabolic rate of oxygen (CMRO2) under varying doses of isoflurane anesthesia in mice. Concurrently, systemic parameters of heart and respiration rates were recorded alongside CMRO2. Additionally, electroencephalogram (EEG) recording was used to identify changes in neuronal activities under the same anesthetic regimen employed in the MRI experiments. We found suppression of the CMRO2 by isoflurane in a dose-dependent manner, concomitant with a diminished high-frequency EEG activity. The degree of metabolic suppression by isoflurane was strongly correlated with the respiration rate, which offers a potential approach to calibrate CMRO2 measurements. Furthermore, the metabolic level associated with neural responses of the somatosensory and motor cortices in mice was estimated as 308.2 µmol/100 g/min. These findings may facilitate the integration of metabolic parameters into future studies involving animal disease models and anesthesia usage.

19.
Front Neurol ; 15: 1452944, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39233675

RESUMO

Introduction: Frontotemporal lobar degeneration (FTLD) is associated with FTLD due to tau (FTLD-tau) or TDP (FTLD-TDP) inclusions found at autopsy. Arterial Spin Labeling (ASL) MRI is often acquired in the same session as a structural T1-weighted image (T1w), enabling detection of regional changes in cerebral blood flow (CBF). We hypothesize that ASL-T1w registration with more degrees of freedom using boundary-based registration (BBR) will better align ASL and T1w images and show increased sensitivity to regional hypoperfusion differences compared to manual registration in patient participants. We hypothesize that hypoperfusion will be associated with a clinical measure of disease severity, the FTLD-modified clinical dementia rating scale sum-of-boxes (FTLD-CDR). Materials and methods: Patients with sporadic likely FTLD-tau (sFTLD-tau; N = 21), with sporadic likely FTLD-TDP (sFTLD-TDP; N = 14), and controls (N = 50) were recruited from the Connectomic Imaging in Familial and Sporadic Frontotemporal Degeneration project (FTDHCP). Pearson's Correlation Coefficients (CC) were calculated on cortical vertex-wise CBF between each participant for each of 3 registration methods: (1) manual registration, (2) BBR initialized with manual registration (manual+BBR), (3) and BBR initialized using FLIRT (FLIRT+BBR). Mean CBF was calculated in the same regions of interest (ROIs) for each registration method after image alignment. Paired t-tests of CC values for each registration method were performed to compare alignment. Mean CBF in each ROI was compared between groups using t-tests. Differences were considered significant at p < 0.05 (Bonferroni-corrected). We performed linear regression to relate FTLD-CDR to mean CBF in patients with sFTLD-tau and sFTLD-TDP, separately (p < 0.05, uncorrected). Results: All registration methods demonstrated significant hypoperfusion in frontal and temporal regions in each patient group relative to controls. All registration methods detected hypoperfusion in the left insular cortex, middle temporal gyrus, and temporal pole in sFTLD-TDP relative to sFTLD-tau. FTLD-CDR had an inverse association with CBF in right temporal and orbitofrontal ROIs in sFTLD-TDP. Manual+BBR performed similarly to FLIRT+BBR. Discussion: ASL is sensitive to distinct regions of hypoperfusion in patient participants relative to controls, and in patients with sFTLD-TDP relative to sFTLD-tau, and decreasing perfusion is associated with increasing disease severity, at least in sFTLD-TDP. BBR can register ASL-T1w images adequately for controls and patients.

20.
Neurophotonics ; 11(3): 035008, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39234576

RESUMO

Significance: Cerebral hyperperfusion syndrome (CHS), characterized by neurologic deficits due to postoperative high cerebral perfusion, is a serious complication of superficial temporal artery-middle cerebral artery (STA-MCA) surgery for moyamoya disease (MMD). Aim: We aim to clarify the importance of assessing pre-anastomosis cerebral microcirculation levels by linking the onset of CHS to pre- and post-anastomosis hemodynamics. Approach: Intraoperative laser speckle contrast imaging (LSCI) measured changes in regional cerebral blood flow (rCBF) and regional blood flow structuring (rBFS) within the cerebral cortical microcirculation of 48 adults with MMD. Results: Following anastomosis, all MMD patients exhibited a significant increase in rCBF ( 279.60 % ± 120.00 % , p < 0.001 ). Changes in rCBF and rBFS showed a negative correlation with their respective baseline levels (rCBF, p < 0.001 ; rBFS, p = 0.005 ). Baseline rCBF differed significantly between CHS and non-CHS groups ( p = 0.0049 ). The areas under the receiver operating characteristic (ROC) curve for baseline rCBF was 0.753. Hemorrhagic MMD patients showed higher baseline rCBF than ischemic patients ( p = 0.036 ), with a marked correlation between pre- and post-anastomosis rCBF in hemorrhagic cases ( p = 0.003 ), whereas ischemic MMD patients did not. Conclusion: Patients with low levels of pre-anastomosis baseline CBF induce a dramatic increase in post-anastomosis and show a high risk of postoperative CHS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA