Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 687
Filtrar
1.
ACS Nano ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012788

RESUMO

Chemiresistive gas sensors based on semiconducting metal oxides typically rely on noble metal catalysts to enhance their sensitivity and selectivity. However, noble metal catalysts have several drawbacks for practical utilization, including their high cost, their propensity for spontaneous agglomeration, and poisoning effects with certain types of gases. As such, in the interest of commercializing the chemiresistive gas sensor technology, we propose an alternative design for a noble-metal-free sensing material through the case study of Co-doped ceria (Co-CeO2) catalysts embedded in a SnO2 matrix. In this investigation, we utilized electrospinning and subsequent calcination to prepare Co-CeO2 catalyst nanoparticles integrated with SnO2 nanofibers (NFs) with uniform particle distribution and particle size regulation down to the sub-2 nm regime. The resulting Co-CeO2@SnO2 NFs exhibited superior gas sensing characteristics toward isoprene (C5H8) gas, a significant biomarker for monitoring the onset of various diseases through breath diagnostics. In particular, we identified that the Co-CeO2 catalysts, owing to the transition metal doping, facilitated the spillover of chemisorbed oxygen species to the SnO2 sensing body. This resulting in the sensor having a 27.4-fold higher response toward 5 ppm of C5H8 (compared to pristine SnO2), exceptionally high selectivity, and a low detection limit of 100 ppb. The sensor also exhibited high stability for prolonged response-recovery cycles, attesting to the strong anchoring of Co-CeO2 catalysts in the SnO2 matrix. Based on our findings, the transition metal-doped metal oxide catalysts, such as Co-CeO2, demonstrate strong potential to completely replace noble metal catalysts, thereby advancing the development of the commercially viable chemiresistive gas sensors free from noble metals, capable of detecting target gases at sub-ppm levels.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39003249

RESUMO

Cerium oxide nanoparticles (CeO2), as a metal oxide nanomaterial, are increasingly used for various industrial and biomedical applications. Although their cytotoxicity to bacteria and the associated mechanisms have attracted particular attention, the mechanisms behind their antifungal effects have remained unclear. This study investigated the antifungal properties of CeO2, focusing on Aspergillus oryzae. CeO2 inhibited fungal spore germination on solid substrates, and the effect was fungistatic rather than fungicidal. CeO2 inhibited fungal growth, especially under UV irradiation, and induced reactive oxygen species (ROS) production. Tocopherol reduced the intracellular ROS levels and the growth-inhibitory effects of CeO2, suggesting that ROS are involved in these growth-inhibitory effects. Transcriptomic analysis revealed upregulated expression of genes related to phospholipases and phosphate metabolism. CeO2 affected phosphate ion concentration in the medium, potentially influencing cellular responses. This research provided valuable insights into the antifungal effects of CeO2 application, which differ from those of conventional photocatalysts like TiO2.

3.
J Nanobiotechnology ; 22(1): 399, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970101

RESUMO

Spinal cord injury (SCI) represents a profound central nervous system affliction, resulting in irreversibly compromised daily activities and disabilities. SCI involves excessive inflammatory responses, which are characterized by the existence of high levels of proinflammatory M1 macrophages, and neuronal mitochondrial energy deficit, exacerbating secondary damage and impeding axon regeneration. This study delves into the mechanistic intricacies of SCI, offering insights from the perspectives of neuroimmune regulation and mitochondrial function, leading to a pro-fibrotic macrophage phenotype and energy-supplying deficit. To address these challenges, we developed a smart scaffold incorporating enzyme mimicry nanoparticle-ceriumoxide (COPs) into nanofibers (NS@COP), which aims to pioneer a targeted neuroimmune repair strategy, rescuing CGRP receptor on macrophage and concurrently remodeling mitochondrial function. Our findings indicate that the integrated COPs restore the responsiveness of pro-inflammatory macrophages to calcitonin gene-related peptide (CGRP) signal by up-regulating receptor activity modifying protein 1 (RAMP1), a vital component of the CGRP receptor. This promotes macrophage fate commitment to an anti-inflammatory pro-resolution M2 phenotype, then alleviating glial scar formation. In addition, NS@COP implantation also protected neuronal mitochondrial function. Collectively, our results suggest that the strategy of integrating nanozyme COP nanoparticles into a nanofiber scaffold provides a promising therapeutic candidate for spinal cord trauma via rational regulation of neuroimmune communication and mitochondrial function.


Assuntos
Axônios , Macrófagos , Nanofibras , Regeneração Nervosa , Traumatismos da Medula Espinal , Animais , Axônios/metabolismo , Nanofibras/química , Regeneração Nervosa/efeitos dos fármacos , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Ratos , Alicerces Teciduais/química , Nanopartículas/química , Ratos Sprague-Dawley , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Feminino , Camundongos Endogâmicos C57BL
4.
ACS Appl Mater Interfaces ; 16(27): 34757-34771, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38946068

RESUMO

Dry eye disease (DED) is a chronic multifactorial ocular surface disease mainly caused by the instability of tear film, characterized by a series of ocular discomforts and even visual disorders. Oxidative stress has been recognized as an upstream factor in DED development. Diquafosol sodium (DQS) is an agonist of the P2Y2 receptor to restore the integrity/stability of the tear film. With the ability to alternate between Ce3+ and Ce4+, cerium oxide nanozymes could scavenge overexpressed reactive oxygen species (ROS). Hence, a DQS-loaded cerium oxide nanozyme was designed to boost the synergistic treatment of DED. Cerium oxide with branched polyethylenimine-graft-poly(ethylene glycol) as nucleating agent and dispersant was fabricated followed with DQS immobilization via a dynamic phenylborate ester bond, obtaining the DQS-loaded cerium oxide nanozyme (defined as Ce@PBD). Because of the ability to mimic the cascade processes of superoxide dismutase and catalase, Ce@PBD could scavenge excessive accumulated ROS, showing strong antioxidant and anti-inflammatory properties. Meanwhile, the P2Y2 receptors in the conjunctival cells could be stimulated by DQS in Ce@PBD, which can relieve the incompleteness and instability of the tear film. The animal experiments demonstrated that Ce@PBD significantly restored the defect of the corneal epithelium and increased the number of goblet cells, with the promotion of tear secretion, which was the best among commercial DQS ophthalmic solutions.


Assuntos
Cério , Síndromes do Olho Seco , Cério/química , Cério/farmacologia , Animais , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/patologia , Síndromes do Olho Seco/metabolismo , Nucleotídeos de Uracila/química , Nucleotídeos de Uracila/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Humanos , Antioxidantes/química , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Polifosfatos/química , Polifosfatos/farmacologia , Camundongos , Coelhos
5.
Small ; : e2401925, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007535

RESUMO

The voluntary introduction of defects can be considered an effective strategy for enhancing the electrochemical properties of metal oxide electrodes. In this study, the enhanced pseudocapacitive properties of an acceptor (Gd) doped cerium oxide nanoparticle-a sustainable metal oxide with low environmental and human toxicity-are investigated in depth using ex situ X-ray photoemission spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Interestingly, with 15 at% Gd doping (15GDC), the specific capacitance of the nanoparticles measured at 1 A g-1 enhanced to 547.8 F g-1, which is fivefold higher than undoped CeO2 (98.7 F g-1 at 1 A g-1). The rate-dependent capacitance is also improved for 15GDC, which showed a 31.0% decrease in the specific capacitance upon a tenfold increase in the current density, while CeO2 showed a 49.9% decrease. The enhanced electrochemical properties are studied in depth via ex situ XPS and EIS analysis, which revealed that the oxygen vacancies at the surface of the nanoparticles played important roles in enhancing both the specific capacitance and the high-rate performance of 15GDC by acting as the active site for pseudocapacitive redox reaction and allowing fast diffusion of oxygen ions at the surface of 15GDC nanoparticles.

6.
Environ Sci Technol ; 58(28): 12742-12753, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38959431

RESUMO

Short carbon chain alkanes, as typical volatile organic compounds (VOCs), have molecular structural stability and low molecular polarity, leading to an enormous challenge in the catalytic oxidation of propane. Although Ru-based catalysts exhibit a surprisingly high activity for the catalytic oxidation of propane to CO2 and H2O, active RuOx species are partially oxidized and sintered during the oxidation reaction, leading to a decrease in catalytic activity and significantly inhibiting their application in industrial processes. Herein, the Ru/Ce@Co catalyst is synthesized with a specific structure, in which cerium dioxide is dispersed in a thin layer on the surface of Co3O4, and Ru nanoparticles fall preferentially on cerium oxide with high dispersity. Compared with the Ru/CeO2 and Ru/Co3O4 catalysts, the Ru/Ce@Co catalyst demonstrates excellent catalytic activity and stability for the oxidation of propane, even under severe operating conditions, such as recycling reaction, high space velocity, a certain degree of moisture, and high temperature. Benefiting from this particular structure, the Ru/Ce@Co (5:95) catalyst with more Ce3+ species leads to the Ru species being anchored more firmly on the CeO2 surface with a low-valent state and has a strong potential for adsorption and activation of propane and oxygen, which is beneficial for RuOx species with high activity and stability. This work provides a novel strategy for designing high-efficiency Ru-based catalysts for the catalytic combustion of short carbon alkanes.


Assuntos
Oxirredução , Catálise , Cério/química , Propano/química , Propano/análogos & derivados , Rutênio/química
7.
Int J Biol Macromol ; 276(Pt 1): 133702, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972659

RESUMO

Bacterial cellulose (BC) is a promising natural polymer prized for its biocompatibility, microporosity, transparency, conformability, elasticity, and ability to maintain a moist wound environment while absorbing exudates. These attributes make BC an attractive material in biomedical applications, particularly in skin tissue repair. However, its lack of inherent antimicrobial activity limits its effectiveness. In this study, BC was enhanced by incorporating cerium (IV)-oxide (CeO2) nanoparticles, resulting in a series of bacterial cellulose-CeO2 (BC-CeO2) composite materials. Characterization via FESEM, XRD, and FTIR confirmed the successful synthesis of the composites. Notably, BC-CeO2-1 exhibited no cytotoxic or genotoxic effects on peripheral blood lymphocytes, and it additionally protected cells from genotoxic and cytotoxic effects in H2O2-treated cultures. Redox parameters in blood plasma samples displayed concentration and time-dependent trends in PAB and LPP assays. The incorporation of CeO2 nanoparticles also bolstered antimicrobial activity, expanding the potential biomedical applications of these composites.

8.
Cell Biochem Funct ; 42(5): e4092, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978266

RESUMO

Throughout radiotherapy, radiation of the hepatic tissue leads to damage of the hepatocytes. We designed the current study to examine how cerium oxide nanoparticles (CONPs) modulate gamma irradiation-induced hepatotoxicity in rats. Animals received CONPs (15 mg/kg body weight [BW], ip) single daily dose for 14 days, and they were exposed on the seventh day to a single dose of gamma radiation (6 Gy). Results showed that irradiation increased serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase activities. Furthermore, it elevated oxidative stress biomarker; malondialdehyde (MDA) and inhibited the activities of antioxidant enzymes (superoxide dismutase and glutathione peroxidase) in hepatic tissues homogenate. Additionally, hepatic apoptotic markers; caspase-3 (Casp-3) and Casp-9 were elevated and the B-cell lymphoma-2 (Bcl-2) gene level was decreased in rats exposed to radiation dose. We observed that CONPs can modulate these changes, where CONPs reduced liver enzyme activities, MDA, and apoptotic markers levels, in addition, it elevated antioxidant enzyme activities and Bcl-2 gene levels, as well as improved histopathological changes in the irradiated animals. So our results concluded that CONPs had the ability to act as radioprotector defense against hepatotoxicity resulted during radiotherapy.


Assuntos
Antioxidantes , Apoptose , Cério , Raios gama , Fígado , Nanopartículas , Cério/farmacologia , Cério/química , Animais , Raios gama/efeitos adversos , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos , Masculino , Fígado/efeitos dos fármacos , Fígado/efeitos da radiação , Fígado/metabolismo , Fígado/patologia , Nanopartículas/química , Ratos Wistar , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Alanina Transaminase/metabolismo , Alanina Transaminase/sangue , Malondialdeído/metabolismo , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/sangue , Superóxido Dismutase/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
9.
Polymers (Basel) ; 16(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000644

RESUMO

Cerium oxide nanoparticles (CeONPs), as part of tissue regeneration matrices, can protect cells from reactive oxygen species and oxidative stress. In addition, they can influence the properties of the scaffold, including its electrospinnability and mechanical strength. In this work, we prepared electrospun fiber mats from a chitosan and polyethylene oxide blend (CS-PEO) with the addition of ceria nanoparticles (CS-PEO-CeONP). The addition of CeONPs resulted in a smaller fiber diameter and higher swelling compared to CS-PEO fiber mats. CeONP-modified fiber mats also had a higher Young's modulus due to the reinforcing effect of the nanoparticles. Both mats had comparable adhesion and cytocompatibility to mesenchymal stem cells, which had a more rounded morphology on CS-PEO-CeONP compared to elongated cells on the CS-PEO mats. Biocompatibility in an in vivo rat model showed no acute toxicity, no septic or allergic inflammation, and no rough scar tissue formation. The degradation of both mats passed the stage of matrix swelling. CS-PEO-CeONP showed significantly slower biodegradation, with most of the matrix remaining in the tissue after 90 days. The reactive inflammation was aseptic in nature with the involvement of multinucleated foreign-body type giant cells and was significantly reduced by day 90. CeONPs induced the formation of the implant's connective tissue capsule. Thus, the introduction of CeONPs influenced the physicochemical properties and biological activity of CS-PEO nanofiber mats.

10.
J Colloid Interface Sci ; 674: 873-883, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38955018

RESUMO

Lithium-sulfur batteries (LSBs) hold promise as the next-generation lithium-ion batteries (LIBs) due to their ultra-high theoretical capacity and remarkable cost-efficiency. However, these batteries suffer from the serious shuttle effect, challenging their practical application. To address this challenge, we have developed a unique interlayer (HCON@CNWF) composed of hollow cerium oxide nanorods (CeO2) anchored to carbonized non-woven viscose fabric (CNWF), utilizing a straightforward template method. The prepared interlayer features a three-dimensional (3D) conductive network that serves as a protective barrier and enhances electron/ion transport. Additionally, the CeO2 component effectively chemisorbs and catalytically transforms lithium polysulfides (LiPSs), offering robust chemisorption and activation sites. Moreover, the unique porous structure of the HCON@CNWF not only physically adsorbs LiPSs but also provides ample space for sulfur's volume expansion, thus mitigating the shuttle effect and safeguarding the electrode against damage. These advantages collectively contribute to the battery's outstanding electrochemical performance, notably in retaining a reversible capacity of 80.82 % (792 ± 5.60 mAh g-1) of the initial value after 200 charge/discharge cycles at 0.5C. In addition, the battery with HCON@CNWF interlayer has excellent electrochemical performance at high sulfur loading (4 mg cm-2) and low liquid/sulfur ratio (7.5 µL mg-1). This study, thus, offers a novel approach to designing advanced interlayers that can enhance the performance of LSBs.

11.
Acta Biomater ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38997079

RESUMO

Dry eye disease (DED) is a kind of multifactorial ocular surface disease that displays ocular discomfort, visual disturbance, and tear film instability. Oxidative stress is a fundamental pathogenesis in DED. An imbalance between the reactive oxygen species (ROS) level and protective enzyme action will lead to oxidative stress, cell dysfunction, tear hyperosmolarity, and inflammation. Herein, a multifunctional cerium oxide nanozyme with high ocular surface retention property was designed to neutralize over-accumulated ROS and restore redox balance. Cerium oxide nanozymes were fabricated via branched polyethylenimine-graft-poly (ethylene glycol) nucleation and dispersion, followed by phenylboronic acid (PBA) functionalization (defined as Ce@PB). Due to the dynamic chemical bonding formation between the PBA segment and the cis-diol groups in the mucin layer of the tear film, Ce@PB nanozymes possess good adhesive capability to the ocular surface, thus extending the drug's retention time. On the other hand, Ce@PB nanozymes could mimic the cascade processes of superoxide dismutase and catalase to maintain intracellular redox balance. In vitro and in vivo studies suggest that such multifunctional nanozymes possess good biocompatibility and hemocompatibility. More importantly, Ce@PB nanozymes treatment in the animal model could repair corneal epithelial defect, increase the number of goblet cells and promote tear secretion, thus achieving an effective treatment for DED. STATEMENT OF SIGNIFICANCE.

12.
ACS Appl Mater Interfaces ; 16(28): 36047-36062, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38978477

RESUMO

Sepsis, a life-threatening condition caused by a dysregulated immune response to infection, leads to systemic inflammation, immune dysfunction, and multiorgan damage. Various oxidoreductases play a very important role in balancing oxidative stress and modulating the immune response, but they are stored inconveniently, environmentally unstable, and expensive. Herein, we develop multifunctional artificial enzymes, CeO2 and Au/CeO2 nanozymes, exhibiting five distinct enzyme-like activities, namely, superoxide dismutase, catalase, glutathione peroxidase, peroxidase, and oxidase. These artificial enzymes have been used for the biocatalytic treatment of sepsis via inhibiting inflammation and modulating immune responses. These nanozymes significantly reduce reactive oxygen species and proinflammatory cytokines, achieving multiorgan protection. Notably, CeO2 and Au/CeO2 nanozymes with enzyme-mimicking activities can be particularly effective in restoring immunosuppression and maintaining homeostasis. The redox nanozyme offers a promising dual-protective strategy against sepsis-induced inflammation and organ dysfunction, paving the way for biocatalytic-based immunotherapies for sepsis and related inflammatory diseases.


Assuntos
Cério , Ouro , Inflamação , Sepse , Sepse/tratamento farmacológico , Sepse/imunologia , Animais , Inflamação/tratamento farmacológico , Inflamação/imunologia , Ouro/química , Cério/química , Cério/uso terapêutico , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Catalase/metabolismo , Catalase/química , Citocinas/metabolismo
13.
Front Bioeng Biotechnol ; 12: 1404651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832127

RESUMO

Skin wound healing is a complex and tightly regulated process. The frequent occurrence and reoccurrence of acute and chronic wounds cause significant skin damage to patients and impose socioeconomic burdens. Therefore, there is an urgent requirement to promote interdisciplinary development in the fields of material science and medicine to investigate novel mechanisms for wound healing. Cerium oxide nanoparticles (CeO2 NPs) are a type of nanomaterials that possess distinct properties and have broad application prospects. They are recognized for their capabilities in enhancing wound closure, minimizing scarring, mitigating inflammation, and exerting antibacterial effects, which has led to their prominence in wound care research. In this paper, the distinctive physicochemical properties of CeO2 NPs and their most recent synthesis approaches are discussed. It further investigates the therapeutic mechanisms of CeO2 NPs in the process of wound healing. Following that, this review critically examines previous studies focusing on the effects of CeO2 NPs on wound healing. Finally, it suggests the potential application of cerium oxide as an innovative nanomaterial in diverse fields and discusses its prospects for future advancements.

14.
J Phys Condens Matter ; 36(37)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38857601

RESUMO

With the aim of sensitizing cerium oxide-a very important catalytic material-to visible light, its coupling with Au and Cu nanoparticles is investigated. The samples are grown by physical synthesis by embedding a layer of nanoparticles between two cerium oxide films. The films are controlled in composition byin-situx-ray photoemission spectroscopy and in morphology byex-situscanning electron microscopy. The optical properties as a function of the oxide thickness, investigated by spectrophotometry in the UV-Vis range, are interpreted based on the results of the morphological characterization and of simulations based on the Maxwell Garnett model. The stability of chemical and optical properties after air exposure is also investigated. The results, indicating that stable materials with tuneable optical properties can be obtained, are important in view of the potential application of the investigated systems in photocatalysis.

15.
Nanomedicine (Lond) ; : 1-18, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912661

RESUMO

Aim: To assess the chemo-immunomodulatory effects of doxorubicin-loaded cerium oxide nanoparticles coated with oleyl amine-linked cyclic RGDfK peptide (CeNP+Dox+RGD) to target both gliomas and its tumor microenvironment (TME) via integrin receptors. Materials & methods: CeNP+Dox+RGD nanoparticles are synthesized by the sequential addition of cerium III chloride heptahydrate, beta-cyclodextrin, oleic acid, and F127 micelle (CeNP). Doxorubicin was then loaded into CeNPs and coated with oleyl amine-linked cyclic RGDfK peptide to form stable CeNP+Dox+RGD nanoparticles. Results: CeNP+Dox+RGD nanoparticles crossed blood-brain barrier (BBB) effectively and demonstrated threefold enhanced survivability in glioma-bearing mice. The IHC profiling of glial tumor cross-sections showed increased CD80 expression (M1 TAMs) and decreased arginase-1 expression (M2 TAMs). Conclusion: CeNP+Dox+RGD can be an immunotherapeutic treatment option to combat glioblastoma.


[Box: see text].

16.
ACS Appl Mater Interfaces ; 16(27): 34705-34719, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38935462

RESUMO

Osteoarthritis (OA) is a progressive joint disorder characterized by sustained oxidative stress, chronic inflammation, and the degradation of cartilage. Despite extensive research on nanocarrier treatment strategies, the therapeutic efficacy remains limited due to the lack of satisfactory vehicles that can simultaneously exhibit excellent ROS scavenging capabilities and high drug loading capacity for effective nonsurgical management of OA. In this work, we propose an innovative strategy utilizing hollow mesoporous cerium oxide nanospheres coated with membranes derived from apoptotic chondrocytes as a reactive oxygen species "sweeper" for targeted and anti-inflammatory therapy of OA. The developed DEX@HMCeNs@M demonstrates superior drug loading capacity, notable antioxidant properties, favorable biocompatibility, and controlled drug release. By leveraging the camouflage provided by apoptotic chondrocyte membranes, the engineered DEX@HMCeNs@M, which bear natural "eat me" signals, can effectively mimic chondrocyte apoptotic bodies within the joints, thereby enabling targeted delivery of the anti-inflammatory drug DEX and subsequent controlled release triggered by the acidic environment of OA. Both in vitro and in vivo experiments validate the enhanced therapeutic efficacy of our DEX@HMCeNs@M sweeper, which operates through a synergistic mechanism involving scavenging of ROS overproduction, inhibition of inflammation, restoration of mitochondrial damage, and reduction of chondrocyte apoptosis. These findings underscore the potential and efficiency of our developed DEX@HMCeNs@M strategy as an encouraging interventional approach for the progressive treatment of OA.


Assuntos
Anti-Inflamatórios , Cério , Condrócitos , Nanosferas , Osteoartrite , Espécies Reativas de Oxigênio , Cério/química , Cério/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Nanosferas/química , Apoptose/efeitos dos fármacos , Camundongos , Humanos , Porosidade , Ratos , Liberação Controlada de Fármacos
17.
ACS Appl Mater Interfaces ; 16(26): 33106-33120, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38906850

RESUMO

The scavenging ability of cerium oxide nanoparticles (CeNPs) for reactive oxygen species has been intensively studied in the field of catalysis. However, the immunological impact of these particles has not yet been thoroughly investigated, despite intensive research indicating that modulation of the reactive oxygen species could potentially regulate cell fate and adaptive immune responses. In this study, we examined the intrinsic capability of CeNPs to induce tolerogenic dendritic cells via their reactive oxygen species-scavenging effect when the autoantigenic peptides were simply mixed with CeNPs. CeNPs effectively reduced the intracellular reactive oxygen species levels in dendritic cells in vitro, leading to the suppression of costimulatory molecules as well as NLRP3 inflammasome activation, even in the presence of pro-inflammatory stimuli. Subcutaneously administrated PEGylated CeNPs were predominantly taken up by antigen-presenting cells in lymph nodes and to suppress cell maturation in vivo. The administration of a mixture of PEGylated CeNPs and myelin oligodendrocyte glycoprotein peptides, a well-identified autoantigen associated with antimyelin autoimmunity, resulted in the generation of antigen-specific Foxp3+ regulatory T cells in mouse spleens. The induced peripheral regulatory T cells actively inhibited the infiltration of autoreactive T cells and antigen-presenting cells into the central nervous system, ultimately protecting animals from experimental autoimmune encephalomyelitis when tested using a mouse model mimicking human multiple sclerosis. Overall, our findings reveal the potential of CeNPs for generating antigen-specific immune tolerance to prevent multiple sclerosis, opening an avenue to restore immune tolerance against specific antigens by simply mixing the well-identified autoantigens with the immunosuppressive CeNPs.


Assuntos
Cério , Células Dendríticas , Encefalomielite Autoimune Experimental , Tolerância Imunológica , Nanopartículas , Peptídeos , Espécies Reativas de Oxigênio , Cério/química , Cério/farmacologia , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Nanopartículas/química , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Tolerância Imunológica/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/imunologia , Camundongos Endogâmicos C57BL , Autoantígenos/imunologia , Autoantígenos/química , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Feminino , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia
18.
Int J Biol Macromol ; 273(Pt 2): 133091, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878924

RESUMO

The increasing significance of biopolymer-based food packaging can be attributed to its biodegradability and independence from petroleum-derived materials. Concurrently, metal oxide nanoparticles (NPs) have gained prominence as effective antimicrobial agents against both wild-type and antibiotic-resistant microbes. In this study, cerium oxide or ceria, CeO2, nanoparticles with an average diameter of 50 nm were synthesized via a green method utilizing Vibrio sp. VLC cell lysate supernatant. The synthesized CeO2 NPs displayed remarkable antimicrobial properties, inhibiting the growth of Escherichia coli and Staphylococcus aureus by 93.7 % and 98 %, respectively. To enhance the potential of bacterial cellulose (BC) for advanced applications, we developed a BC/xanthan/CeO2 nanocomposite using both ex situ and in situ techniques. The integration of CeO2 NPs within the nanocomposite structure not only improved the inherent properties of BC, but also rendered it suitable for use in active food packaging systems. The nanocomposite exhibited no significant cytotoxicity on the human dermal fibroblast (HDF) cells, confirming its safety. Nanocomposites containing biogenically synthesized CeO2 NPs demonstrated exceptional efficacy for reducing microbial contamination. Bread samples coated with nanocomposite films displayed no signs of microbial growth. These results support the application of BC/xanthan/CeO2 nanocomposites as suitable and effective coating materials for antimicrobial food packaging applications.


Assuntos
Antibacterianos , Celulose , Cério , Embalagem de Alimentos , Nanocompostos , Polissacarídeos Bacterianos , Celulose/química , Celulose/farmacologia , Embalagem de Alimentos/métodos , Cério/química , Cério/farmacologia , Nanocompostos/química , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química
19.
Mikrochim Acta ; 191(7): 425, 2024 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-38926184

RESUMO

A solvothermal synthesis of ultrasmall cerium oxide nanoparticles (USCeOxNPs) with an average size of 0.73 ± 0.07 nm using deep eutectic solvent (DES) as a stabilizing medium at a temperature of 90 ºC is reported. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were used to morphologically characterize the USCeOxNPs. These revealed approximately spherical shapes with emission lines characteristic of cerium. Selected area electron diffraction (SAED) was used to determine the crystalline structure of the cerium oxide nanoparticles (CeO2NPs), revealing the presence of crystalline cubic structures. The USCeOxNPs-DES/CB film was characterized by scanning electron microscopy (SEM), which demonstrated the spherical characteristic of CB with layers slightly covered by DES residues. DES was characterized by Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR), indicating its formation through hydrogen bonds between the precursors. An electrochemical sensor for dopamine (DA) determination in biological fluids was developed using the USCeOxNPs together with carbon black (CB). An enhanced current response was observed on DA voltammetric determination, and this can be attributed to the USCeOxNPs. This sensor displayed linear responses for DA in the range 5.0 × 10-7 mol L-1 to 3.2 × 10-4 mol L-1, with a limit of detection of 80 nmol L-1. Besides detectability, excellent performances were verified for repeatability and anti-interference. The sensor based on USCeOxNPs synthesized in DES in a simpler and environmentally friendly way was successfully applied to determine DA in biological matrix.


Assuntos
Cério , Dopamina , Técnicas Eletroquímicas , Cério/química , Dopamina/análise , Dopamina/sangue , Técnicas Eletroquímicas/métodos , Humanos , Solventes Eutéticos Profundos/química , Nanopartículas/química , Limite de Detecção , Nanopartículas Metálicas/química , Tamanho da Partícula
20.
Environ Sci Pollut Res Int ; 31(26): 38274-38287, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38802614

RESUMO

With the wide application of nanomaterials, the concentration of nanomaterials in natural water continues to increase, which poses a severe threat to the water environment. However, the influence of organic matter and nanomaterials rich in natural water on the toxic effect of algae growth is still unclear. In this study, the effects of humic acid (HA) and nano-cerium oxide (nCeO2) on the physiology and transcriptome of Chlorella sp. were analyzed, and the mechanism of the toxic effect of HA on Chlorella sp. under nCeO2 stress was revealed. Under 20-200 mg/L nCeO2 stress, the growth of Chlorella cells was inhibited and the highest inhibition rate reached 52% within 200 mg/L nCeO2. The Fv/Fm and ETRmax values of Chlorella sp. decreased from 0.490 and 24.45 (20 mg/L nCeO2) to 0.488 and 23.4 (100 mg/L nCeO2), respectively. Under the stimulation of nCeO2, the level of reactive oxygen species in algal cells was increased, accompanied by lipid peroxidation and membrane damage. However, the addition of HA at concentrations of 5-10 mg/L effectively alleviated the toxic effect of nCeO2 on Chlorella sp. Transcriptome analysis showed that 10 mg/L HA could alleviate the cellular stress at 100 mg/L nCeO2 on Chlorella sp. by regulating genes related to photosynthesis and metabolism pathways. Moreover, the downregulation of genes (e.g., Lhca1, Lhcb1, AOC3, and AOC2) indicated that HA reduced the level of oxidative stress in Chlorella sp. These findings offer novel insights of evaluating the ecotoxicity nCeO2 and HA in natural water environment and their impact on Chlorella sp.


Assuntos
Cério , Chlorella , Substâncias Húmicas , Chlorella/efeitos dos fármacos , Cério/toxicidade , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA