Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39273461

RESUMO

The northern bark beetle, Ips duplicatus, is an emerging economic pest, reportedly infesting various species of spruce (Picea spp.), pine (Pinus spp.), and larch (Larix spp.) in Central Europe. Recent climate changes and inconsistent forest management practices have led to the rapid spread of this species, leaving the current monitoring strategies inefficient. As understanding the molecular components of pheromone detection is key to developing novel control strategies, we generated antennal transcriptomes from males and females of this species and annotated the chemosensory proteins. We identified putative candidates for 69 odorant receptors (ORs), 50 ionotropic receptors (IRs), 25 gustatory receptors (GRs), 27 odorant-binding proteins (OBPs), including a tetramer-OBP, 9 chemosensory proteins (CSPs), and 6 sensory neuron membrane proteins (SNMPs). However, no sex-specific chemosensory genes were detected. The phylogenetic analysis revealed conserved orthology in bark beetle chemosensory proteins, especially with a major forest pest and co-habitant, Ips typographus. Recent large-scale functional studies in I. typographus chemoreceptors add greater significance to the orthologous sequences reported here. Nevertheless, identifying chemosensory genes in I. duplicatus is valuable to understanding the chemosensory system and its evolution in bark beetles (Coleoptera) and, generally, insects.


Assuntos
Antenas de Artrópodes , Besouros , Proteínas de Insetos , Filogenia , Receptores Odorantes , Transcriptoma , Animais , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Masculino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Feminino , Besouros/genética , Besouros/metabolismo , Antenas de Artrópodes/metabolismo , Perfilação da Expressão Gênica/métodos
2.
J Proteome Res ; 23(4): 1471-1487, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38576391

RESUMO

In arthropods, hemolymph carries immune cells and solubilizes and transports nutrients, hormones, and other molecules that are involved in diverse physiological processes including immunity, metabolism, and reproduction. However, despite such physiological importance, little is known about its composition. We applied mass spectrometry-based label-free quantification approaches to study the proteome of hemolymph perfused from sugar-fed female and male Aedes aegypti mosquitoes. A total of 1403 proteins were identified, out of which 447 of them were predicted to be extracellular. In both sexes, almost half of these extracellular proteins were predicted to be involved in defense/immune response, and their relative abundances (based on their intensity-based absolute quantification, iBAQ) were 37.9 and 33.2%, respectively. Interestingly, among them, 102 serine proteases/serine protease-homologues were identified, with almost half of them containing CLIP regulatory domains. Moreover, proteins belonging to families classically described as chemoreceptors, such as odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), were also highly abundant in the hemolymph of both sexes. Our data provide a comprehensive catalogue of A. aegypti hemolymph basal protein content, revealing numerous unexplored targets for future research on mosquito physiology and disease transmission. It also provides a reference for future studies on the effect of blood meal and infection on hemolymph composition.


Assuntos
Aedes , Humanos , Animais , Masculino , Feminino , Aedes/metabolismo , Açúcares/metabolismo , Hemolinfa/metabolismo , Proteômica , Carboidratos
3.
Insects ; 15(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38667381

RESUMO

Diorhabda rybakowi Weise is one of the dominant pests feeding on Nitraria spp., a pioneer plant used for windbreaking and sand fixation purposes, and poses a threat to local livestock and ecosystems. To clarify the key olfactory genes of D. rybakowi and provide a theoretical basis for attractant and repellent development, the optimal reference genes under two different conditions (tissue and sex) were identified, and the bioinformatics and characterization of the tissue expression profiles of two categories of soluble olfactory proteins (OBPs and CSPs) were investigated. The results showed that the best reference genes were RPL13a and RPS18 for comparison among tissues, and RPL19 and RPS18 for comparison between sexes. Strong expressions of DrybOBP3, DrybOBP6, DrybOBP7, DrybOBP10, DrybOBP11, DrybCSP2, and DrybCSP5 were found in antennae, the most important olfactory organ for D. rybakowi. These findings not only provide a basis for further in-depth research on the olfactory molecular mechanisms of host-specialized pests but also provide a theoretical basis for the future development of new chemical attractants or repellents using volatiles to control D. rybakowi.

4.
Arthropod Struct Dev ; 78: 101326, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38176178

RESUMO

In lower termites, which exhibit a high degree of compound eye degradation or absence, antennae play a pivotal role in information acquisition. This comprehensive study investigates the olfactory system of Reticulitermes aculabialis, spanning five developmental stages and three castes. Initially, we characterize the structures and distribution of antennal sensilla across different developmental stages. Results demonstrate variations in sensilla types and distributions among stages, aligning with caste-specific division of labor and suggesting their involvement in environmental sensitivity detection, signal differentiation, and nestmate recognition. Subsequently, we explore the impact of antennal excision on olfactory gene expression in various caste categories through transcriptomics, homology analysis, and expression profiling. Findings reveal that olfactory genes expression is influenced by antennal excision, with outcomes varying according to caste and the extent of excision. Finally, utilizing fluorescence in situ hybridization, we precisely localize the expression sites of olfactory genes within the antennae. This research reveals the intricate and adaptable nature of the termite olfactory system, highlighting its significance in adapting to diverse ecological roles and demands of social living.


Assuntos
Isópteros , Animais , Isópteros/genética , Hibridização in Situ Fluorescente , Olfato , Sensilas , Perfilação da Expressão Gênica
5.
Artigo em Inglês | MEDLINE | ID: mdl-38096641

RESUMO

Chemoreception through odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs) represents the functions of key proteins in the chemical ecology of insects. Recent studies have identified chemoreceptors in coleopterans, facilitating the evolutionary analysis of not only ORs but also IRs and GRs. Thus, Cerambycidae, Tenebrionidae and Curculionidae have received increased attention. However, knowledge of the chemoreceptors from Scarabaeidae is still limited, particularly for those that are sympatric. Considering the roles of chemoreceptors, this analysis could shed light on evolutionary processes in the context of sympatry. Therefore, the aim of this study was to identify and compare the repertoires of ORs, GRs and IRs between two sympatric scarab beetles, Hylamorpha elegans and Brachysternus prasinus. Here, construction of the antennal transcriptomes of both scarab beetle species and analyses of their phylogeny, molecular evolution and relative expression were performed. Thus, 119 new candidate chemoreceptors were identified for the first time, including 17 transcripts for B. prasinus (1 GR, 3 IRs and 13 ORs) and 102 for H. elegans (22 GRs, 14 IRs and 66 ORs). Orthologs between the two scarab beetle species were found, revealing specific expansions as well as absence in some clades. Purifying selection appears to have occurred on H. elegans and B. prasinus ORs. Further efforts will be focused on target identification to characterize kairomone and/or pheromone receptors.


Assuntos
Besouros , Receptores Odorantes , Gorgulhos , Animais , Transcriptoma , Simpatria , Perfilação da Expressão Gênica , Besouros/genética , Besouros/metabolismo , Gorgulhos/genética , Filogenia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo
6.
Insect Biochem Mol Biol ; 162: 104012, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37743031

RESUMO

The order Isopoda contains both aquatic and terrestrial species, among which Hemilepistus reaumurii, which lives in arid environments and is the most adapted to terrestrial life. Olfaction has been deeply investigated in insects while it has received very limited attention in other arthropods, particularly in terrestrial crustaceans. In insects, soluble proteins belonging to two main families, Odorant Binding Proteins (OBPs) and Chemosensory Proteins (CSPs), are contained in the olfactory sensillar lymph and are suggested to act as carriers of hydrophobic semiochemicals to or from membrane-bound olfactory receptors. Other protein families, namely Nieman-Pick type 2 (NPC2) and Lipocalins (LCNs) have been also reported as putative odorant carriers in insects and other arthropod clades. In this study, we have sequenced and analysed the transcriptomes of antennae and of the first pair of legs of H. reaumurii focusing on soluble olfactory proteins. Interestingly, we have found 13 genes encoding CSPs, whose sequences differ from those of the other arthropod clades, including non-isopod crustaceans, for the presence of two additional cysteine residues, besides the four conserved ones. Binding assays on two of these proteins showed strong affinities for fatty acids and long-chain unsaturated esters and aldehydes, putative semiochemicals for this species.


Assuntos
Artrópodes , Isópodes , Receptores Odorantes , Animais , Feromônios/metabolismo , Isópodes/genética , Isópodes/metabolismo , Insetos/metabolismo , Transcriptoma , Olfato/genética , Proteínas de Insetos/metabolismo , Artrópodes/genética , Receptores Odorantes/metabolismo , Antenas de Artrópodes/metabolismo , Filogenia , Perfilação da Expressão Gênica
7.
J Agric Food Chem ; 71(27): 10291-10303, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37382541

RESUMO

Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), which are thought to play key roles in the olfactory recognition of insects, can be induced by the odorants they recognize, but little is known about the underlying regulatory mechanisms. Here, we found that NlOBP8 and NlCSP10 play coordinative roles in the chemoreception of brown planthoppers (BPHs) to the volatile component linalool. Also, the relative mRNA levels of NlObp8 and NlCp10 decreased upon exposure to linalool. Further, homeotic protein distal-less (Dll), which was also highly expressed in the antennae, was found to positively regulate the transcription of NlObp8 and NlCsp10 directly. Knocking down NlDll expression downregulated the expression of many additional olfactory functional genes and impaired the repellent behavior of BPHs to linalool. Our findings elucidate the direct regulatory role of Dll in BPHs' olfactory plasticity to linalool through modulating the olfactory functional gene expression and could provide guidance to sustainably control BPHs in the field.


Assuntos
Hemípteros , Receptores Odorantes , Animais , Hemípteros/metabolismo , Insetos/metabolismo , Monoterpenos Acíclicos/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Odorantes , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
8.
Front Physiol ; 14: 1123479, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875036

RESUMO

Insects have highly specialized and sensitive olfactory systems involving several chemosensory genes to locate their mates and hosts or escape from predators. Pine needle gall midge, Thecodiplosis japonensis (Diptera: Cecidomyiidae), has invaded China since 2016 and caused serious damage. Till now, there is no environmentally friendly measure to control this gall midge. Screening molecules with high affinity to target odorant-binding protein to develop highly efficient attractants is a potential pest management method. However, the chemosensory genes in T. japonensis are still unclear. We identified 67 chemosensory-related genes in the transcriptomes of antennae, including 26 OBPs, 2 CSPs, 17 ORs, 3 SNMPs, 6 GRs, and 13 IRs, using high throughput sequencing. Phylogenetic analysis of these six chemosensory gene families among Dipteran was performed to classify and predict the functions. The expression profiles of OBPs, CSPs and ORs were validated by quantitative real-time PCR. 16 of the 26 OBPs were biased expressed in antennae. TjapORco and TjapOR5 were highly expressed in the antenna of unmated male and female adults. The functions of related OBPs and ORs genes were also discussed. These results provide a basis for the functional research on chemosensory genes at the molecular level.

9.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982668

RESUMO

Spodoptera frugiperda is a worldwide generalist pest with remarkable adaptations to environments and stresses, including developmental stage-related behavioral and physiological adaptations, such as diverse feeding preferences, mate seeking, and pesticide resistance. Insects' odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are essential for the chemical recognition during behavioral responses or other physiological processes. The genome-wide identification and the gene expression patterns of all these identified OBPs and CSPs across developmental stage-related S. frugiperda have not been reported. Here, we screened for genome-wide SfruOBPs and SfruCSPs, and analyzed the gene expression patterns of SfruOBPs and SfruCSPs repertoires across all developmental stages and sexes. We found 33 OBPs and 22 CSPs in the S. frugiperda genome. The majority of the SfruOBP genes were most highly expressed in the adult male or female stages, while more SfruCSP genes were highly expressed in the larval or egg stages, indicating their function complementation. The gene expression patterns of SfruOBPs and SfruCSPs revealed strong correlations with their respective phylogenic trees, indicating a correlation between function and evolution. In addition, we analyzed the chemical-competitive binding of a widely expressed protein, SfruOBP31, to host plant odorants, sex pheromones, and insecticides. Further ligands binding assay revealed a broad functional related binding spectrum of SfruOBP31 to host plant odorants, sex pheromones, and insecticides, suggesting its potential function in food, mate seeking, and pesticide resistance. These results provide guidance for future research on the development of behavioral regulators of S. frugiperda or other environmentally friendly pest-control strategies.


Assuntos
Inseticidas , Receptores Odorantes , Atrativos Sexuais , Animais , Atrativos Sexuais/genética , Odorantes , Spodoptera/genética , Spodoptera/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Percepção , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
10.
Pest Manag Sci ; 79(7): 2456-2468, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36809665

RESUMO

BACKGROUND: Insecticide resistance continuously poses a threat to agricultural production. Chemosensory protein-mediated resistance is a new mechanism of insecticide resistance discovered in recent years. In-depth research on resistance mediated by chemosensory proteins (CSPs) provides new insight into aid insecticide resistance management. RESULTS: Chemosensory protein 1 in Plutella xylostella (PxCSP1) was overexpressed in the two indoxacarb-resistant field populations and PxCSP1 has a high affinity with indoxacarb. PxCSP1 was upregulated when exposed to indoxacarb and the knockdown of this gene elevated sensitivity to indoxacarb, which demonstrate that PxCSP1 is involved in the indoxacarb resistance. Considering that CSPs may confer resistance in insects via binding or sequestering, we explored the binding mechanism of indoxacarb in PxCSP1-mediated resistance. Using molecular dynamics simulations and site-directed mutation, we found that indoxacarb forms a solid complex with PxCSP1 mainly through van der Waals interactions and electrostatic interactions. Between these, the electrostatic interaction provided by the Lys100 side chain in PxCSP1, and especially the hydrogen bonding between the NZ atom and the O of the carbamoyl carbonyl group of indoxacarb, are the key factors for the high affinity of PxCSP1 to indoxacarb. CONCLUSIONS: The overexpression of PxCPS1 and its high affinity to indoxacarb is partially responsible for indoxacarb resistance in P. xylostella. Modification of indoxacarb's carbamoyl group has the potential to alleviate indoxacarb resistance in P. xylostella. These findings will contribute to solving chemosensory protein-mediated indoxacarb resistance and provide a better understanding of the insecticide resistance mechanism. © 2023 Society of Chemical Industry.


Assuntos
Inseticidas , Mariposas , Animais , Mariposas/genética , Inseticidas/farmacologia , Oxazinas/farmacologia , Resistência a Inseticidas/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-36649785

RESUMO

Caligus rogercresseyi is an ectoparasitic copepod that negatively affects the salmon farming industry, causing economic losses. To use phytochemicals as feed additives, or other chemicals that could elicit behavioral responses in C. rogercresseyi, the chemosensory recognition process is crucial. Therefore, to establish how C. rogercresseyi recognizes glucosinolates and their derivates isothiocyanates, a chemosensory protein (CSP) described as specific carrier of these chemicals in sea louse (CrogCSP) was identified in this study. The recombinant CSP and its selectivity against different chemical compounds was tested by fluorescence binding assays. Phylogenetic analysis revealed a close relationship among CrogCSP and other reported CSPs. Our results indicate that phenyl isothiocyanate and isophorone exhibited dissociation constants of 4.17 and 4.28 µM of Ki, respectively, indicating affinity over other chemicals, such as fatty acids and sinigrin. Structural findings suggest a unique binding site capable of accept several types of chemicals, similar to what has been reported for crystallized insect CSPs. Finally, this study lays the foundation for a deeper understanding of CSPs in crustaceans and especially in C. rogercresseyi. Likewise, the identification of chemosensory proteins could serve as the first step towards novel semiochemicals discovery to being applied in the sea louse controlling.


Assuntos
Copépodes , Doenças dos Peixes , Ftirápteros , Animais , Filogenia , Ligantes , Doenças dos Peixes/parasitologia
12.
J Agric Food Chem ; 71(3): 1360-1368, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36622209

RESUMO

Chemosensory proteins (CSPs) are a type of efficient transporters that can bind various hydrophobic compounds. Previous research has shown that the expression levels of some insect CSPs were significantly increased after insecticide treatment. However, the role of CSPs in response to insecticide challenge is unclear. Conopomorpha sinensis is the most destructive borer pest of litchi (Litchi chinensis) and longan (Euphoria longan) in the Asia-Pacific region. Here, we studied the expression patterns and potential functions of 12 CSP genes (CsCSPs) from C. sinensis in response to λ-cyhalothrin exposure. The spatiotemporal distribution of CsCSPs suggested that they were predominantly expressed in the female abdomen, female legs, and male legs. The expression levels of CsCSPs were affected in a time-dependent manner after λ-cyhalothrin treatment in both sexes of C. sinensis adults. Compared to the control group, the expression levels of CsCSP1, CsCSP2, CsCSP9, and CsCSP12 in females were significantly increased by 2-4 times, while only one CsCSP, three CsCSPs, and two CsCSPs were significantly upregulated in males at three time points post-treatment. The sex-biased variance of CSP expression may be related to sex-specific detoxification enzymatic activities and survival rates of C. sinensis in response to insecticide challenge. Homology modeling and molecular docking analyses showed that the binding energy value of CsCSP1-12 to λ-cyhalothrin was negative and the binding energy between CsCSP9 and λ-cyhalothrin was the lowest (-11.35 kJ/mol). Combined with expression alterations of CsCSP1-12, the results indicate that CsCSP1, CsCSP2, CsCSP9, and CsCSP12 were involved in binding and ferrying of λ-cyhalothrin in C. sinensis.


Assuntos
Inseticidas , Lepidópteros , Piretrinas , Feminino , Masculino , Animais , Inseticidas/farmacologia , Simulação de Acoplamento Molecular , Piretrinas/farmacologia , Nitrilas/farmacologia
13.
BMC Genomics ; 23(1): 845, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36544089

RESUMO

BACKGROUND: In insects, the chemosensory system is crucial in guiding their behaviors for survival. Plagiodera versicolora (Coleoptera: Chrysomelidae), is a worldwide leaf-eating forest pest in salicaceous trees. There is little known about the chemosensory genes in P. versicolora. Here, we conducted a transcriptome analysis of larvae heads in P. versicolora. RESULTS: In this study, 29 odorant binding proteins (OBPs), 6 chemosensory proteins (CSPs), 14 odorant receptors (ORs), 13 gustatory receptors (GRs), 8 ionotropic receptors (IRs) and 4 sensory neuron membrane proteins (SNMPs) were identified by transcriptome analysis. Compared to the previous antennae and foreleg transcriptome data in adults, 12 OBPs, 2 CSPs, 5 ORs, 4 IRs, and 7 GRs were newly identified in the larvae. Phylogenetic analyses were conducted and found a new candidate CO2 receptor (PverGR18) and a new sugar receptor (PverGR23) in the tree of GRs. Subsequently, the dynamic expression profiles of various genes were analyzed by quantitative real-time PCR. The results showed that PverOBP31, OBP34, OBP35, OBP38, and OBP40 were highly expressed in larvae, PverOBP33 and OBP37 were highly expressed in pupae, and PverCSP13 was highly expressed in eggs, respectively. CONCLUSIONS: We identified a total of 74 putative chemosensory genes based on a transcriptome analysis of larvae heads in P. versicolora. This work provides new information for functional studies on the chemoreception mechanism in P. versicolora.


Assuntos
Besouros , Receptores Odorantes , Animais , Filogenia , Larva/genética , Larva/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Besouros/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo
14.
Insects ; 13(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36354848

RESUMO

The insect odorant binding proteins (OBPs) and chemosensory proteins (CSPs) are involved in the perception and discrimination of insects to host odor cues. Nephotettix cincticeps, one of the destructive pests of rice plants, not only directly damages hosts by sucking, but also indirectly transmits plant viruses in the field. Previous study found that two rice volatiles ((E)-ß-caryophyllene and 2-heptanol) induced by rice dwarf virus (RDV) mediated the olfactory behavior of N. cincticeps, which may promote virus dispersal. However, the OBPs and CSPs in N. cincticeps are still unknown. In this study, to identify the OBP and CSP genes in N. cincticeps, transcriptomic analyses were performed. In total, 46,623 unigenes were obtained. Twenty putative OBP and 13 CSP genes were discovered and identified. Phylogenetic analyses revealed that five putative OBPs belonged to the plus-C OBP family, and the other classic OBPs and CSPs were distributed among other orthologous groups. A total of 12 OBP and 10 CSP genes were detected, and nine OBP and three CSP genes were highly expressed in N. cincticeps antennae compared with other tissues. This study, for the first time, provides a valuable resource to well understand the molecular mechanism of N. cincticeps in the perception and discrimination of the two volatiles induced by RDV infection.

15.
Mar Drugs ; 20(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36355004

RESUMO

Living organisms deeply rely on the acquisition of chemical signals in any aspect of their life, from searching for food, mating and defending themselves from stressors. Copepods, the most abundant and ubiquitous metazoans on Earth, possess diversified and highly specified chemoreceptive structures along their body. The detection of chemical stimuli activates specific pathways, although this process has so far been analyzed only on a relatively limited number of species. Here, in silico mining of 18 publicly available transcriptomes is performed to delve into the copepod chemosensory genes, improving current knowledge on the diversity of this multigene family and on possible physiological mechanisms involved in the detection and analysis of chemical cues. Our study identifies the presence of ionotropic receptors, chemosensory proteins and gustatory receptors in copepods belonging to the Calanoida, Cyclopoida and Harpacticoida orders. We also confirm the absence in these copepods of odorant receptors and odorant-binding proteins agreeing with their insect specificity. Copepods have evolved several mechanisms to survive in the harsh marine environment such as producing proteins to respond to external stimulii. Overall, the results of our study open new possibilities for the use of the chemosensory genes as biomarkers in chemical ecology studies on copepods and possibly also in other marine holozooplankters.


Assuntos
Copépodes , Animais , Copépodes/genética , Copépodes/metabolismo , Antenas de Artrópodes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Perfilação da Expressão Gênica , Transcriptoma/genética , Filogenia
16.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430376

RESUMO

Two closely related thrips species, Frankliniella occidentalis and Frankliniella intonsa, are important pests on agricultural and horticultural crops. They have several similarities, including occurrence patterns, host range, and aggregation pheromone compounds. However, there are very few reports about the chemosensory genes and olfactory mechanisms in these two species. To expand our knowledge of the thrips chemosensory system, we conducted antennal transcriptome analysis of two thrips species, and identified seven odorant-binding proteins (OBPs) and eight chemosensory proteins (CSPs) in F. occidentalis, as well as six OBPs and six CSPs in F. intonsa. OBPs and CSPs showed high sequence identity between the two thrips species. The RT-qPCR results showed that the orthologous genes FoccOBP1/3/4/5/6, FintOBP1/3/4/6, FoccCSP1/2/3, and FintCSP1/2 were highly expressed in male adults. Molecular docking results suggested that orthologous pairs FoccOBP4/FintOBP4, FoccOBP6/FintOBP6, and FoccCSP2/FintCSP2 might be involved in transporting the major aggregation pheromone compound neryl (S)-2-methylbutanoate, while orthologous pairs FoccOBP6/FintOBP6, FoccCSP2/FintCSP2, and FoccCSP3/FintCSP3 might be involved in transporting the minor aggregation pheromone compound (R)-lavandulyl acetate. These results will provide a fundamental basis for understanding the molecular mechanisms of pheromone reception in the two thrips species.


Assuntos
Tisanópteros , Masculino , Animais , Tisanópteros/genética , Simulação de Acoplamento Molecular , Odorantes , Perfilação da Expressão Gênica , Feromônios
17.
Front Physiol ; 13: 924750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072856

RESUMO

Nowadays, insect chemosensation represents a key aspect of integrated pest management in the Anthropocene epoch. Olfaction-related proteins have been the focus of studies due to their function in vital processes, such ashost finding and reproduction behavior. Hence, most research has been based on the study of model insects, namely Drosophila melanogaster, Bombyx mori or Tribolium castaneum. Over the passage of time and the advance of new molecular techniques, insects considered non-models have been studied, contributing greatly to the knowledge of insect olfactory systems and enhanced pest control methods. In this review, a reference point for non-model insects is proposed and the concept of model and non-model insects is discussed. Likewise, it summarizes and discusses the progress and contribution in the olfaction field of both model and non-model insects considered pests in agriculture.

18.
Insects ; 13(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36135464

RESUMO

Plagiodera versicolora (Coleoptera: Chrysomelidae) is a worldwide leaf-eating forest pest in salicaceous trees. The forelegs play important roles in the chemoreception of insects. In this study, we conducted a transcriptome analysis of adult forelegs in P. versicolora and identified a total of 53 candidate chemosensory genes encoding 4 chemosensory proteins (CSPs), 19 odorant binding proteins (OBPs), 10 odorant receptors (ORs), 10 gustatory receptors (GRs), 6 ionotropic receptors (IRs), and 4 sensory neuron membrane proteins (SNMPs). Compared with the previous antennae transcriptome data, 1 CSP, 4 OBPs, 1 OR, 3 IRs, and 4 GRs were newly identified in the forelegs. Subsequently, the tissue expression profiles of 10 P. versicolora chemosensory genes were performed by real-time quantitative PCR. The results showed that PverOBP25, PverOBP27, and PverCSP6 were highly expressed in the antennae of both sexes. PverCSP11 and PverIR9 are predominately expressed in the forelegs than in the antennae. In addition, the expression levels of PverGR15 in female antennae and forelegs were significantly higher than those in the male antennae, implying that it may be involved in some female-specific behaviors such as oviposition site seeking. This work would greatly further the understanding of the chemoreception mechanism in P. versicolora.

19.
Front Physiol ; 13: 949607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910558

RESUMO

Insects have sensitive olfactory systems to interact with environment and respond to the change in host plant conditions. Key genes in the system can be potential targets for developing new and efficient pest behaviour control methods. Riptortus pedestris is an important soybean pest in East Asia and has caused serious damage to the soybean plants in Huang-Huai-Hai region of China. However, the current treatment of pests is dominated by chemical insecticides and lacks efficient sustainable prevention and control technologies. In this study, we identified 49 putative odorant-binding proteins (OBPs) (43 were new genes) and 25 chemosensory proteins (CSPs) (17 were new genes) in R. pedestris genome. These OBP and CSP genes are clustered in highly conserved groups from other hemipteran species in phylogenetic trees. Most RpedOBPs displayed antennal-biased expression. Among the 49 RpedOBPs, 33 were significantly highly expressed in the antennae, including three male-biased and nine female-biased. While many RpedCSPs were detected both in the antennae and in non-antennal tissues, only 11 RpedCSPs displayed antennal-biased expression, in which four RpedCSPs were male-biased and five RpedCSPs were female-biased. Some OBP and CSP genes showed sex-biased expression profiles. Our results not only provide a foundation for future exploration of the functions of RpedOBPs and RpedCSPs but also aid in developing environmentally friendly insecticides in the future.

20.
Pathogens ; 11(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631008

RESUMO

Entomopathogenic fungi such as Beauveria bassiana are extensively used for the control of insect pests worldwide. They infect mostly by adhesion to the insect surface and penetration through the cuticle. However, some insects, such as the red flour beetle Tribolium castaneum (Herbst), have evolved resistance by embedding their cuticle with antifungal compounds. Thus, they avoid fungal germination on the cuticle, which result in low susceptibility to entomopathogenic fungi. In adult T. castaneum, these antifungals are the well-known defensive compounds methyl-1,4- and ethyl-1,4-benzoquinone. In this study, we added B. bassiana conidia on the diet of adult beetles to study the effect of the entomopathogen on the secretion and detection of the beetle volatile blend containing both benzoquinones. The compounds were analyzed by solid phase microextraction coupled to gas chromatography-flame ionization detection, and were detected by electroantennography. In addition, we measured the expression level of four genes encoding for two odorant-binding proteins (OBP), one chemosensory protein (CSP), and one odorant receptor (OR) in both healthy and fungus-treated insects. Significant alterations in the secretion of both benzoquinones, as well as in the perception of methyl-1,4-benzoquinone, were found in fungus-treated insects. TcOBP7D, TcOBP0A and TcCSP3A genes were down-regulated in insects fed conidia for 12 and 48 h, and the latter gene was up-regulated in 72 h samples. TcOR1 expression was not altered at the feeding times studied. We conclude that fungus-treated insects alter both secretion and perception of benzoquinones, but additional functional and genetic studies are needed to fully understand the effects of fungal infection on the insect chemical ecology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA