Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Angiogenesis ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39249713

RESUMO

The formation and organization of complex blood vessel networks rely on various biophysical forces, yet the mechanisms governing endothelial cell-cell interactions under different mechanical inputs are not well understood. Using the dorsal longitudinal anastomotic vessel (DLAV) in zebrafish as a model, we studied the roles of multiple biophysical inputs and cerebral cavernous malformation (CCM)-related genes in angiogenesis. Our research identifies heg1 and krit1 (ccm1) as crucial for the formation of endothelial cell-cell interfaces during anastomosis. In mutants of these genes, cell-cell interfaces are entangled with fragmented apical domains. A Heg1 live reporter demonstrated that Heg1 is dynamically involved in the oscillatory constrictions along cell-cell junctions, whilst a Myosin live reporter indicated that heg1 and krit1 mutants lack actomyosin contractility along these junctions. In wild-type embryos, the oscillatory contractile forces at junctions refine endothelial cell-cell interactions by straightening junctions and eliminating excessive cell-cell interfaces. Conversely, in the absence of junctional contractility, the cell-cell interfaces become entangled and prone to collapse in both mutants, preventing the formation of a continuous luminal space. By restoring junctional contractility via optogenetic activation of RhoA, contorted junctions are straightened and disentangled. Additionally, haemodynamic forces complement actomyosin contractile forces in resolving entangled cell-cell interfaces in both wild-type and mutant embryos. Overall, our study reveals that oscillatory contractile forces governed by Heg1 and Krit1 are essential for maintaining proper endothelial cell-cell interfaces and thus for the formation of a continuous luminal space, which is essential to generate a functional vasculature.

2.
Diagnostics (Basel) ; 14(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39272679

RESUMO

Cerebral cavernous malformations (CCMs) are abnormal expansions of brain capillaries that increase the risk of hemorrhagic strokes, with CCM1 mutations responsible for about 50% of familial cases. The disorder can cause irreversible brain damage by compromising the blood-brain barrier (BBB), leading to fatal brain hemorrhages. Studies show that progesterone and its derivatives significantly impact BBB integrity. The three CCM proteins (CCM1, CCM2, and CCM3) form the CCM signaling complex (CSC), linking classic and non-classic progesterone signaling within the CmPn network, which is crucial for maintaining BBB integrity. This study aimed to explore the relationship between CCM1 and key pathways of the CmPn signaling network using three mouse embryonic fibroblast lines (MEFs) with distinct CCM1 expressions. Omics and systems biology analysis investigated CCM1-mediated signaling within the CmPn network. Our findings reveal that CCM1 is essential for regulating cellular processes within progesterone-mediated CmPn/CmP signaling, playing a crucial role in maintaining microvessel integrity. This regulation occurs partly through gene transcription control. The critical role of CCM1 in these processes suggests it could be a promising therapeutic target for CCMs.

3.
Front Neurosci ; 18: 1442110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234183

RESUMO

Introduction: Cerebral cavernous malformations (CCMs) are pathologic lesions comprised of clusters of thin-walled capillaries characterized by abnormal proliferation, angiogenesis, and bleeding secondary to somatic or germline mutations in endothelial cells. CCMs can cause headaches, seizures and/or neurological defects. There is a clinical need to develop better tools to detect CCMs and follow their progression in conjunction with the current use of neuroimaging techniques. Here we present data supporting the utility of LOX-1 (lectin-type oxidized LDL receptor 1), a 50 kDa transmembrane protein implicated in endothelial cell dysfunction and ischemia, as a putative biomarker for CCM. Methods: CCM urine samples (n = 23) were collected from pediatric CCM patients. Matched healthy controls (n = 24) were collected from pediatric patients with either Chiari I malformation or fatty filum terminale, and otherwise normal findings. All samples were collected with patient/family consent and institutional review board approval.Samples were analyzed with Olink Proteomic Proximity Extension Assay (PEA). Differences in expression for 2,925 unique proteins were quantified between healthy control urine samples and CCM urine samples. The results were normalized, validated, and analyzed for demographic bias. In addition to urine samples, CCM tissue from patients was harvested and used to create primary cell lines for in vitro analysis of LOX-1 expression, in addition to immunofluorescence of lesional tissue excised at surgery. Results: ANOVA analysis of the CCM urine samples showed a statistically significant increase in LOX-1 compared to the control samples, with CCM patients exhibiting a > 5-fold increase in urinary expression. Corroborating these elevated levels of circulating marker, analysis of source tissue from surgically resected CCMs revealed that LOX-1 is increased in both CCM patient cavernoma primary cell lines and operative specimens. Conclusion: LOX-1 is involved with pathways implicated in CCM pathogenesis and our data here reveals that LOX-1 expression is significantly elevated in CCM patients as compared to matched healthy control individuals, including both source tissue from surgically excised CCMs and in analysis of samples collected from outside of the central nervous system, particularly urine. This proof-of-principle data suggests that LOX-1 may have potential utility as a target for CCM treatment and supports further investigation related to its potential mechanistic impact on CCM pathogenesis.

4.
Clin Neurol Neurosurg ; 246: 108567, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39332049

RESUMO

BACKGROUND: Cerebral cavernous malformations (CCMs) present challenges in clinical management due to a lack of definitive evidence from clinical trials. Surgical intervention and observational management are commonly used, yet their efficacy and long-term outcomes remain controversial. OBJECTIVE: This meta-analysis evaluates the effectiveness of surgical intervention versus conservative management in patients with symptomatic CCMs over various time frames to determine optimal treatment strategies. METHODS: A systematic review and reconstructed time-to-event meta-analysis were conducted, following PRISMA guidelines. Data from selected studies comparing surgical intervention to conservative management for CCMs were analyzed using pooled patient data from Kaplan-Meier curves. New focal neurological deficit (FND) or intracranial hemorrhage (ICH) were the outcome metrics. RESULTS: Four eligible studies, comprising 290 patients, were included. Surgical intervention showed 43 events over a mean time to FND/ICH of 6.372 years (95 % CI: 3.536-8.005), while observational management had 48 events with a significantly longer mean time of 10.992 years (95 % CI: 6.070-8.005). No significant difference was found at 2 years (p = 0.910), but at 5 and 10 years, surgical intervention had more events and shorter mean times (p < 0.0001). Sensitivity analysis for previously bleeding CCMs showed no significant difference in events (p = 0.131). CONCLUSION: This meta-analysis suggests observational management may achieve favorable long-term outcomes for symptomatic CCMs. Despite ongoing controversies, the findings highlight the need for further research, particularly randomized controlled trials, to refine treatment strategies and optimize patient care.


Assuntos
Tratamento Conservador , Hemangioma Cavernoso do Sistema Nervoso Central , Procedimentos Neurocirúrgicos , Humanos , Tratamento Conservador/métodos , Hemangioma Cavernoso do Sistema Nervoso Central/cirurgia , Resultado do Tratamento , Procedimentos Neurocirúrgicos/métodos , Hemorragias Intracranianas/etiologia
6.
Res Sq ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39011103

RESUMO

Background: We aimed to explore the differences in plasma biomarker levels between patients with familial cerebral cavernous malformations (FCCM) and their healthy first-degree relatives (FDRs) and between FCCM patients with and without severe chronic disease aggressiveness (CDA). Methods: Magnetic resonance imaging (MRI) scanning and genetic testing was performed in patients with multiple CCMs and their FDRs. Sixty-seven plasma biomarkers were tested using a customised multiplex bead immunoassay kit. Univariate and multivariate unconditional logistic regression analyses were conducted to determine the associations between plasma factors and the risk of developing FCCM and severe CDA. Receiver operating characteristic (ROC) curves were generated for each independent risk factor. Results: Plasma factors of 37 patients with FCCM and 37 FDRs were examined. Low CD31 (P < 0.001) and BDNF levels (P = 0.013) were independent risk factors for FCCM. The best model was achieved by combining the results of CD31 and BDNF (AUC = 0.845, sensitivity 0.838, specificity 0.784, cutoff score - 4.295) to distinguish patients with FCCM from healthy FDRs. Low serpin E1/PAI-1 (P = 0.011) and high ROBO4 levels (P = 0.013) were independent risk factors for severe CDA in patients with FCCM. The best model was achieved by combining the results of E1/PAI-1 and ROBO4 levels (AUC = 0.913, sensitivity 1.000, specificity 0.760, cutoff score - 0.525) to identify patients with FCCM and severe CDA. Conclusions: The plasma concentrations of CD31 and BDNF seem to be lower in patients with FCCM than in their healthy FDRs. Low serpin E1/PAI-1 and high ROBO4 concentrations may be correlated with high lesion burden and risk of recurrent bleeding.

7.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38853989

RESUMO

Background: Cerebral Cavernous Malformations (CCMs) are neurovascular abnormalities in the central nervous system (CNS) caused by loss of function mutations in KRIT1 (CCM1), CCM2, or PDCD10 (CCM3) genes. One of the most common symptoms in CCM patients is associated with motor disability, weakness, seizures, stress, and anxiety, and the extent of the symptom or symptoms may be due to the location of the lesion within the CNS or whether multiple lesions are present. Previous studies have primarily focused on understanding the pathology of CCM using animal models. However, more research has yet to explore the potential impact of CCM lesions on behavioral deficits in animal models, including effects on short-term and long-term memory, motor coordination, and function. Methods: We used the accelerating RotaRod test to assess motor and coordination deficits. We also used the open field test to assess locomotor activity and pathology-related behavior and Pavlovian fear conditioning to assess short-and long-term memory deficits. Our behavioral studies were complemented by proteomics, histology, immunofluorescence, and imaging techniques. We found that neuroinflammation is crucial in behavioral deficits in male and female mice with neurovascular CCM lesions (Slco1c1-iCreERT2; Pdcd10 fl/fl ; Pdcd10 BECKO ). Results: Functional behavior tests in male and female Pdcd10 BECKO mice revealed that CCM lesions cause sudden motor coordination deficits associated with the manifestation of profound neuroinflammatory lesions. Our findings indicate that maturation of CCM lesions in Pdcd10 BECKO mice also experienced a significant change in short- and long-term memory compared to their littermate controls, Pdcd10 fl/fl mice. Proteomic experiments reveal that as CCM lesions mature, there is an increase in pathways associated with inflammation, coagulation, and angiogenesis, and a decrease in pathways associated with learning and plasticity. Therefore, our study shows that Pdcd10 BECKO mice display a wide range of behavioral deficits due to significant lesion formation in their central nervous system and that signaling pathways associated with neuroinflammation and learning impact behavioral outcomes. Conclusions: Our study found that CCM animal models exhibited behavioral impairments such as decreased motor coordination and amnesia. These impairments were associated with the maturation of CCM lesions that displayed a neuroinflammatory pattern.

8.
Biomark Res ; 12(1): 57, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835051

RESUMO

BACKGROUND: Cerebral cavernous malformations (CCMs) are vascular abnormalities associated with deregulated angiogenesis. Their pathogenesis and optimal treatment remain unclear. This study aims to investigate the molecular signatures of cuproptosis, a newly identified type of cell death, associated with CCMs development. METHODS: Bulk RNA sequencing (RNA-seq) from 15 CCM and 6 control samples were performed with consensus clustering and clustered to two subtypes based on expression levels of cuproptosis-related genes (CRGs). Differentially expressed genes and immune infiltration between subtypes were then identified. Machine learning algorithms including the least absolute shrinkage and selection operator and random forest were employed to screen for hub genes for CCMs associated with cuproptosis. Furthermore, Pathway enrichment and correlation analysis were used to explore the functions of hub genes and their association with immune phenotypes in CCMs. An external dataset was then employed for validation. Finally, employing the Cellchat algorithm on a single-cell RNA-seq dataset, we explored potential mechanisms underlying the participation of these hub genes in cell-cell communication in CCMs. RESULTS: Our study revealed two distinct CCM subtypes with differential pattern of CRG expression and immune infiltration. Three hub genes (BTBD10, PFDN4, and CEMIP) were identified and validated, which may significantly associate with CCM pathogenesis. These genes were found to be significantly upregulated in CCM endothelial cells (ECs) and were validated through immunofluorescence and western blot analysis. Single-cell RNA-seq analysis revealed the cellular co-expression patterns of these hub genes, particularly highlighting the high expression of BTBD10 and PFDN4 in ECs. Additionally, a significant co-localization was also observed between BTBD10 and the pivotal cuproptosis gene FDX1 in Mki67+ tip cells, indicating the crucial role of cuproptosis for angiogenesis in CCMs. The study also explored the cell-cell communication between subcluster of ECs expressing these hub genes and immune cells, particularly M2 macrophages, suggesting a role for these interactions in CCM pathogenesis. CONCLUSION: This study identifies molecular signatures linking cuproptosis to CCMs pathogenesis. Three hub genes-PFDN4, CEMIP, and BTBD10-may influence disease progression by modulating immunity. Further research is needed to understand their precise disease mechanisms and evaluate their potential as biomarkers or therapeutic targets for CCMs.

9.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731959

RESUMO

Cerebral cavernous malformations (CCMs) are a neurological disorder characterized by enlarged intracranial capillaries in the brain, increasing the susceptibility to hemorrhagic strokes, a major cause of death and disability worldwide. The limited treatment options for CCMs underscore the importance of prognostic biomarkers to predict the likelihood of hemorrhagic events, aiding in treatment decisions and identifying potential pharmacological targets. This study aimed to identify blood biomarkers capable of diagnosing and predicting the risk of hemorrhage in CCM1 patients, establishing an initial set of circulating biomarker signatures. By analyzing proteomic profiles from both human and mouse CCM models and conducting pathway enrichment analyses, we compared groups to identify potential blood biomarkers with statistical significance. Specific candidate biomarkers primarily associated with metabolism and blood clotting pathways were identified. These biomarkers show promise as prognostic indicators for CCM1 deficiency and the risk of hemorrhagic stroke, strongly correlating with the likelihood of hemorrhagic cerebral cavernous malformations (CCMs). This lays the groundwork for further investigation into blood biomarkers to assess the risk of hemorrhagic CCMs.


Assuntos
Biomarcadores , Hemangioma Cavernoso do Sistema Nervoso Central , Hemangioma Cavernoso do Sistema Nervoso Central/sangue , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico , Humanos , Animais , Camundongos , Prognóstico , Biomarcadores/sangue , Proteômica/métodos , Hemorragia Cerebral/sangue , Hemorragia Cerebral/diagnóstico , Proteína KRIT1/sangue , Modelos Animais de Doenças , Feminino , Masculino
10.
Obstet Med ; 17(2): 132-134, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38784186

RESUMO

Cerebral cavernous malformation is a rare but important cause of cerebral hemorrhage in pregnancy and puerperium. In pregnancy, cavernomas can more easily bleed as a result of increased female hormones and growth factors such as vascular endothelial growth factor. We present the case of a pregnant woman who had been diagnosed with a cerebral cavernoma about ten years previously, after repeated headache episodes; at the 28th week of pregnancy the woman was hospitalized for epileptic seizures and active bleeding from the anterior cerebral artery. We describe the management of the case, the decision for a preterm delivery and for a resolutive neurosurgical procedure.

11.
J Neurol Sci ; 461: 123044, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749279

RESUMO

Cerebral cavernous malformations (CCMs) are abnormally packed blood vessels lined with endothelial cells, that do not exhibit intervening tight junctions, lack muscular and elastic layers and are usually surrounded by hemosiderin and gliosis. CCMs may be sporadic or familial autosomal dominant (FCCMs) caused by loss of function mutations in CCM1 (KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10) genes. In the FCCMs, patients have multiple CCMs, different family members are affected, and developmental venous anomalies are absent. CCMs may be asymptomatic or may manifest with focal neurological deficits with or without associated hemorrhage andseizures. Recent studies identify a digenic "triple-hit" mechanism involving the aquisition of three distinct genetic mutations that culminate in phosphatidylinositol-3-kinase (PIK3CA) gain of function, as the basis for rapidly growing and clinically symptomatic CCMs. The pathophysiology of CCMs involves signaling aberrations in the neurovascular unit, including proliferative dysangiogenesis, blood-brain barrier hyperpermeability, inflammation and immune mediated processes, anticoagulant vascular domain, and gut microbiome-driven mechanisms. Clinical trials are investigating potential therapies, magnetic resonance imaging and plasma biomarkers for hemorrhage and CCMs-related epilepsy, as well as different techniques of neuronavigation and neurosonology to guide surgery in order to minimize post-operatory morbidity and mortality. This review addresses the recent data about the natural history, genetics, neuroimaging and therapeutic approaches for CCMs.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/terapia , Mutação
12.
Cell Stem Cell ; 31(6): 818-833.e11, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38754427

RESUMO

The human blood-brain barrier (hBBB) is a highly specialized structure that regulates passage across blood and central nervous system (CNS) compartments. Despite its critical physiological role, there are no reliable in vitro models that can mimic hBBB development and function. Here, we constructed hBBB assembloids from brain and blood vessel organoids derived from human pluripotent stem cells. We validated the acquisition of blood-brain barrier (BBB)-specific molecular, cellular, transcriptomic, and functional characteristics and uncovered an extensive neuro-vascular crosstalk with a spatial pattern within hBBB assembloids. When we used patient-derived hBBB assembloids to model cerebral cavernous malformations (CCMs), we found that these assembloids recapitulated the cavernoma anatomy and BBB breakdown observed in patients. Upon comparison of phenotypes and transcriptome between patient-derived hBBB assembloids and primary human cavernoma tissues, we uncovered CCM-related molecular and cellular alterations. Taken together, we report hBBB assembloids that mimic the core properties of the hBBB and identify a potentially underlying cause of CCMs.


Assuntos
Barreira Hematoencefálica , Hemangioma Cavernoso do Sistema Nervoso Central , Organoides , Células-Tronco Pluripotentes , Humanos , Organoides/patologia , Organoides/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/metabolismo , Células-Tronco Pluripotentes/metabolismo , Modelos Biológicos
13.
Metab Brain Dis ; 39(5): 885-893, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795261

RESUMO

Cerebral cavernous malformations (CCMs) are abnormal clusters of capillaries in the nervous system. This pilot study analyzed the cardiometabolic health status of individuals with familial CCMs caused by a rare mutation in the CCM1 gene (fCCM1). The aim was to compare plasma water T2 values from individuals with fCCM1 with values from metabolically unhealthy and healthy individuals with no known CCM mutations. This observational, cross-sectional study included 75 participants: 11 fCCM1 patients, 24 metabolically unhealthy and 40 metabolically healthy individuals. Plasma water T2, an early, global and practical marker of cardiometabolic health, was measured in the time domain using benchtop magnetic resonance relaxometry. The results were stratified by age (equal to or less than 45 vs. older than 45 years). Group means were compared using Welch's one-way ANOVA and post hoc Tukey-Kramer tests. Multivariable linear regression, with T2 as the outcome variable, was used to explore associations with age, gender, Hispanic ethnicity and fCCM1 status. In the younger age stratum, the fCCM1 group had a mean plasma water T2 value comparable to the metabolically healthy group (p = 0.6388), but higher than the unhealthy group (p < 0.0001). By contrast, in the older stratum, the mean plasma water T2 value for the fCCM1 group was comparable to the metabolically unhealthy group (p = 0.7819) and lower than the healthy group (p = 0.0005). Multivariable linear regression revealed that age and the interaction between age and fCCM1 status were significant predictors of T2, even after adjusting for gender and Hispanic ethnicity. Plasma water T2 shows potential as a biomarker for assessing the health status of individuals with fCCM1. Further research is needed to validate these preliminary observations and elucidate the association between CCMs and cardiometabolic health.


Assuntos
Hispânico ou Latino , Proteína KRIT1 , Mutação , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Fatores Etários , Estudos Transversais , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hispânico ou Latino/genética , Proteína KRIT1/genética , Imageamento por Ressonância Magnética , Projetos Piloto , Água
14.
Front Biosci (Landmark Ed) ; 29(2): 75, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38420834

RESUMO

BACKGROUND: Cerebral Cavernous Malformations (CCMs) are brain vascular abnormalities associated with an increased risk of hemorrhagic strokes. Familial CCMs result from autosomal dominant inheritance involving three genes: KRIT1 (CCM1), MGC4607 (CCM2), and PDCD10 (CCM3). CCM1 and CCM3 form the CCM Signal Complex (CSC) by binding to CCM2. Both CCM1 and CCM2 exhibit cellular heterogeneity through multiple alternative spliced isoforms, where exons from the same gene combine in diverse ways, leading to varied mRNA transcripts. Additionally, both demonstrate nucleocytoplasmic shuttling between the nucleus and cytoplasm, suggesting their potential role in gene expression regulation as transcription factors (TFs). Due to the accumulated data indicating the cellular localization of CSC proteins in the nucleus and their interaction with progesterone receptors, which serve dual roles as both cellular signaling components and TFs, a question has arisen regarding whether CCMs could also function in both capacities like progesterone receptors. METHODS: To investigate this potential, we employed our proprietary deep-learning (DL)-based algorithm, specifically utilizing a biased-Support Vector Machine (SVM) model, to explore the plausible cellular function of any of the CSC proteins, particularly focusing on CCM gene isoforms with nucleocytoplasmic shuttling, acting as TFs in gene expression regulation. RESULTS: Through a comparative DL-based predictive analysis, we have effectively discerned a collective of 11 isoforms across all CCM proteins (CCM1-3). Additionally, we have substantiated the TF functionality of 8 isoforms derived from CCM1 and CCM2 proteins, marking the inaugural identification of CCM isoforms in the role of TFs. CONCLUSIONS: This groundbreaking discovery directly challenges the prevailing paradigm, which predominantly emphasizes the involvement of CSC solely in endothelial cellular functions amid various potential cellular signal cascades during angiogenesis.


Assuntos
Aprendizado Profundo , Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Receptores de Progesterona/metabolismo , Proteínas de Transporte/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
15.
Cureus ; 16(1): e52591, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38371143

RESUMO

Cerebral cavernous malformations (CCM) are capillary vascular malformations of the central nervous system (CNS). These lesions can be either familial or sporadic. We present a case of a 16-year-old girl with familial CCM syndrome who presented with a six-month history of chronic headaches. A magnetic resonance imaging (MRI) scan revealed a large cavernoma in the right frontal lobe that had not been present on a prior scan performed eight years earlier. This case presentation demonstrates the possibility of significant novel cavernoma development further into adolescence.

16.
J Neurosurg ; 140(3): 792-799, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37724811

RESUMO

OBJECTIVE: The authors aimed to investigate the evolutionary characteristics of the Zabramski classification of cerebral cavernous malformations (CCMs) and the value of the Zabramski classification in predicting clinical outcome in patients with sporadic CCM. METHODS: This retrospective study consecutively included cases of sporadic CCM that had been untreated from January 2001 through December 2021. Baseline and follow-up patient information was recorded. The evolution of the Zabramski classification of a sporadic CCM was defined as the initial lesion type changing into another type for the first time on MRI follow-up. The primary outcome was the occurrence of a hemorrhage event, which was defined as a symptomatic event with radiological evidence of overt intracerebral hemorrhage. RESULTS: Among the 255 included cases, 55 (21.6%) were classified as type I CCM, 129 (50.6%) as type II CCM, and 71 (27.8%) as type III CCM, based on initial MRI. During a mean follow-up of 58.8 ± 33.6 months, 51 (20.0%) patients had lesion classification transformation, whereas 204 (80.0%) patients maintained their initial type. Among the 51 transformed lesions, 29 (56.9%) were type I, 11 (21.6%) were type II, and 11 (21.6%) were type III. Based on all follow-up imaging, of the initial 55 type I lesions, 26 (47.3%) remained type I and 27 (49.1%) regressed to type III because of hematoma absorption; 91.5% of type II and 84.5% of type III lesions maintained their initial type during MRI follow-up. The classification change rate of type I lesions was statistically significantly higher than those of type II and III lesions. After a total follow-up of 1157.7 patient-years, new clinical hemorrhage events occurred in 40 (15.7%) patients. The annual cumulative incidence rate for symptomatic hemorrhage in all patients was 3.4 (95% CI 2.5-4.7) per 100 person-years. Kaplan-Meier survival analysis showed that the annual cumulative incidence rate for symptomatic hemorrhage of type I CCM (15.3 per 100 patient-years) was significantly higher than those of type II (0.6 per 100 patient-years) and type III (2.3 per 100 patient-years). CONCLUSIONS: This study suggests that the Zabramski classification is helpful in estimating clinical outcome and can assist with surgical decision-making in patients with sporadic CCM.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Estudos Retrospectivos , Hemangioma Cavernoso do Sistema Nervoso Central/complicações , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Hemangioma Cavernoso do Sistema Nervoso Central/epidemiologia , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/epidemiologia , Imageamento por Ressonância Magnética/efeitos adversos , Estimativa de Kaplan-Meier
17.
Cell Mol Neurobiol ; 44(1): 12, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150042

RESUMO

Intracranial vascular malformations manifest on a continuum ranging from predominantly arterial to predominantly venous in pathology. Cerebral cavernous malformations (CCMs) are capillary malformations that exist at the midpoint of this continuum. The axon guidance factor Ephrin B2 and its receptor EphB4 are critical regulators of vasculogenesis in the developing central nervous system. Ephrin B2/EphB4 dysregulation has been implicated in the pathogenesis of arterial-derived arteriovenous malformations and vein-based vein of Galen malformations. Increasing evidence supports the hypothesis that aberrant Ephrin B2/EphB4 signaling may contribute to developing vascular malformations, but their role in CCMs remains largely uncharacterized. Evidence of Ephrin dysregulation in CCMs would be important to establish a common link in the pathogenic spectrum of EphrinB2/Ephb4 dysregulation. By studying patient-derived primary CCM endothelial cells (CCMECs), we established that CCMECs are functionally distinct from healthy endothelial cell controls; CCMECs demonstrated altered patterns of migration, motility, and impaired tube formation. In addition to the altered phenotype, the CCMECs also displayed an increased ratio of EphrinB2/EphB4 compared to the healthy endothelial control cells. Furthermore, whole exome sequencing identified mutations in both EphrinB2 and EphB4 in the CCMECs. These findings identify functional alterations in the EphrinB2/EphB4 ratio as a feature linking pathophysiology across the spectrum of arterial, capillary, and venous structural malformations in the central nervous system while revealing a putative therapeutic target.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Receptor EphB2 , Receptor EphB4 , Humanos , Receptor EphB4/genética , Receptor EphB2/genética , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Células Endoteliais/patologia , Cultura Primária de Células , Sequenciamento do Exoma , Masculino , Feminino , Pré-Escolar , Criança , Adolescente
18.
Res Sq ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37674713

RESUMO

Introduction: Cerebral cavernous malformations (CCMs) are abnormal clusters of capillaries in the nervous system. This pilot study analyzed the cardiometabolic health status of individuals with familial CCMs caused by a rare mutation in the CCM1 gene (fCCM1). The aim was to compare plasma water T2 values from individuals with fCCM1 with values from metabolically unhealthy and healthy individuals with no known CCM mutations. Design: This observational, cross-sectional study included 75 participants: 11 fCCM1 patients, 24 metabolically unhealthy and 40 metabolically healthy individuals. Plasma water T2, an early, global and practical marker of cardiometabolic health, was measured in the time domain using benchtop magnetic resonance relaxometry. The results were stratified by age (equal to or less than 45 vs. older than 45 years). Group means were compared using Welch's one-way ANOVA and post hoc Tukey-Kramer tests. Multivariable linear regression, with T2 as the outcome variable, was used to explore associations with age, gender, Hispanic ethnicity and fCCM1 status. Results: In the younger age stratum, the fCCM1 group had a mean plasma water T2 value comparable to the metabolically healthy group (p=0.6388), but higher than the unhealthy group (p<0.0001). By contrast, in the older stratum, the mean plasma water T2 value for the fCCM1 group was comparable to the metabolically unhealthy group (p=0.7819) and lower than the healthy group (p=0.0005). Multivariable linear regression revealed that age and the interaction between age and fCCM1 status were significant predictors of T2, even after adjusting for gender and Hispanic ethnicity. Conclusion: Plasma water T2 shows potential as a biomarker for assessing the health status of individuals with fCCM1. Further research is needed to validate these preliminary observations and elucidate the association between CCMs and cardiometabolic health.

19.
Asian J Neurosurg ; 18(2): 272-292, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37397055

RESUMO

Introduction Cerebral cavernous malformations (CCMs) account for about 5 to 13% of intracranial vascular malformations. Cystic cerebral cavernous malformations (cCCMs) are a rare morphological variant and can cause diagnostic and therapeutic dilemmas. We describe our five such cases and review the existing literature on this entity. Methods A search of the PubMed database for cCCMs was done, and all articles in English emphasizing the reporting of cCCMs were selected. A total of 42 publications describing 52 cases of cCCMs were selected for analysis. Epidemiological data, clinical presentation, imaging features, the extent of resection, and outcome were analyzed. Radiation-induced cCCMs were excluded. We have also described five of our cases of cCCMs and reported our experience. Results The median age at presentation was 29.5 years. Twenty-nine patients had supratentorial lesions, 21 had infratentorial lesions, and 2 had lesions in both compartments. Among our four patients, three had infratentorial lesions, whereas one had a supratentorial lesion. Multiple lesions were seen in four patients. A majority (39) had symptoms of mass effect (75%), and 34 (65.38%) had raised intracranial pressure (ICP), whereas only 11 (21.15%) had seizures. Among our four operated patients, all of them had symptoms of mass effect, and two of them also had features of raised ICP. The extent of resection was gross total in 36 (69.23%), subtotal in 2 (3.85%), and not reported in 14 (26.93%). All four of our operated patients underwent gross total resection, but two of them underwent a second surgery. Of the 48 patients in whom the surgical outcome was reported, 38 improved (73.08%). One showed a transient worsening followed by improvement, one developed a worsening of the pre-existing focal neurological deficit (FND), two developed a new FND, and 5 had no improvement in their FNDs. Death occurred in one patient. All four of our operated patients improved after surgery, although three of them showed a transient worsening of FNDs. One patient is under observation. Conclusion cCCMs are rare morphological variants and can cause considerable diagnostic and therapeutic dilemmas. They should be considered in the differential diagnosis of any atypical cystic intracranial mass lesion. Complete excision is curative, and the outcome is generally favorable; although transient deficits may be seen.

20.
Front Neurosci ; 17: 1184333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214396

RESUMO

Cerebral cavernous malformations (CCMs) are common vascular anomaly diseases in the central nervous system associated with seizures, cerebral microbleeds, or asymptomatic mostly. CCMs can be classified as sporadic or familial, with familial cerebral cavernous malformations (fCCMs) being the autosomal dominant manner with incomplete penetrance. Germline mutations of KRIT1, CCM2, and PDCD10 are associated with the pathogenesis of fCCMs. Till now, little is known about the fCCMs mutation spectrum in the Han Chinese population. In this study, we enrolled a large, aggregated family, 11/26 of the family members were diagnosed with CCMs by pathological or neuroradiological examination, with a high percentage (5/9) of focal spinal cord involvement. Genomic DNA sequencing verified a novel duplication mutation (c.1119dupT, p.L374Sfs*9) in exon 9 of the Krev interaction trapped 1 (KRIT1) gene. The mutation causes a frameshift and is predicted to generate a truncated KRIT1/CCM1 protein of 381 amino acids. All our findings confirm that c.1119dupT mutation of KRIT1 is associated with fCCMs, which enriched the CCM genes' mutational spectrum in the Chinese population and will be beneficial for deep insight into the pathogenesis of Chinese fCCMs. Additionally, with a retrospective study, we analyzed the molecular genetic features of Chinese fCCMs, most of the Chinese fCCMs variants are in the KRIT1 gene, and all these variants result in the functional deletion or insufficiency of the C-terminal FERM domain of the KRIT1 protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA