Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Microorganisms ; 12(10)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39458273

RESUMO

Safe containment of infectious poliovirus (PV) within Poliovirus-Essential Facilities (PEFs) will require the implementation of reliable PV-inactivation approaches for decontaminating work surfaces. Such approaches should be demonstrated empirically to display adequate efficacy at the use temperature, and the contact times required should be characterized to ensure efficacy. Such efficacy is judged by the ability of the inactivation approach to completely inactivate any PV deposited, with the demonstrated total log10 reduction in PV titer being as high as empirically achievable. We screened several approaches for their efficacy in inactivating wild-type PV type 1 Chat strain experimentally deposited on stainless-steel carriers at room temperature. On the basis of the results, we selected two approaches (5000 ppm sodium hypochlorite in water and 95% v/v ethanol in water) for further characterization for repeatability of efficacy (log10 reduction in PV titer) and time kinetics of inactivation. We now report that both PV-inactivation approaches, which should be readily available to all PEF laboratories globally, fulfill the expectations expressed above, with 5000 ppm sodium hypochlorite reproducibly causing ≥5.38 log10 inactivation and 95% ethanol reproducibly causing ≥4.46 log10 inactivation of PV on stainless-steel surfaces within a 5 min contact time at room temperature.

2.
BMC Microbiol ; 24(1): 413, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420248

RESUMO

BACKGROUND: Non-enveloped viruses, which lack a lipid envelope, display higher resistance to disinfectants, soaps and sanitizers compared to enveloped viruses. The capsids of these viruses are highly stable and symmetric protein shells that resist inactivation by commonly employed virucidal agents. This group of viruses include highly transmissible human pathogens such as Rotavirus, Poliovirus, Foot and Mouth Disease Virus, Norovirus and Adenovirus; thus, devising appropriate strategies for chemical disinfection is essential. RESULTS: In this study, we tested a mild, hypoallergenic combination of a denaturant, alcohol, and organic acid (3.2% citric acid, 1% urea and 70% ethanol, pH4) on two representative non-enveloped viruses - Human Adenovirus 5 (HAdV5) and Feline Calicivirus (FCV)- and evaluated the pathways of capsid neutralization using biophysical methods. The conformational shifts in the capsid upon chemical treatment were studied using Differential Scanning Calorimetry (DSC), while the morphological alterations were visualized concurrently using Transmission Electron Microscopy (TEM). We found that while treatment of purified HAdV5 particles with a formulation resulted in thermal instability and, large scale aggregation; similar treatment of FCV particles resulted in complete collapse of the capsids. Further, while individual components of the formulation caused significant damage to the capsids, a synergistic action of the whole formulation was evident against both non-enveloped viruses tested. CONCLUSIONS: The distinct effects of the chemical treatment on the morphology of HAdV5 and FCV suggests that non-enveloped viruses with icosahedral geometry can follow different morphological pathways to inactivation. Synergistic effect of whole formulation is more effective compared to individual components. Molecular level understanding of inactivation pathways may result in the design and development of effective mass-market formulations for rapid neutralization of non-enveloped viruses.


Assuntos
Adenovírus Humanos , Calicivirus Felino , Capsídeo , Inativação de Vírus , Inativação de Vírus/efeitos dos fármacos , Calicivirus Felino/efeitos dos fármacos , Calicivirus Felino/fisiologia , Adenovírus Humanos/efeitos dos fármacos , Adenovírus Humanos/fisiologia , Adenovírus Humanos/química , Adenovírus Humanos/ultraestrutura , Capsídeo/efeitos dos fármacos , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Desinfetantes/farmacologia , Humanos , Microscopia Eletrônica de Transmissão , Ureia/farmacologia , Ureia/química , Ureia/análogos & derivados , Ácido Cítrico/farmacologia , Ácido Cítrico/química , Etanol/farmacologia , Animais , Varredura Diferencial de Calorimetria
3.
J Virol Methods ; 298: 114287, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34530012

RESUMO

Henipaviruses, Hendra (HeV) and Nipah (NiV), are highly pathogenic zoonotic agents that pose a serious health risk to human life, and as such are restricted to physical containment 4 (PC4) laboratories. For further analysis of virus-infected biological specimens, it is necessary to ensure absolute inactivation of any infectious virus present before removal from the PC4 laboratory. To evaluate the inactivation of HeV and NiV within infected samples, two chemical inactivation methods were assessed. Henipavirus-infected cell monolayers treated with 4 % paraformaldehyde (PFA) showed the complete inactivation of infectious virus, with an inactivation period of 15 min resulting in more than 8-log decrease in infectious titre. NiV-infected tissue samples treated with 10 % neutral-buffered formalin (NBF) showed a complete reduction of infectious virus in 7/8 ferret organs incubated for 24 h, with the remaining tissue demonstrating complete virus inactivation after 48 h. The chemical inactivation methods described herein evaluated two simple methods of henipavirus inactivation, resulting in the complete inactivation of infectious virus - an essential requirement for the safe removal and handling of biological samples from the PC4 laboratory.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Henipavirus , Vírus Nipah , Animais , Contenção de Riscos Biológicos , Furões , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/veterinária , Humanos , Laboratórios , Vírus Nipah/fisiologia
4.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33416462

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), presents a challenge to laboratorians and healthcare workers around the world. Handling of biological samples from individuals infected with the SARS-CoV-2 virus requires strict biosafety measures. Within the laboratory, non-propagative work with samples containing the virus requires, at minimum, Biosafety Level-2 (BSL-2) techniques and facilities. Therefore, handling of SARS-CoV-2 samples remains a major concern in areas and conditions where biosafety for specimen handling is difficult to maintain, such as in rural laboratories or austere field testing sites. Inactivation through physical or chemical means can reduce the risk of handling live virus and increase testing ability especially in low-resource settings due to easier and faster sample processing. Herein we assess several chemical and physical inactivation techniques employed against SARS-CoV-2 isolates from Cambodia. This data demonstrates that all chemical (AVL, inactivating sample buffer and formaldehyde) and heat-treatment (56 and 98 °C) methods tested completely inactivated viral loads of up to 5 log10.


Assuntos
COVID-19/virologia , Contenção de Riscos Biológicos , SARS-CoV-2 , Manejo de Espécimes , Inativação de Vírus , Animais , Camboja , Células Cultivadas , Chlorocebus aethiops , Temperatura Alta , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Carga Viral/efeitos dos fármacos , Carga Viral/estatística & dados numéricos , Inativação de Vírus/efeitos dos fármacos
5.
Biotechnol Lett ; 42(11): 2223-2230, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32500473

RESUMO

OBJECTIVES: Earlier studies have demonstrated the use of inactivated recombinant E. coli (bacterins), to protect against Clostridium spp. in vaccinated animals. These bacterins have a simpler, safer, and faster production process. However, these bacterins carry expression plasmids, containing antibiotic resistance gene, which could be assimilate accidentally by environmental microorganisms. Considering this, we aimed to impair this plasmids using formaldehyde at different concentrations. RESULTS: This compound inactivated the highest density of cells in 24 h. KanR cassette amplification was found to be impaired with 0.8% for 24 h or 0.4% for 72 h. Upon electroporation, E. coli DH5α ultracompetent cells were unable to acquire the plasmids extracted from the bacterins after inactivation procedure. Formaldehyde-treated bacterins were incubated with other viable strains of E. coli, leading to no detectable gene transfer. CONCLUSIONS: We found that this compound is effective as an inactivation agent. Here we demonstrate the biosafety involving antibiotic resistance gene of recombinant E. coli vaccines allowing to industrial production and animal application.


Assuntos
Escherichia coli/genética , Formaldeído/farmacologia , Resistência a Canamicina/efeitos dos fármacos , Plasmídeos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Vacinas contra Escherichia coli/efeitos adversos , Vacinas contra Escherichia coli/genética , Transferência Genética Horizontal/efeitos dos fármacos , Plasmídeos/genética , Vacinas de Produtos Inativados , Vacinas Sintéticas
6.
J Hosp Infect ; 104(3): 246-251, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32035997

RESUMO

Currently, the emergence of a novel human coronavirus, SARS-CoV-2, has become a global health concern causing severe respiratory tract infections in humans. Human-to-human transmissions have been described with incubation times between 2-10 days, facilitating its spread via droplets, contaminated hands or surfaces. We therefore reviewed the literature on all available information about the persistence of human and veterinary coronaviruses on inanimate surfaces as well as inactivation strategies with biocidal agents used for chemical disinfection, e.g. in healthcare facilities. The analysis of 22 studies reveals that human coronaviruses such as Severe Acute Respiratory Syndrome (SARS) coronavirus, Middle East Respiratory Syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV) can persist on inanimate surfaces like metal, glass or plastic for up to 9 days, but can be efficiently inactivated by surface disinfection procedures with 62-71% ethanol, 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute. Other biocidal agents such as 0.05-0.2% benzalkonium chloride or 0.02% chlorhexidine digluconate are less effective. As no specific therapies are available for SARS-CoV-2, early containment and prevention of further spread will be crucial to stop the ongoing outbreak and to control this novel infectious thread.


Assuntos
Betacoronavirus/efeitos dos fármacos , Betacoronavirus/crescimento & desenvolvimento , Infecções por Coronavirus/transmissão , Desinfetantes/farmacologia , Viabilidade Microbiana , Pneumonia Viral/transmissão , COVID-19 , Microbiologia Ambiental , Humanos , SARS-CoV-2
7.
Infect Prev Pract ; 2(2): 100044, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34316556

RESUMO

The novel human coronavirus SARS-CoV-2 has become a global health concern causing severe respiratory tract infections in humans. Human-to-human transmissions have been described, probably via droplets but possibly also via contaminated hands or surfaces. In a recent review on the persistence of human and veterinary coronaviruses on inanimate surfaces it was shown that human coronaviruses such as Severe Acute Respiratory Syndrome (SARS) coronavirus, Middle East Respiratory Syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV) can persist on inanimate surfaces like metal, glass or plastic for up to 9 days. Some disinfectant agents effectively reduce coronavirus infectivity within 1 minute such 62%-71% ethanol, 0.5% hydrogen peroxide or 0.1% sodium hypochlorite. Other compounds such as 0.05%-0.2% benzalkonium chloride or 0.02% chlorhexidine digluconate are less effective. An effective surface disinfection may help to ensure an early containment and prevention of further viral spread.

8.
Ultrason Sonochem ; 55: 359-368, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30852154

RESUMO

A theoretical model for estimating inactivation effects on marine Vibrio sp. is developed from the viewpoint of the chemical action of the OH radicals induced by interaction of bubbles with shock waves. It consists of a biological probability model for cell viability and a bubble dynamic model for its collapsing motion due to the shock pressures. The biological probability model is built by defining a sterilized space of the OH radicals. To determine the radius of the sterilized space, the Herring equation is solved in the bubble dynamic model in consideration of the effect of the heat conductivity and mass transportation. Furthermore, the pressure waveform of incident shock wave used in the model is obtained with the pressure measurement. On the other hand, a bio-experiment of marine Vibrio sp. is carried out using a high-voltage power supply in a cylindrical water chamber. Finally, the viability ratio of marine bacteria estimated by the theoretical model is examined under the experimental conditions of this study. In addition, we also discuss the influence of bubble initial size for predicting the inactivation effects.


Assuntos
Radical Hidroxila/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Modelos Teóricos , Ondas Ultrassônicas , Vibrio/efeitos dos fármacos , Vibrio/fisiologia , Pressão
9.
Arq. Inst. Biol ; 86: e0752018, 2019. ilus, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1046025

RESUMO

Infections by small ruminant lentiviruses (SRLVs) affect goats and sheep causing chronic multisystemic diseases that generate great economic losses. The caprine lentivirus (CLV) and the ovine lentivirus (OLV) present tropism for cells of the monocyte/macrophage lineage, which are directly associated with the main route of transmission through the ingestion of milk and colostrum from infected animals. In this manner, controlling this route is of paramount importance. Currently, researches have investigated the use of chemical additives in milk that can preserve colostrum or milk and inactivate microbiological agents. Among the compounds, sodium dodecyl sulfate (SDS) has been shown to be satisfactory in the chemical inactivation of HIV and CLV in milk, and also as a biocide in goat colostrum.(AU)


As lentiviroses de pequenos ruminantes (LVPRs) são infecções que afetam caprinos e ovinos, causando doenças multissistêmicas crônicas, ocasionando grandes perdas econômicas. Os agentes causadores, lentivírus caprino (LVC) e o lentivírus ovino (LVO), apresentam tropismo por células da linhagem monocítico--fagocitária, as quais estão diretamente associadas à principal via de transmissão, por meio da ingestão de leite e colostro provindos de animais infectados. Desse modo, o controle por esta via é de suma importância. Atualmente, pesquisas vêm sendo desenvolvidas para o uso de aditivos químicos no leite, que possam conservar o colostro ou leite, e inativar agentes microbiológicos presentes. Dentre estes, o dodecil sulfato de sódio (SDS) vem apresentando resultados satisfatórios na inativação química do HIV e LVC em leite, e ainda como biocida em colostro caprino.(AU)


Assuntos
Animais , Dodecilsulfato de Sódio/farmacologia , Ruminantes/virologia , Infecções por Lentivirus/tratamento farmacológico , Lentivirus Ovinos-Caprinos/efeitos dos fármacos , Ovinos/virologia , Infecções por Lentivirus/transmissão , Colostro/virologia , Leite/virologia
10.
Viruses ; 10(3)2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29533988

RESUMO

Complete inactivation of infectious Ebola virus (EBOV) is required before a sample may be removed from a Biosafety Level 4 laboratory. The United States Federal Select Agent Program regulations require that procedures used to demonstrate chemical inactivation must be validated in-house to confirm complete inactivation. The objective of this study was to develop a method for validating chemical inactivation of EBOV and then demonstrate the effectiveness of several commonly-used inactivation methods. Samples containing infectious EBOV (Zaire ebolavirus) in different matrices were treated, and the sample was diluted to limit the cytopathic effect of the inactivant. The presence of infectious virus was determined by assessing the cytopathic effect in Vero E6 cells. Crucially, this method did not result in a loss of infectivity in control samples, and we were able to detect less than five infectious units of EBOV (Zaire ebolavirus). We found that TRIzol LS reagent and RNA-Bee inactivated EBOV in serum; TRIzol LS reagent inactivated EBOV in clarified cell culture media; TRIzol reagent inactivated EBOV in tissue and infected Vero E6 cells; 10% neutral buffered formalin inactivated EBOV in tissue; and osmium tetroxide vapors inactivated EBOV on transmission electron microscopy grids. The methods described herein are easily performed and can be adapted to validate inactivation of viruses in various matrices and by various chemical methods.


Assuntos
Antivirais/farmacologia , Desinfetantes/farmacologia , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Testes de Sensibilidade Microbiana , Inativação de Vírus/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Efeito Citopatogênico Viral/efeitos dos fármacos , Ebolavirus/ultraestrutura , Doença pelo Vírus Ebola/virologia , Humanos , Testes de Sensibilidade Microbiana/métodos , Sensibilidade e Especificidade , Células Vero
11.
J Neurosci ; 36(13): 3789-98, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27030763

RESUMO

Multisensory convergence of visual and vestibular signals has been observed within a network of cortical areas involved in representing heading. Vestibular-dominant heading tuning has been found in the macaque parietoinsular vestibular cortex (PIVC) and the adjacent visual posterior sylvian (VPS) area, whereas relatively balanced visual/vestibular tuning was encountered in the ventral intraparietal (VIP) area and visual-dominant tuning was found in the dorsal medial superior temporal (MSTd) area. Although the respective functional roles of these areas remain unclear, perceptual deficits in heading discrimination following reversible chemical inactivation of area MSTd area suggested that areas with vestibular-dominant heading tuning also contribute to behavior. To explore the roles of other areas in heading perception, muscimol injections were used to reversibly inactivate either the PIVC or the VIP area bilaterally in macaques. Inactivation of the anterior PIVC increased psychophysical thresholds when heading judgments were based on either optic flow or vestibular cues, although effects were stronger for vestibular stimuli. All behavioral deficits recovered within 36 h. Visual deficits were larger following inactivation of the posterior portion of the PIVC, likely because these injections encroached upon the VPS area, which contains neurons with optic flow tuning (unlike the PIVC). In contrast, VIP inactivation led to no behavioral deficits, despite the fact that VIP neurons show much stronger choice-related activity than MSTd neurons. These results suggest that the VIP area either provides a parallel and partially redundant pathway for this task, or does not participate in heading discrimination. In contrast, the PIVC/VPS area, along with the MSTd area, make causal contributions to heading perception based on either vestibular or visual signals. SIGNIFICANCE STATEMENT: Multisensory vestibular and visual signals are found in multiple cortical areas, but their causal contribution to self-motion perception has been previously tested only in the dorsal medial superior temporal (MSTd) area. In these experiments, we show that inactivation of the parietoinsular vestibular cortex (PIVC) also results in causal deficits during heading discrimination for both visual and vestibular cues. In contrast, ventral intraparietal (VIP) area inactivation led to no behavioral deficits, despite the fact that VIP neurons show much stronger choice-related activity than MSTd or PIVC neurons. These results demonstrate that choice-related activity does not always imply a causal role in sensory perception.


Assuntos
Movimentos da Cabeça/fisiologia , Percepção de Movimento/fisiologia , Fluxo Óptico/fisiologia , Lobo Parietal/fisiologia , Lobo Temporal/fisiologia , Animais , Mapeamento Encefálico , Sinais (Psicologia) , Discriminação Psicológica , Lateralidade Funcional/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Movimentos da Cabeça/efeitos dos fármacos , Processamento de Imagem Assistida por Computador , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Percepção de Movimento/efeitos dos fármacos , Muscimol/farmacologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Lobo Parietal/efeitos dos fármacos , Estimulação Luminosa , Psicometria , Psicofísica , Lobo Temporal/efeitos dos fármacos
12.
Emerg Infect Dis ; 22(7): 1292-4, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27070504

RESUMO

Reliable inactivation of specimens before removal from high-level biocontainment is crucial for safe operation. To evaluate efficacy of methods of chemical inactivation, we compared in vitro and in vivo approaches using Ebola virus as a surrogate pathogen. Consequently, we have established parameters and protocols leading to reliable and effective inactivation.


Assuntos
Desinfetantes/farmacologia , Ebolavirus/efeitos dos fármacos , Inativação de Vírus/efeitos dos fármacos , Animais , Chlorocebus aethiops , Camundongos , Camundongos Endogâmicos BALB C , Células Vero
13.
Crop Prot ; 26(7): 1049-1054, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32287715

RESUMO

Carnation mottle virus (CarMV), Carnation etched ring virus (CERV), Carnation vein mottle virus (CVMV), Carnation ringspot virus (CRSV), Carnation Italian ringspot virus (CIRV) and Carnation latent virus (CLV) are the most important viruses affecting carnation crops. All except CERV are RNA viruses. Viral RNA or DNA accumulation on root, stem, leaf, sepal, petal, stamen, pistil and ovary tissues of infected carnation or Saponaria vaccaria plants was analysed by non-isotopic molecular hybridisation. High-titres of CarMV, CRSV, CIRV, and CLV accumulated in all plant tissues whereas CERV and CVMV were irregularly distributed over the plant. High-titres of all viruses accumulated in leaf, petal, stamen, pistil, and ovary tissues, so leaves or petals are a good tissue for routine diagnosis. Six chemicals were evaluated for inactivation of all carnation viruses in infected extracts. Commercial bleach at 7% (v/v) or NaOH at 0.5% (w/v) was found to inactivate all viruses after 60 s treatment in a systemic S. vaccaria bioassay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA