Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
1.
Brain Res ; 1846: 149259, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39368592

RESUMO

BACKGROUND AND PURPOSE: The oxygen extraction fraction is an essential biomarker for the assessment of brain metabolism. A recently proposed method combined with quantitative susceptibility mapping and quantitative blood oxygen level-dependent magnitude enables noninvasive mapping of the oxygen extraction fraction. Our study investigated the oxygen extraction fraction mapping variations of single-delay and multi-delay arterial spin-labeling. MATERIALS AND METHODS: A total of twenty healthy participants were enrolled. The multi-echo spoiled gradient-echo, multi-delay arterial spin-labeling, and magnetization-prepared rapid gradient echo sequences were acquired at 3.0 T. The mean oxygen extraction fraction was generated under a single delay time of 1780 ms, multi-delay arterial spin-labeling of transit-corrected cerebral blood flow, and multi-delay arterial spin-labeling of arterial cerebral blood volume. The results were compared via paired t tests and the Wilcoxon test. Linear regression analyses were used to investigate the relationships among the oxygen extraction fraction, cerebral blood flow, and venous cerebral blood volume. RESULTS: The oxygen extraction fraction estimate with multi-delay arterial spin-labeling yielded a significantly lower value than that with single-delay arterial spin-labeling. The average values for the whole brain under single-delay arterial spin-labeling, multi-delay arterial spin-labeling of transit-corrected cerebral blood flow, and multi-delay arterial spin-labeling of arterial cerebral blood volume were 41.5 ± 1.7 % (P < 0.05), 41.3 ± 1.9 % (P < 0.001), and 40.9 ± 1.9 % (N = 20), respectively. The oxygen extraction fraction also showed a significant inverse correlation with the venous cerebral blood volume under steady-state conditions when multi-delay arterial spin-labeling was used (r = 0.5834, p = 0.0069). CONCLUSION: These findings suggest that the oxygen extraction fraction is significantly impacted by the arterial spin-labeling methods used in the quantitative susceptibility mapping plus the quantitative blood oxygen level-dependent model, indicating that the differences should be accounted for when employing oxygen extraction fraction mapping based on this model in diseases.

2.
medRxiv ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39281763

RESUMO

Arterial pulsation is crucial for promoting fluid circulation and for influencing neuronal activity. Previous studies assessed the pulsatility index based on blood flow velocity pulsatility in relatively large cerebral arteries of human. Here, we introduce a novel method to quantify the volumetric pulsatility of cerebral microvasculature across cortical layers and in white matter (WM), using high-resolution 4D vascular space occupancy (VASO) MRI with simultaneous recording of pulse signals at 7T. Microvascular volumetric pulsatility index (mvPI) and cerebral blood volume (CBV) changes across cardiac cycles are assessed through retrospective sorting of VASO signals into cardiac phases and estimating mean CBV in resting state (CBV0) by arterial spin labeling (ASL) MRI at 7T. Using data from 11 young (28.4±5.8 years) and 7 older (61.3±6.2 years) healthy participants, we investigated the aging effect on mvPI and compared microvascular pulsatility with large arterial pulsatility assessed by 4D-flow MRI. We observed the highest mvPI in the cerebrospinal fluid (CSF) on the cortical surface (0.19±0.06), which decreased towards the cortical layers as well as in larger arteries. In the deep WM, a significantly increased mvPI (p = 0.029) was observed in the older participants compared to younger ones. Additionally, mvPI in deep WM is significantly associated with the velocity pulsatility index (vePI) of large arteries (r = 0.5997, p = 0.0181). We further performed test-retest scans, non-parametric reliability test and simulations to demonstrate the reproducibility and accuracy of our method. To the best of our knowledge, our method offers the first in vivo measurement of microvascular volumetric pulsatility in human brain which has implications for cerebral microvascular health and its relationship research with glymphatic system, aging and neurodegenerative diseases.

3.
Ren Fail ; 46(2): 2387426, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39135525

RESUMO

BACKGROUND: End-stage kidney disease (ESKD) patients undergoing hemodialysis experience diverse neurological complications. This study investigated prefrontal cerebral blood volume (CBV) and cerebral blood flow (CBF) during hemodialysis using functional near-infrared spectroscopy (fNIRS) to analyze cerebral hemodynamic changes. METHODS: ESKD patients undergoing maintenance hemodialysis without a history of neurological disorders were enrolled prospectively. The fNIRS data were collected using a NIRSIT Lite device. The fNIRS values were recorded three times for each patient: before the start of hemodialysis (pre-HD), 1 h after the start of hemodialysis (mid-HD), and after the end of hemodialysis (post-HD). The average changes in oxy-hemoglobin (HbO2), deoxy-hemoglobin (HbR), total hemoglobin (HbT, calculated as HbO2 + HbR) concentrations, and in hemoglobin concentration difference (HbD, calculated as HbO2 - HbR) were analyzed. We then compared the differences in changes in HbO2, HbR, HbT, and HbD according to the hemodialysis period. RESULTS: Thirty hemodialysis patients were analyzed. The change in HbO2, HbT, and HbD levels showed significant differences according to the hemodialysis period. Between the pre-HD and post-HD periods, there were significant differences in changes in HbO2 (0.005 ± 0.001 µM vs. 0.015 ± 0.004 µM, p = .046) and HbT (0.006 ± 0.001 µM vs. 0.016 ± 0.008 µM, p = .029). Additionally, between pre-HD and post-HD periods, HbD tended to increase (0.005 ± 0.001 µM vs. 0.014 ± 0.004 µM, p = .094). CONCLUSIONS: We demonstrated that during one hemodialysis session, the relative change in prefrontal CBV increased post-HD compared with pre-HD. These results are expected to help understanding the mechanisms underlying the effects of hemodialysis on brain function.


Assuntos
Volume Sanguíneo Cerebral , Circulação Cerebrovascular , Falência Renal Crônica , Córtex Pré-Frontal , Diálise Renal , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Masculino , Feminino , Falência Renal Crônica/terapia , Falência Renal Crônica/fisiopatologia , Falência Renal Crônica/complicações , Falência Renal Crônica/sangue , Pessoa de Meia-Idade , Circulação Cerebrovascular/fisiologia , Estudos Prospectivos , Idoso , Córtex Pré-Frontal/irrigação sanguínea , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologia , Adulto , Hemoglobinas/análise , Hemoglobinas/metabolismo , Hemodinâmica
4.
Front Neurol ; 15: 1428867, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036638

RESUMO

Background and objective: Enlarged perivascular spaces in basal ganglia (BG-EPVS) are considered an imaging marker of cerebral small vessel disease (CSVD), but its pathogenesis and pathophysiological process remain unclear. While decreased cerebral perfusion is linked to other CSVD markers, the relationship between BG-EPVS and cerebral perfusion remains ambiguous. This study aimed to explore this association. Methods: Elderly individuals with severe BG-EPVS (n = 77) and age/sex-matched controls (n = 89) underwent head CT perfusion imaging. The cerebral perfusion parameters including mean transit time (MTT), time to maximum (TMAX), cerebral blood flow (CBF), and cerebral blood volume (CBV) were quantitatively measured by symmetric regions of interest plotted in the basal ganglia region. Point-biserial correlation and logistics regression analysis were performed to investigate the association between BG-EPVS and cerebral perfusion. Results: There were no significant differences in MTT, TMAX, or CBF between BG-EPVS group and control group. CBV was significantly lower in the BG-EPVS group (p = 0.035). Point-biserial correlation analysis showed a negative correlation between BG-EPVS and CBV (r = -0.198, p = 0.011). BG-EPVS group and control group as the dependent variable, binary logistics regression analysis showed that CBV was not an independent risk factor for severe BG-EPVS (p = 0.448). All enrolled patients were divided into four groups according to the interquartile interval of CBV. The ordered logistic regression analysis showed severe BG-EPVS was an independent risk factor for decreased CBV after adjusting for confounding factors (OR = 2.142, 95%CI: 1.211-3.788, p = 0.009). Conclusion: Severe BG-EPVS is an independent risk factor for decreased CBV in the elderly, however, the formation of BG-EPVS is not solely dependent on changes in CBV in this region. This finding provides information about the pathophysiological consequence caused by severe BG-EPVS.

5.
Sci Rep ; 14(1): 17121, 2024 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054379

RESUMO

Resting cerebral perfusion metrics can be calculated from the MRI ΔR2* signal during the first passage of an intravascular bolus of a Gadolinium-based contrast agent (GBCA), or more recently, a transient hypoxia-induced change in the concentration of deoxyhemoglobin ([dOHb]). Conventional analysis follows a proxy process that includes deconvolution of an arterial input function (AIF) in a tracer kinetic model. We hypothesized that the step reduction in magnetic susceptibility accompanying a step decrease in [dOHb] that occurs when a single breath of oxygen terminates a brief episode of lung hypoxia permits direct calculation of relative perfusion metrics. The time course of the ΔR2* signal response enables both the discrimination of blood arrival times and the time course of voxel filling. We calculated the perfusion metrics implied by this step signal change in seven healthy volunteers and compared them to those from conventional analyses of GBCA and dOHb using their AIF and indicator dilution theory. Voxel-wise maps of relative cerebral blood flow and relative cerebral blood volume had a high spatial and magnitude congruence for all three analyses (r > 0.9) and were similar in appearance to published maps. The mean (SD) transit times (s) in grey and white matter respectively for the step response (7.4 (1.1), 8.05 (1.71)) were greater than those for GBCA (2.6 (0.45), 3.54 (0.83)) attributable to the nature of their respective calculation models. In conclusion we believe these calculations of perfusion metrics derived directly from ΔR2* have superior merit to calculations via AIF by virtue of being calculated from a direct signal rather than through a proxy model which encompasses errors inherent in designating an AIF and performing deconvolution calculations.


Assuntos
Circulação Cerebrovascular , Hemoglobinas , Hipóxia , Imageamento por Ressonância Magnética , Humanos , Masculino , Adulto , Imageamento por Ressonância Magnética/métodos , Hemoglobinas/metabolismo , Feminino , Hipóxia/metabolismo , Meios de Contraste , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Adulto Jovem , Volume Sanguíneo Cerebral
6.
J Paediatr Child Health ; 60(8): 355-360, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032105

RESUMO

AIM: Surgery for congenital scoliosis correction in children is often associated with considerable blood loss. Decrease in regional oxygen saturation (rScO2) can reflect insufficient cerebral perfusion and predict neurological complications. This retrospective observational study explored the relationship between blood loss during this surgery and a decrease in rScO2 in children. METHODS: The following clinical data of children aged 3-14 years who underwent elective posterior scoliosis correction between March 2019 and July 2021 were collected: age, sex, height, weight, baseline rScO2, basal mean invasive arterial pressure (MAP), preoperative Cobb angle, number of surgical segments, preoperative and postoperative haemoglobin level, percentage of lowest rScO2 below the baseline value that lasted 3 min or more during the operation (decline of rScO2 from baseline, D-rScO2%), intraoperative average invasive MAP, end-tidal carbon dioxide pressure, fluid infusion rate of crystalloids and colloids, operation time, and percentage of total blood loss/patient's blood volume (TBL/PBV). RESULTS: A total of 105 children were included in the study. Massive haemorrhage (TBL/PBV ≥50%) was reported in 53.3% of patients, who had significantly higher D-rScO2 (%) (t = -5.264, P < 0.001) than those who had non-massive haemorrhage (TBL/PBV <50%). Multiple regression analysis revealed that TBL/PBV (ß = 0.04, 95% CI: 0.018-0.062, P < 0.05) was significantly associated with D-rScO2%. CONCLUSIONS: Intraoperative massive blood loss in children significantly increased D-rScO2%. Monitoring should be improved, and timely blood supplementation should be performed to ensure maintenance of the blood and oxygen supply to vital organs, improve the safety of anaesthesia, and avoid neurological complications.


Assuntos
Perda Sanguínea Cirúrgica , Escoliose , Humanos , Criança , Estudos Retrospectivos , Escoliose/cirurgia , Feminino , Masculino , Adolescente , Pré-Escolar , Perda Sanguínea Cirúrgica/prevenção & controle , Saturação de Oxigênio , Circulação Cerebrovascular/fisiologia
7.
J Magn Reson Imaging ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899965

RESUMO

BACKGROUND: Distinguishing high-grade gliomas (HGGs) from brain metastases (BMs) using perfusion-weighted imaging (PWI) remains challenging. PWI offers quantitative measurements of cerebral blood flow (CBF) and cerebral blood volume (CBV), but optimal PWI parameters for differentiation are unclear. PURPOSE: To compare CBF and CBV derived from PWIs in HGGs and BMs, and to identify the most effective PWI parameters and techniques for differentiation. STUDY TYPE: Systematic review and meta-analysis. POPULATION: Twenty-four studies compared CBF and CBV between HGGs (n = 704) and BMs (n = 488). FIELD STRENGTH/SEQUENCE: Arterial spin labeling (ASL), dynamic susceptibility contrast (DSC), dynamic contrast-enhanced (DCE), and dynamic susceptibility contrast-enhanced (DSCE) sequences at 1.5 T and 3.0 T. ASSESSMENT: Following the PRISMA guidelines, four major databases were searched from 2000 to 2024 for studies evaluating CBF or CBV using PWI in HGGs and BMs. STATISTICAL TESTS: Standardized mean difference (SMD) with 95% CIs was used. Risk of bias (ROB) and publication bias were assessed, and I2 statistic was used to assess statistical heterogeneity. A P-value<0.05 was considered significant. RESULTS: HGGs showed a significant modest increase in CBF (SMD = 0.37, 95% CI: 0.05-0.69) and CBV (SMD = 0.26, 95% CI: 0.01-0.51) compared with BMs. Subgroup analysis based on region, sequence, ROB, and field strength for CBF (HGGs: 375 and BMs: 222) and CBV (HGGs: 493 and BMs: 378) values were conducted. ASL showed a considerable moderate increase (50% overlapping CI) in CBF for HGGs compared with BMs. However, no significant difference was found between ASL and DSC (P = 0.08). DATA CONCLUSION: ASL-derived CBF may be more useful than DSC-derived CBF in differentiating HGGs from BMs. This suggests that ASL may be used as an alternative to DSC when contrast medium is contraindicated or when intravenous injection is not feasible. TECHNICAL EFFICACY: Stage 2.

8.
Heliyon ; 10(11): e31175, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38832259

RESUMO

Background: The vascular heterogeneity of glioblastomas (GB) remains an important area of research, since tumor progression and patient prognosis are closely tied to this feature. With this study, we aim to identify gene expression profiles associated with MRI-defined tumor vascularity and to investigate its relationship with patient prognosis. Methods: The study employed MRI parameters calculated with DSC Perfusion Quantification of ONCOhabitats glioma analysis software and RNA-seq data from the TCGA-GBM project dataset. In our study, we had a total of 147 RNA-seq samples, which 15 of them also had MRI parameter information. We analyzed the gene expression profiles associated with MRI-defined tumor vascularity using differential gene expression analysis and performed Log-rank tests to assess the correlation between the identified genes and patient prognosis. Results: The findings of our research reveal a set of 21 overexpressed genes associated with the high vascularity pattern. Notably, several of these overexpressed genes have been previously implicated in worse prognosis based on existing literature. Our log-rank test further validates that the collective upregulation of these genes is indeed correlated with an unfavorable prognosis. This set of genes includes a variety of molecules, such as cytokines, receptors, ligands, and other molecules with diverse functions. Conclusions: Our findings suggest that the set of 21 overexpressed genes in the High Vascularity group could potentially serve as prognostic markers for GB patients. These results highlight the importance of further investigating the relationship between the molecules such as cytokines or receptors underlying the vascularity in GB and its observation through MRI and developing targeted therapies for this aggressive disease.

9.
Acta Radiol ; 65(7): 800-807, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38798137

RESUMO

BACKGROUND: The accurate differentiation of primary central nervous system lymphoma (PCNSL) from glioblastoma multiforme (GBM) is clinically crucial due to the different treatment strategies between them. PURPOSE: To define magnetic resonance imaging (MRI) perfusion findings in PCNSL to make a safe distinction from GBM with dynamic contrast-enhanced (DCE) T1 and DSC T2 MRI perfusion findings. MATERIAL AND METHODS: This retrospective analysis included 19 patients with histopathologically diagnosed PCNSL and 21 individuals with GBM. DCE T1 vascular permeability perfusion values including K-trans, Ve, Kep, IAUGC, and DSC T2 perfusion values including cerebral blood volume (CBV) and cerebral blood flow (CBF) in axial sections from the pathological lesion and contralateral normal brain parenchyma were measured quantitatively using region of interest analysis. RESULTS: The study observed no statistically significant difference between patients with PCNSL (T/B cell) and GBM in the median values of DCE T1 perfusion ratios (P > 0.05). Nevertheless, the DSC T2 perfusion ratios showed a substantial distinction between the two groups. In contrast to patients with PCNSL (1.185 vs. 1.224, respectively), those with GBM had higher median levels of r-CBV and r-CBF (2.898 vs. 2.467, respectively; P 0.01). A cutoff value of ≤1.473 for r-CBV (Lesion/N) and ≤1.6005 for r-CBF (Lesion/N) was found to estimate the positivity of PCNSL. CONCLUSION: DSC T2 MRI perfusion values showed lower r-CBV and r-CBF values in PCNSL patients compared to GBM patients. According to the findings, r-CBV and r-CBF are the most accurate MRI perfusion parameters for distinguishing between PCSNL and GBM.


Assuntos
Neoplasias Encefálicas , Meios de Contraste , Glioblastoma , Linfoma , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/irrigação sanguínea , Pessoa de Meia-Idade , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/patologia , Estudos Retrospectivos , Linfoma/diagnóstico por imagem , Adulto , Idoso , Imageamento por Ressonância Magnética/métodos , Diagnóstico Diferencial , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea
10.
Diagnostics (Basel) ; 14(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667490

RESUMO

Pretreatment CT Perfusion (CTP) parameter rCBV < 42% lesion volume has recently been shown to predict 90-day mRS. In this study, we aim to assess the relationship between rCBV < 42% and a radiographic follow-up infarct volume delineated on FLAIR images. In this retrospective evaluation of our prospectively collected database, we included acute stroke patients triaged by multimodal CT imaging, including CT angiography and perfusion imaging, with confirmed anterior circulation large vessel occlusion between 9 January 2017 and 10 January 2023. Follow-up FLAIR imaging was used to determine the final infarct volume. Student t, Mann-Whitney-U, and Chi-Square tests were used to assess differences. Spearman's rank correlation and linear regression analysis were used to assess associations between rCBV < 42% and follow-up infarct volume on FLAIR. In total, 158 patients (median age: 68 years, 52.5% female) met our inclusion criteria. rCBV < 42% (ρ = 0.56, p < 0.001) significantly correlated with follow-up-FLAIR infarct volume. On multivariable linear regression analysis, rCBV < 42% lesion volume (beta = 0.60, p < 0.001), ASPECTS (beta = -0.214, p < 0.01), mTICI (beta = -0.277, p < 0.001), and diabetes (beta = 0.16, p < 0.05) were independently associated with follow-up infarct volume. The rCBV < 42% lesion volume is independently associated with FLAIR follow-up infarct volume.

11.
J Neurol ; 271(6): 3389-3397, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507075

RESUMO

BACKGROUND: Distal medium vessel occlusions (DMVOs) contribute substantially to the incidence of acute ischemic strokes (AIS) and pose distinct challenges in clinical management and prognosis. Neuroimaging techniques, such as Fluid Attenuation Inversion Recovery (FLAIR) imaging and cerebral blood volume (CBV) index derived from perfusion imaging, have significantly improved our ability to assess the impact of strokes and predict their outcomes. The primary objective of this study was to investigate relationship between follow-up infarct volume (FIV) as assessed by FLAIR imaging in patients with DMVOs. METHODS: This prospectively collected, retrospective reviewed cohort study included patients from two comprehensive stroke centers within the Johns Hopkins Medical Enterprise, spanning August 2018-October 2022. The cohort consisted of adults with AIS attributable to DMVO. Detailed imaging analyses were conducted, encompassing non-contrast CT, CT angiography (CTA), CT perfusion (CTP), and FLAIR imaging. Univariable and multivariable linear regression models were employed to assess the association between different factors and FIV. RESULTS: The study included 79 patients with DMVO stroke with a median age of 69 years (IQR, 62-77 years), and 57% (n = 45) were female. There was a negative correlation between the CBV index and FIV in a univariable linear regression analysis (Beta = - 16; 95% CI, - 23 to - 8.3; p < 0.001) and a multivariable linear regression model (Beta = - 9.1 per 0.1 change; 95% CI, - 15 to - 2.7; p = 0.006). Diabetes was independently associated with larger FIV (Beta = 46; 95% CI, 16 to 75; p = 0.003). Additionally, a higher baseline ASPECTS was associated with lower FIV (Beta = - 30; 95% CI, - 41 to - 20; p < 0.001). CONCLUSION: Our findings underscore the CBV index as an independent association with FIV in DMVOs, which highlights the critical role of collateral circulation in determining stroke outcomes in this patient population. In addition, our study confirms a negative association of ASPECTS with FLAIR FIV and identifies diabetes as independent factor associated with larger FIV. These insights pave the way for further large-scale, prospective studies to corroborate these findings, thereby refining the strategies for stroke prognostication and management.


Assuntos
Volume Sanguíneo Cerebral , Humanos , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Volume Sanguíneo Cerebral/fisiologia , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/fisiopatologia , Seguimentos , Imageamento por Ressonância Magnética , Angiografia por Tomografia Computadorizada
12.
J Clin Med ; 13(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38541813

RESUMO

Background: The pretreatment CT perfusion (CTP) marker the relative cerebral blood volume (rCBV) < 42% lesion volume has recently been shown to predict 90-day functional outcomes; however, studies assessing correlations of the rCBV < 42% lesion volume with other outcomes remain sparse. Here, we aim to assess the relationship between the rCBV < 42% lesion volume and the reference standard digital subtraction angiography (DSA)-derived American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology (ASITN) collateral score, hereby referred as the DSA CS. Methods: In this retrospective evaluation of our prospectively collected database, we included acute stroke patients triaged by multimodal CT imaging, including CT angiography and perfusion imaging, with confirmed anterior circulation large vessel occlusion between 1 September 2017 and 1 October 2023. Group differences were assessed using the Student's t test, Mann-Whitney U test and Chi-Square test. Spearman's rank correlation and logistic regression analyses were used to assess associations between rCBV < 42% and DSA CS. Results: In total, 222 patients (median age: 69 years, 56.3% female) met our inclusion criteria. In the multivariable logistic regression analysis, taking into account age, sex, race, hypertension, hyperlipidemia, diabetes, atrial fibrillation, prior stroke or transient ischemic attack, the admission National Institute of Health stroke scale, the premorbid modified Rankin score, the Alberta stroke program early CT score (ASPECTS), and segment occlusion, the rCBV < 42% lesion volume (adjusted OR: 0.98, p < 0.05) was independently associated with the DSA CS. Conclusion: The rCBV < 42% lesion volume is independently associated with the DSA CS.

13.
NMR Biomed ; 37(8): e5126, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38403795

RESUMO

The brain relies on an effective clearance mechanism to remove metabolic waste products for the maintenance of homeostasis. Recent studies have focused on elucidating the forces that drive the motion of cerebrospinal fluid (CSF), responsible for removal of these waste products. We demonstrate that vascular responses evoked using controlled manipulations of partial pressure of carbon dioxide (PaCO2) levels, serve as an endogenous driver of CSF clearance from the brain. To demonstrate this, we retrospectively surveyed our database, which consists of brain metastases patients from whom blood oxygen level-dependent (BOLD) images were acquired during targeted hypercapnic and hyperoxic respiratory challenges. We observed a correlation between CSF inflow signal around the fourth ventricle and CO2-induced changes in cerebral blood volume. By contrast, no inflow signal was observed in response to the nonvasoactive hyperoxic stimulus, validating our measurements. Moreover, our results establish a link between the rate of the hemodynamic response (to elevated PaCO2) and peritumoral edema load, which we suspect may affect CSF flow, consequently having implications for brain clearance. Our expanded perspective on the factors involved in neurofluid flow underscores the importance of considering both cerebrovascular responses, as well as the brain mechanical properties, when evaluating CSF dynamics in the context of disease processes.


Assuntos
Encéfalo , Dióxido de Carbono , Circulação Cerebrovascular , Humanos , Dióxido de Carbono/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Masculino , Feminino , Líquido Cefalorraquidiano/metabolismo , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética
14.
Ann Biomed Eng ; 52(6): 1568-1575, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38402314

RESUMO

Dynamic susceptibility contrast magnetic resonance perfusion (DSC-MRP) is a non-invasive imaging technique for hemodynamic measurements. Various perfusion parameters, such as cerebral blood volume (CBV) and cerebral blood flow (CBF), can be derived from DSC-MRP, hence this non-invasive imaging protocol is widely used clinically for the diagnosis and assessment of intracranial pathologies. Currently, most institutions use commercially available software to compute the perfusion parametric maps. However, these conventional methods often have limitations, such as being time-consuming and sensitive to user input, which can lead to inconsistent results; this highlights the need for a more robust and efficient approach like deep learning. Using the relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) perfusion maps generated by FDA-approved software, we trained a multistage deep learning model. The model, featuring a combination of a 1D convolutional neural network (CNN) and a 2D U-Net encoder-decoder network, processes each 4D MRP dataset by integrating temporal and spatial features of the brain for voxel-wise perfusion parameters prediction. An auxiliary model, with similar architecture, but trained with truncated datasets that had fewer time-points, was designed to explore the contribution of temporal features. Both qualitatively and quantitatively evaluated, deep learning-generated rCBV and rCBF maps showcased effective integration of temporal and spatial data, producing comprehensive predictions for the entire brain volume. Our deep learning model provides a robust and efficient approach for calculating perfusion parameters, demonstrating comparable performance to FDA-approved commercial software, and potentially mitigating the challenges inherent to traditional techniques.


Assuntos
Volume Sanguíneo Cerebral , Circulação Cerebrovascular , Aprendizado Profundo , Humanos , Circulação Cerebrovascular/fisiologia , Volume Sanguíneo Cerebral/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Feminino , Adulto
15.
Eur Radiol Exp ; 8(1): 13, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38273190

RESUMO

BACKGROUND: We aimed to describe the microvascular features of three types of adult-type diffuse glioma by comparing dynamic susceptibility contrast (DSC) perfusion magnetic resonance imaging (MRI) with intraoperative high-frame-rate ultrafast Doppler ultrasound. METHODS: Case series of seven patients with primary brain tumours underwent both DSC perfusion MRI and intra-operative high-frame-rate ultrafast Doppler ultrasound. From the ultrasound images, three-dimensional vessel segmentation was obtained of the tumour vascular bed. Relative cerebral blood volume (rCBV) maps were generated with leakage correction and normalised to the contralateral normal-appearing white matter. From tumour histograms, median, mean, and maximum rCBV ratios were extracted. RESULTS: Low-grade gliomas (LGGs) showed lower perfusion than high-grade gliomas (HGGs), as expected. Within the LGG subgroup, oligodendroglioma showed higher perfusion than astrocytoma. In HGG, the median rCBV ratio for glioblastoma was 3.1 while astrocytoma grade 4 showed low perfusion with a median rCBV of 1.2. On the high-frame-rate ultrafast Doppler ultrasound images, all tumours showed a range of rich and organised vascular networks with visually apparent abnormal vessels, even in LGG. CONCLUSIONS: This unique case series revealed in vivo insights about the microvascular architecture in both LGGs and HGGs. Ultrafast Doppler ultrasound revealed rich vascularisation, also in tumours with low perfusion at DSC MRI. These findings warrant further investigations using advanced MRI postprocessing, in particular for characterising adult-type diffuse glioma. RELEVANCE STATEMENT: Our findings challenge the current assumption behind the estimation of relative cerebral blood volume that the distribution of blood vessels in a voxel is random. KEY POINTS: • Ultrafast Doppler ultrasound revealed rich vascularity irrespective of perfusion dynamic susceptibility contrast MRI state. • Rich and organised vascularisation was also observed even in low-grade glioma. • These findings challenge the assumptions for cerebral blood volume estimation with MRI.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Adulto , Humanos , Angiografia por Ressonância Magnética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Imageamento por Ressonância Magnética/métodos , Astrocitoma/patologia , Ultrassonografia Doppler , Perfusão , Microvasos/patologia
16.
J Am Heart Assoc ; 13(2): e030936, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38214247

RESUMO

BACKGROUND: Mechanical thrombectomy is an effective treatment method for large-vessel occlusion stroke (LVOS); however, it has limited efficacy for intracranial atherosclerotic disease (ICAD)-related LVOS. We investigated the use of cerebral blood volume (CBV) maps for identifying ICAD as the underlying cause of LVOS before the initiation of endovascular treatment (EVT). METHODS AND RESULTS: We reviewed clinical and imaging data from patients who presented with LVOS and underwent endovascular treatment between January 2011 and May 2021. The CBV patterns were analyzed to identify an increase in CBV within the hypoperfused area and estimate infarct patterns within the area of decreased CBV. Comparisons were made between the patients with an increase in CBV and those without, and among the estimated infarct patterns: territorial, cortical wedge, basal ganglia-only, subcortical, and normal CBV. Overall, 243 patients were included. CBV increase in the hypoperfused area was observed in 23.5% of patients. A significantly higher proportion of ICAD was observed in those with increased CBV than in those without (56.4% versus 19.8%; P<0.001). Regarding the estimated infarct patterns on the CBV, ICAD was most frequently observed in the normal CBV group (territorial, 14.9%; cortical wedge, 10.0%; basal ganglia-only, 43.8%; subcortical, 35.7%; normal, 61.7%). CBV parameters, including "an increase in CBV," "normal CBV infarct pattern," and "an increase in CBV or normal CBV infarct pattern composite," were independently associated with ICAD. CONCLUSIONS: An increased CBV or normal CBV pattern may be associated with ICAD LVOS on the pretreatment perfusion imaging.


Assuntos
Isquemia Encefálica , Arteriosclerose Intracraniana , Acidente Vascular Cerebral , Humanos , Volume Sanguíneo Cerebral , Infarto , Arteriosclerose Intracraniana/complicações , Arteriosclerose Intracraniana/diagnóstico por imagem , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/terapia , Trombectomia/métodos , Resultado do Tratamento
17.
Neuroradiology ; 66(3): 317-323, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183424

RESUMO

PURPOSE: After standard treatment for glioblastoma, perfusion MRI remains challenging for differentiating tumor progression from post-treatment changes. Our objectives were (1) to correlate rCBV values at diagnosis and at first tumor progression and (2) to analyze the relationship of rCBV values at tumor recurrence with enhancing volume, localization of tumor progression, and time elapsed since the end of radiotherapy in tumor recurrence. METHODS: Inclusion criteria were (1) age > 18 years, (2) histologically confirmed glioblastoma treated with STUPP regimen, and (3) tumor progression according to RANO criteria > 12 weeks after radiotherapy. Co-registration of segmented enhancing tumor VOIs with dynamic susceptibility contrast perfusion MRI was performed using Olea Sphere software. For tumor recurrence, we correlated rCBV values with enhancing tumor volume, with recurrence localization, and with time elapsed from the end of radiotherapy to progression. Analyses were performed with SPSS software. RESULTS: Sixty-four patients with glioblastoma were included in the study. Changes in rCBV values between diagnosis and first tumor progression were significant (p < 0.001), with a mean and median decreases of 32% and 46%, respectively. Mean rCBV values were also different (p < 0.01) when tumors progressed distally (radiation field rCBV values of 1.679 versus 3.409 distally). However, changes and, therefore, low rCBV values after radiotherapy in tumor recurrence were independent of time. CONCLUSION: Chemoradiation alters tumor perfusion and rCBV values may be decreased in the setting of tumor progression. Changes in rCBV values with respect to diagnosis, with low rCBV in tumor progression, are independent of time but related to the site of recurrence.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Adulto , Pessoa de Meia-Idade , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Recidiva Local de Neoplasia/diagnóstico por imagem , Meios de Contraste , Quimiorradioterapia , Imageamento por Ressonância Magnética/métodos
18.
Acta Paediatr ; 113(4): 677-683, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37970733

RESUMO

AIM: To investigate cerebral blood volume (CBV) in preterm neonates using time-resolved near-infrared spectroscopy. METHODS: In this prospective observational study, time-resolved near-infrared spectroscopy measurements of CBV using tNIRS-1 were performed in 70 preterm neonates. For measurements, a sensor was placed for a duration of 1 min, followed by four further reapplications of the sensor, overall five measurements. RESULTS: In this study, 70 preterm neonates with a mean ± SD gestational age of 33.4 ± 1.7 weeks and a birthweight of 1931 ± 398 g were included with a postnatal age of 4.7 ± 2.0 days. Altogether, 2383 CBV values were obtained with an overall mean of 1.85 ± 0.30 mL/100 g brain. A total of 95% of the measured CBV values varied in a range from -0.31 to 0.33 from the overall individual mean. Taking the deviation of the mean of each single application for each patient, this range reduced from -0.07 to 0.07. The precision of the measurement defined as within-variation in CBV was 0.24 mL/100 g brain. CONCLUSION: The overall mean CBV in stable preterm neonates was 1.85 ± 0.30 mL/100 g brain. The within-variation in CBV was 0.24 mL/100 g brain. Based on the precision obtained by our data, CBV of 1.85 ± 0.30 mL/100 g brain may be assumed as normal value for this cohort.


Assuntos
Volume Sanguíneo Cerebral , Espectroscopia de Luz Próxima ao Infravermelho , Recém-Nascido , Humanos , Lactente , Valores de Referência , Circulação Cerebrovascular , Encéfalo/diagnóstico por imagem , Oxigênio
19.
Diagn Interv Radiol ; 30(2): 124-134, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-37789677

RESUMO

PURPOSE: The reproducibility of relative cerebral blood volume (rCBV) measurements among readers with different levels of experience is a concern. This study aimed to investigate the inter-reader reproducibility of rCBV measurement of glioblastomas using the hotspot method in dynamic susceptibility contrast perfusion magnetic resonance imaging (DSC-MRI) with various strategies. METHODS: In this institutional review board-approved single-center study, 30 patients with glioblastoma were retrospectively evaluated with DSC-MRI at a 3.0 Tesla scanner. Three groups of reviewers, including neuroradiologists, general radiologists, and radiology residents, calculated the rCBV based on the number of regions of interest (ROIs) and reference areas. For statistical analysis of feature reproducibility, the intraclass correlation coefficient (ICC) and Bland-Altman plots were used. Analyses were made among individuals, reader groups, reader-group pooling, and a population that contained all of them. RESULTS: For individuals, the highest inter-reader reproducibility was observed between neuroradiologists [ICC: 0.527; 95% confidence interval (CI): 0.21-0.74] and between residents (ICC: 0.513; 95% CI: 0.20-0.73). There was poor reproducibility in the analyses of individuals with different levels of experience (ICC range: 0.296-0.335) and in reader-wise and group-wise pooling (ICC range: 0.296-0.335 and 0.397-0.427, respectively). However, an increase in ICC values was observed when five ROIs were used. In an analysis of all strategies, the ICC for the centrum semiovale was significantly higher than that for contralateral white matter (P < 0.001). CONCLUSION: The inter-reader reproducibility of rCBV measurement was poor to moderate regardless of whether it was calculated by neuroradiologists, general radiologists, or residents, which may indicate the need for automated methods. Choosing five ROIs and using the centrum semiovale as a reference area may increase reliability for all users.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/patologia , Volume Sanguíneo Cerebral , Reprodutibilidade dos Testes , Estudos Retrospectivos , Meios de Contraste , Angiografia por Ressonância Magnética/métodos , Perfusão , Imageamento por Ressonância Magnética/métodos
20.
Eur Radiol ; 34(3): 1982-1993, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37658897

RESUMO

OBJECTIVES: To investigate if spatial recurrence pattern is associated with patient prognosis, and whether MRI vascular habitats can predict spatial pattern. METHODS: In this retrospective study, 69 patients with locally recurrent high-grade gliomas (HGGs) were included. The cohort was divided into intra-resection cavity recurrence (ICR) and extra-resection cavity recurrence (ECR) patterns, according to the distance between the location of the recurrent tumor and the resection cavity or surgical region. Four vascular habitats, high angiogenic tumor, low angiogenic tumor, infiltrated peripheral edema, and vasogenic peripheral edema, were segmented and vascular heterogeneity parameters were analyzed. The survival and diagnostic performance under different spatial recurrence patterns were analyzed by Kaplan-Meier and ROC. A nomogram model was constructed by regression analysis and validated by bootstrapping technique. RESULTS: Progression-free survival (PFS) and overall survival (OS) were longer for ICR (n = 32) than those for ECR (n = 37) (median PFS: 8 vs. 5 months, median OS: 17 vs. 13 months, p < 0.05). MRI vascular habitat analyses showed ECR had higher median relative cerebral blood volume (rCBVmedian) at each habitat than ICR (all p < 0.01). The rCBVmedian at IPE had good diagnostic performance (AUC: 0.727, 95%CI: 0.607, 0.828). The AUC of the nomogram based on MRI vascular habitats and clinical factors was 0.834 (95%CI: 0.726, 0.913) and was confirmed as 0.833 (95%CI: 0.830, 0.836) by bootstrapping validation. CONCLUSIONS: The spatial pattern of locally recurrent HGGs is associated with prognosis. MRI vascular heterogeneity parameter could be used as a non-invasive imaging marker to predict spatial recurrence pattern. CLINICAL RELEVANCE STATEMENT: Vascular heterogeneity parameters based on MRI vascular habitat analyses can non-invasively predict the spatial patterns of locally recurrent high-grade gliomas, providing a new diagnostic basis for clinicians to develop the extent of surgical resection and postoperative radiotherapy planning. KEY POINTS: • Intra-resection cavity pattern was associated with longer progression-free survival and overall survival in locally recurrent high-grade gliomas. • Higher vascular heterogeneities in extra-resection cavity recurrence than in intra-resection cavity recurrence and the vascular heterogeneity parameters had good diagnostic performance in discriminating spatial recurrence pattern. • A nomogram model based on MRI vascular habitats and clinical factors had good performance in predicting spatial recurrence pattern.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Estudos Retrospectivos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Imageamento por Ressonância Magnética/métodos , Edema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA