Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Chemosphere ; 363: 142799, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986779

RESUMO

Effective degradation technologies have been extensively investigated and used to remove azo dyes from wastewater for decades. However, no review dealing with both electrooxidation and chemical reduction of azo dyes from an economic and, therefore, application-relevant perspective has been found in the current literature. A novelty of this review article consists not only in the brief summarization and comparison of both methods but mainly in the evaluation of their economic side. Based on the literature survey of the last 15 years, the costs of treatment approaches published in individual research articles have been summarized, and the missing data have been calculated. A broad spectrum of advanced electrode materials and catalysts have been developed and tested for the treatment, specifically aiming to enhance the degradation performance. An outline of the global prices of electrode materials, reducing agents, and basic chemicals is involved. All additional costs are described in depth in this review. The advantages and disadvantages of respective methods are discussed. It was revealed that effective and cheap treatment approaches can be found even in advanced degradation methods. Based on the collected data, electrooxidation methods offer, on average, 30 times cheaper treatment of aqueous solutions. Concerning chemical reduction, only ZVI provided high removal of azo dyes at prices <100 $ per kg of azo dye. The factors affecting total prices should also be considered. Therefore, the basic diagram of the decision-making process is proposed. In the conclusion, challenges, future perspectives, and critical findings are described.

2.
Chemosphere ; 362: 142776, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969225

RESUMO

Metallic chromium pollution in soil is widespread, which aroused intensive research in recent decades. In mainstream research, most studies use materials with a reducing ability to adsorb and reduce hexavalent chromium. However, comprehensive analyses and systematic verifications of these different materials are scarce. Therefore, this study conducted a meta-analysis of relevant papers published from 2013 to October 2024 to compare and analyze the performance and usage conditions of some common materials, such as iron-based materials, mineral inorganic materials, organic materials, and layered double hydroxide materials. We synthesized 31 papers for 186 pairwise comparisons and selected the Standardized Mean Difference (SMD) as the appropriate effect size for mean-to-mean comparisons. Fe-based materials had the most stable performance based on its numerous data support, while organic materials had the worst performance. The difference in performance between inorganic mineral materials was the greatest, which was closely related to the selection of components. The difference in the effectiveness of inorganic materials was the greatest, which was closely related to the selection of components and there was room for further improvement. Through further analysis of the impact of environmental factors on material performance, it can be concluded that the effect of the material was better under alkaline, non-sandy, low organic matter, and high CEC soil conditions.

3.
Nanomaterials (Basel) ; 14(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38869598

RESUMO

Using KOH-modified wheat straw as the precursor, wheat straw biochar was produced through carbonization at 500 °C. Subsequently, a synthetic material containing nano-zero-valent iron (nZVI) was prepared via liquid phase reduction (nZVI-WSPC). To enhance its properties, chitosan (CTS) was used by crosslinking to form the new adsorbent named CTS@nZVI-WSPC. The impact of CTS on parameters such as mass ratio, initial pH value, and adsorbent dosage on the adsorption efficiency of Cr(VI) in solution was investigated through one-factor experiments. Isotherm adsorption and thermodynamic analysis demonstrated that the adsorption of Cr(VI) by CTS@nZVI-WSPC conforms to the Langmuir model, with a maximum adsorption capacity of 147.93 mg/g, and the adsorption process is endothermic. Kinetic analysis revealed that the adsorption process follows a pseudo-second-order kinetic model. The adsorption mechanism, as elucidated by SEM, FTIR, XPS, and XRD, suggests that the process may involve multiple mechanisms, including pore adsorption, electrostatic adsorption, chemical reduction, and surface chelation. The adsorption capacity of Cr(VI) by CTS@nZVI-WSPC remains high after five cycles. The adsorbent is simple to operate, economical, efficient, and reusable, making it a promising candidate for the treatment of Cr(VI) in water.

4.
Sci Total Environ ; 935: 173093, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768723

RESUMO

A multi-layered aquifer in an industrial area in the north of the Iberian Peninsula is severely contaminated with the chlorinated ethenes (CEs) tetrachloroethylene, trichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride. Both shallow and deep aquifers are polluted, with two differentiated north and south CEs plumes. Hydrogeochemical and isotopic data (δ13C of CEs) evidenced natural attenuation of CEs. To select the optimal remediation strategy to clean-up the contamination plumes, laboratory treatability studies were performed, which confirmed the intrinsic biodegradation potential of the north and south shallow aquifers to fully dechlorinate CEs to ethene after injection of lactate, but also the combination of lactate and sulfidized mZVI as an alternative treatment for the north deep aquifer. In the lactate-amended microcosms, full dechlorination of CEs was accompanied by an increase in 16S rRNA gene copies of Dehalococcoides and Dehalogenimonas, and the tceA, vcrA and bvcA reductive dehalogenases. Three in situ pilot tests were implemented, which consisted in injections of lactate in the north and south shallow aquifers, and injections of lactate and sulfidized mZVI in the north deep aquifer. The hydrogeochemical, isotopic and molecular analyses used to monitor the pilot tests evidenced that results obtained mimicked the laboratory observations, albeit at different dechlorination rates. It is likely that the efficiency of the injections was affected by the amendment distribution. In addition, monitoring of the pilot tests in the shallow aquifers showed the release of CEs due to back diffusion from secondary sources, which limited the use of isotopic data for assessing treatment efficiency. In the pilot test that combined the injection of lactate and sulfidized mZVI, both biotic and abiotic pathways contributed to the production of ethene. This study demonstrates the usefulness of integrating different chemical, isotopic and biomolecular approaches for a more robust selection and implementation of optimal remediation strategies in CEs polluted sites.


Assuntos
Biodegradação Ambiental , Água Subterrânea , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Água Subterrânea/química , Projetos Piloto , Etilenos/metabolismo , Espanha , Tetracloroetileno
5.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611706

RESUMO

In this work, UV-Vis spectrophotometry, High Resolution Scanning Transmission Electron Microscopes and selected experimental conditions were used to screen the colloidal system. The obtained results complement the established knowledge regarding the mechanism of nanoparticle formation. The process of gold nanoparticles formation involves a two-step reduction of Au ions to Au(0); atom association and metastable cluster formation; autocatalytic cluster growth; ultra-small particle formation (1-2 nm, in diameter); particle growth and larger particles formation; and further autocatalytic crystal growth (D > 100 nm). As a reductant of Au(III) ions, a cinnamon extract was used. It was confirmed that eugenol as one of the cinnamon extract compounds is responsible for fast Au(III) ion reduction, whereas cinnamaldehyde acts as a gold-particle stabilizer. Spectrophotometry studies were carried out to track kinetic traces of gold nanoparticle (D > 2 nm) formation in the colloidal solution. Using the Watzky-Finke model, the rate constants of nucleation and autocatalytic growth were determined. Moreover, the values of energy, enthalpy and entropy of activation for stages related to the process of nanoparticle formation (Index 1 relates to nucleation, and Index 2 relates to the growth) were determined and found to be E1 = 70.6 kJ, E2 = 19.6 kJ, ΔH1 = 67.9 kJ/mol, ΔH2 = 17 kJ/mol, ΔS1 = -76.2 J/(K·mol), ΔS2 = -204.2 J/(K·mol), respectively. In this work the limitation of each technique (spectrophotometry vs. HRSTEM) as a complex tool to understand the dynamic of the colloidal system was discussed.

6.
J Microbiol Methods ; 220: 106923, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521504

RESUMO

BACKGROUND: Infections resulting from surgical procedures and wound closures continue to pose significant challenges in healthcare settings. To address this issue, the investigators have developed antibacterial non-resorbable braided silk sutures using in situ deposited silver nanoparticles (AgNPs) and investigated their efficacy in eradicating Staphylococcus aureus and Streptococcus mutans infections. METHODS: The braided silk sutures were modified through a simple and efficient in situ photoreduction method, resulting in the uniform distribution of AgNPs along the suture surface. The synthesized AgNPs were characterized using scanning electron microscopy (SEM), dynamic light scattering analysis (DLS) and Fourier Transform Infrared Spectroscopy analysis (FTIR) confirming their successful integration onto the silk sutures. The antibacterial activity of the nanoparticle coated sutures were compared and evaluated with non-coated braided silk sutures through in vitro assays against both S. aureus and S. mutans. RESULTS: The surface and cross-sectional analysis of the treated sutures revealed a uniform and homogeneous distribution of silver particles achieved through the photoreduction of silver solution. This observation confirms the successful coating of silver nanoparticles (AgNPs) on the sutures. The antimicrobial studies conducted, demonstrated significant reductions in bacterial colonies when exposed to the silver nanoparticle-coated sutures. Notably, the width of the inhibition zone surrounding the coated sutures remained consistently wide and stable for duration up to 7 days. This sustained and robust inhibitory effect against gram-positive bacteria, specifically S. aureus and S. mutans, serves as strong evidence of the antibacterial efficacy of the coated sutures. CONCLUSION: The coating of silk sutures with AgNPs provided a significant and effective antibacterial capacity to the surgical sutures, with this activity being sustained for a period of 7 days. This suggests that AgNPs-in situ photoreduction deposited sutures have the potential to effectively manage S. aureus and S. mutans infections.


Assuntos
Nanopartículas Metálicas , Prata , Prata/química , Staphylococcus aureus , Nanopartículas Metálicas/química , Streptococcus mutans , Estudos Transversais , Suturas/microbiologia , Antibacterianos/farmacologia , Seda/química , Seda/farmacologia , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Biosens Bioelectron ; 246: 115867, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38086307

RESUMO

Graphene oxide (GO) has many advantages, making it suitable for various applications. However, it has low electrical conductivity, restricting its applicability to electrochemical biosensors. This study used dielectrophoretic (DEP) force to control the movement and deformation of GO nanosheets to achieve high electrical conductivity without the chemical reduction of oxygen functional groups. Subjecting the DEP force to GO nanosheets induced physical deformation leading to the formation of wrinkled structures. A computational simulation was performed to set an appropriate electrical condition for operating a positive DEP force effect of at least 1019 v2/m3, and the interdigitated microelectrode structure was selected. The resulting wrinkled GO exhibited significantly improved electrical conductivity, reaching 21.721 µS while preserving the essential oxygen functional groups. Furthermore, a biosensor was fabricated using wrinkled GO deposited via DEP force. The biosensor demonstrated superior sensitivity, exhibiting a 9.6-fold enhancement compared with reduced GO (rGO) biosensors, as demonstrated through biological experiments targeting inducible nitric oxide synthase. This study highlights the potential of using DEP force to enhance electrical conductivity in GO-based biosensing applications, opening new avenues for high-performance diagnostics.


Assuntos
Técnicas Biossensoriais , Grafite , Técnicas Biossensoriais/métodos , Oxirredução , Condutividade Elétrica , Grafite/química , Oxigênio
8.
Chemosphere ; 344: 140321, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37788748

RESUMO

The preparation of Fe-MMT/WO3 composites by the hydrothermal method has been explored in this study for the construction of a chemical and photocatalytic catalyst for the reduction of U (VI). This research found that the visible light absorption and reduction potential of the Fe-MMT/WO3 composites were relatively superior compared to Fe-MMT and WO3 alone. Based on an evaluation of the performance of the Fe-MMT/WO3 composites under visible light irradiation, it was discovered that they had greater uranium extraction capacity, where the maximum extraction capacity of U (VI) was determined to be 1862.69 mg g-1, with removal efficiency reaching 93.32%. To investigate the electron transfer and U (VI) to U (IV) reduction mechanisms after the composite, XPS and DFT calculations were conducted. Results showed that Fe (II) is converted to a higher state Fe (III) and WO3 produce photoelectrons which together reduce U (VI) to U (IV). Moreover, the photoelectrons partially transferred to Fe-MMT with low reduction potential to reduce Fe (III) to Fe (II), allowing iron cycling during uranium extraction to be achieved.


Assuntos
Urânio , Ferro , Catálise , Luz , Transporte de Elétrons
9.
Heliyon ; 9(10): e20548, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37822640

RESUMO

In this study, the chemical reduction method was applied to synthesize silver nanoparticles used to prepare conductive inks. The two variables of polyvinylpyrrolidone (PVP)-stabilized mole in the 0.01-0.03 mol range and hydrazine reducing mole in the 0.1-0.5 mol range, along with constants such as precursor mole (silver nitrate), complexing mole (ethylene diamine) and solvent mole (water), were used. Nine random samples proposed by the Design Expert software were examined and studied. X-ray diffraction (XRD) patterns, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS) were then used to characterize and evaluate the synthesized nanoparticles. According to the results obtained by XRD, FE-SEM and TEM analyses, the sample with 0.025 mol and 0.3 mol PVP had the minimum size of silver nanoparticles, which was around 20 nm, so it was chosen as the optimal sample for further research. The conductive ink was also prepared with the optimal sample of silver nanoparticles in 40% by weight and then characterized and evaluated by applying ultraviolet-visible (UV-Vis), simultaneous thermal analysis (STA), FE-SEM and electrical conductivity analysis. Finally, conductive ink was applied to polyethylene terephthalate (PET) and acrylonitrile butadiene styrene (ABS) substrates. The surface electrical resistance of conductive ink on PET and ABS substrates was then measured at about 6.4 Ω and 2.2 Ω, respectively.

10.
Molecules ; 28(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764398

RESUMO

Volatile methyl siloxanes (VMS), which are considered to be the most troublesome impurities in current biogas-cleaning technologies, need to be removed. In this study, we fabricated a series of Fe3O4-urea-modified reduced graphene-oxide aerogels (Fe3O4-urea-rGOAs) by using industrial-grade graphene oxide as the raw material. A fixed-bed dynamic adsorption setup was built, and the adsorption properties of the Fe3O4-urea-rGOAs for hexamethyldisiloxane (L2, as a VMS model pollutant) were studied. The properties of the as-prepared samples were investigated by employing various characterization techniques (SEM, TEM, FTIR, XRD, Raman spectroscopy, and N2 adsorption/desorption techniques). The results showed that the Fe3O4-urea-rGOA-0.4 had a high specific surface area (188 m2 g-1), large porous texture (0.77 cm3 g-1), and the theoretical maximum adsorption capacity for L2 (146.5 mg g-1). The adsorption capacity considerably increased with a decrease in the bed temperature of the adsorbents, as well as with an increase in the inlet concentration of L2. More importantly, the spent Fe3O4-urea-rGOA adsorbent could be readily regenerated and showed an excellent adsorption performance. Thus, the proposed Fe3O4-urea-rGOAs are promising adsorbents for removing the VMS in biogas.

11.
J Pestic Sci ; 48(3): 86-92, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37745172

RESUMO

Chitin is used in agriculture to improve crop production; however, its use is limited due to difficulties in its handling. A chitin nanofiber (CNF) overcomes this issue and, due to its elicitor activity, has great potential for crop protection. To expand CNF utilization, a copper nanoparticles-based antimicrobic CNF (CuNPs/CNF) was prepared using a chemical reduction method. The formation of CuNPs was confirmed via scanning electron microscopy. Thermogravimetric analysis revealed that the amount of CuNPs on the CNF was dose-dependent on the precursor salt, copper acetate. CuNPs endowed the CNF with strong antimicrobial activity against Alternaria brassicicola and Pectobacterium carotovorum. Moreover, the CuNPs/CNF reduced pathogen infection in cabbage. The antimicrobial activity and disease prevention of the CuNPs/CNF was increased compared to the corresponding CNF or commercial agrochemical Bordeaux treatment. These results indicate that CuNPs conferred antimicrobial activity on the CNF and increased the efficacy of plant disease protection.

12.
Ecotoxicol Environ Saf ; 265: 115522, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37769582

RESUMO

Chemical reduction combined with microbial stabilization is a green and efficient method for the remediation of hexavalent chromium (Cr(VI)) contaminated soil. In this study, the combination of ferrous sulfate with kitchen waste digestate was applied to reduce and immobilize Cr(VI) in chromite ore processing residue (COPR) contaminated soils, and systematically evaluated the remediation performance of Cr(VI) compared with several typical reducing agents (i.e., ferrous sulfate, zero valent iron, sodium thiosulfate, ferrous sulfide, and calcium polysulfide). The results showed that the combination of ferrous sulfate and digestate had superior advantages of a lower dosage of reducing agent and a long-term remediation effect compared to other single chemical reductants. Under an Fe(II):Cr(VI) molar ratio of 3:1% and 4% digestate (wt), the content of Cr(VI) in the soil decreased to 5.07 mg/kg after 60 days of remediation. Meanwhile, the leaching concentrations of Cr(VI) were below detection limit, which can meet the hazardous waste toxicity leaching standard. The risk level of Cr pollution was decreased from very high risk to low risk. The X-ray photoelectron spectroscopy (XPS) results further demonstrated that the combined treatments were beneficial to Cr(VI) reduction and stabilization. The abundance of bacteria with Cr(VI) reducing ability was higher than other treatments. Moreover, the high abundance of carbon and nitrogen metabolism in the combined treatments demonstrated that the addition of digestate was beneficial to the recovery and flourishing of Cr(VI)-reducing related microorganisms in COPR contaminated soils. This work provided an alternative way on Cr(VI) remediation in COPR contaminated soils.

13.
Molecules ; 28(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37446593

RESUMO

The role of nanotechnology is increasingly important in our society. Through it, scientists are acquiring the ability to understand the structure and properties of materials and manipulate them at the scale of atoms and molecules. Nanomaterials are at the forefront of the rapidly growing field of nanotechnology. The synthesis of nanostructured materials, especially metallic nanoparticles, has attracted tremendous interest over the past decade due to their unique properties, making these materials excellent and indispensable in many areas of human activity. These special properties can be attributed to the small size and large specific surface area of nanoparticles, which are very different from those of bulk materials. Nanoparticles of different sizes and shapes are needed for many applications, so a variety of protocols are required to produce monodisperse nanoparticles with controlled morphology. The purpose of this review is firstly to introduce the reader to the basic aspects related to the field of nanotechnology and, secondly, to discuss metallic nanoparticles in greater detail. This article explains the basic concepts of nanotechnology, introduces methods for synthesizing nanoparticles, and describes their types, properties, and possible applications. Of many methods proposed for the synthesis of metal nanoparticles, a chemical reduction is usually preferred because it is easy to perform, cost-effective, efficient, and also allows control of the structural parameters through optimization of the synthesis conditions. Therefore, a chemical reduction method is discussed in more detail-each factor needed for the synthesis of nanoparticles by chemical reduction is described in detail, i.e., metal precursors, solvents, reducing agents, and stabilizers. The methods that are used to characterize nanomaterials are described. Finally, based on the available literature collection, it is shown how changing the synthesis parameters/methods affects the final characteristics of nanoparticles.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Humanos , Nanotecnologia/métodos , Nanopartículas Metálicas/química
14.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373255

RESUMO

A high perovskite activity is sought for use in magnetic applications. In this paper, we present the simple synthesis of (2.5% and 5%) Tellurium-impregnated-LaCoO3 (Te-LCO), Te and LaCoO3 (LCO) by using a ball mill, chemical reduction, and hydrothermal synthesis, respectively. We also explored the structure stability along with the magnetic properties of Te-LCO. Te has a rhombohedral crystal structure, whereas Te-LCO has a hexagonal crystal system. The reconstructed Te was imbued with LCO that was produced by hydrothermal synthesis; as the concentration of the imbuing agent grew, the material became magnetically preferred. According to the X-ray photoelectron spectra, the oxidation state of the cobaltite is one that is magnetically advantageous. As a result of the fact that the creation of oxygen-deficient perovskites has been shown to influence the mixed (Te4+/2-) valence state of the incorporated samples, it is abundantly obvious that this process is of utmost significance. The TEM image confirms the inclusion of Te in LCO. The samples start out in a paramagnetic state (LCO), but when Te is added to the mixture, the magnetic state shifts to a weak ferromagnetic one. It is at this point that hysteresis occurs due to the presence of Te. Despite being doped with Mn in our prior study, rhombohedral LCO retains its paramagnetic characteristic at room temperature (RT). As a result, the purpose of this study was to determine the impacts of RT field dependency of magnetization (M-H) for Te-impregnated LCO in order to improve the magnetic properties of RT because it is a low-cost material for advanced multi-functional and energy applications.

15.
J Pharm Biomed Anal ; 233: 115475, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37235958

RESUMO

Surface-enhanced Raman scattering (SERS) is a vibrational widely used technique thanks to its multiple advantages such as its high specificity and sensitivity. The Raman signal exaltation comes from the use of metallic nanoparticles (Nps) acting as antennas by amplifying the Raman scattering. Controlling the Nps synthesis is a major point for the implementation of SERS in routine analysis and especially in quantitative applications. Effectively, nature, size and shape of these Nps considerably influence the SERS response intensity and repeatability. The Lee-Meisel protocol is the most common synthesis route used by the SERS community due to the low cost, rapidity and ease of manufacturing. However, this process leads to a significant heterogeneity in terms of particle size and shape. In this context, this study aimed to synthesize repeatable and homogeneous silver nanoparticles (AgNps) by chemical reduction. The Quality by Design strategy from quality target product profile to early characterization design was considered to optimize this reaction. The first step of this strategy aimed to highlight critical parameters by the means of an early characterization design. Based on an Ishikawa diagram, five process parameters were studied: the reaction volume as categorical variable and the temperature, the time of reaction, the trisodium citrate concentration and pH as continuous variables. A D-Optimal design of 35 conditions was performed. Three critical quality attributes were selected to maximize the SERS intensity, minimize the variation coefficient on SERS intensities and the polydispersity index of the AgNps. Considering these factors, it appeared that concentration, pH and time of reaction were identified as having a critical impact on the Nps formation and can then be considered for the further optimization step.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Prata/química , Análise Espectral Raman/métodos , Tamanho da Partícula
16.
Small Methods ; 7(9): e2300304, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37147782

RESUMO

Spontaneously harvesting electricity through a water evaporation process is renewable and environmentally friendly, and provides a promising way for self-powered electronics. However, most of evaporation-driven generators are suffering from a limited power supply for practical use. Herein, a high-performance textile-based evaporation-driven electricity generator based on continuous gradient chemical reduced graphene oxide (CG-rGO@TEEG) is obtained by a continuous gradient chemical reduction strategy. The continuous gradient structure not only greatly enhances the ion concentration difference between the positive and negative electrodes but also significantly optimizes the electrical conductivity of the generator. As a result, the as-prepared CG-rGO@TEEG can generate a voltage of 0.44 V and a considerable current of 590.1 µA with an optimized power density of 0.55 mW cm-3 when 50 µL of NaCl solution is applied. Such scale-up CG-rGO@TEEGs can supply sufficient power to directly drive a commercial clock for more than 2 h in ambient conditions. This work offers a novel approach for efficient clean energy harvesting based on water evaporation.

17.
Polymers (Basel) ; 15(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37177313

RESUMO

There has been a new approach in the development of antibacterials in order to enhance the antibacterial potential. The nanoparticles are tagged on to the surface of other metals or metal oxides and polymers to achieve nanocomposites. These have shown significant antibacterial properties when compared to nanoparticles. In this article we explore the antibacterial potentials of metal-based and metal-polymer-based nanocomposites, various techniques which are involved in the synthesis of the metal-polymer, nanocomposites, mechanisms of action, and their advantages, disadvantages, and applications.

18.
Sensors (Basel) ; 23(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37050752

RESUMO

With rapidly increasing environmental pollution, there is an urgent need for the development of fast, low-cost, and effective sensing devices for the detection of various organic and inorganic substances. Silver nanoparticles (AgNPs) are well known for their superior optoelectronic and physicochemical properties, and have, therefore, attracted a great deal of interest in the sensor arena. The introduction of AgNPs onto the surface of two-dimensional (2D) structures, incorporation into conductive polymers, or within three-dimensional (3D) nanohybrid architectures is a common strategy to fabricate novel platforms with improved chemical and physical properties for analyte sensing. In the first section of this review, the main wet chemical reduction approaches for the successful synthesis of functional AgNPs for electrochemical sensing applications are discussed. Then, a brief section on the sensing principles of voltammetric and amperometric sensors is given. The current utilization of silver nanoparticles and silver-based composite nanomaterials for the fabrication of voltammetric and amperometric sensors as novel platforms for the detection of environmental pollutants in water matrices is summarized. Finally, the current challenges and future directions for the nanosilver-based electrochemical sensing of environmental pollutants are outlined.

20.
Molecules ; 28(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903653

RESUMO

Hexavalent chromium (Cr(VI)) is a toxic, mutagenic, teratogenic, and carcinogenic species. Its origin is in industrial activities. Therefore, its effective control is realized on a source basis. Although chemical methods proved effective in removing Cr(VI) from wastewaters, more economic solutions with a minimum sludge production have been sought. Among them, the use of electrochemical processes has emerged as a viable solution to the problem. Much research was conducted in this area. The aim of this review paper is to make a critical evaluation of the literature on Cr(VI) removal by electrochemical methods, particularly electrocoagulation with sacrificial electrodes, and to assess the present data as well as to point out the areas that need further elaboration. Following the review of the theoretical concepts of electrochemical processes, the literature on the electrochemical removal of Cr(VI) was evaluated on the basis of important elements of the system. Among them are initial pH, initial Cr(VI) concentration, current density, type and concentration of supporting electrolyte, and the material of electrodes and their operating characteristics and process kinetics. Dimensionally stable electrodes that realize the reduction process without producing any sludge were evaluated separately. Applications of electrochemical methods to a wide spectrum of industrial effluents were also assessed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA