RESUMO
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide; however, effective intervention strategies for NAFLD are still unavailable. The present study sought to investigate the efficacy of chiglitazar, a pan-PPAR agonist, in protecting against NAFLD in mice and its underlying molecular mechanism. Male C57BL/6 J mice were fed a high-fat diet (HFD) for 8 weeks to generate NAFLD and the HFD was continued for an additional 10 weeks in the absence or presence of 5 mg/kg/d or 10 mg/kg/d chiglitazar by gavage. Chiglitazar significantly improved dyslipidemia and insulin resistance, ameliorated hepatic steatosis and reduced liver inflammation and oxidative stress in NAFLD mice. RNA-seq revealed that chiglitazar alleviated HFD-induced NAFLD in mice through multiple pathways, including fatty acid metabolism regulation, insulin signaling pathway, and AMPK signaling pathway. This study demonstrated the potential therapeutic effect of chiglitazar on NAFLD. Chiglitazar ameliorated NAFLD by modulating multiple pathways.
Assuntos
Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Transdução de Sinais , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Dieta Hiperlipídica/efeitos adversos , Masculino , Transdução de Sinais/efeitos dos fármacos , Camundongos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Resistência à Insulina , Estresse Oxidativo/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Insulina/metabolismo , Insulina/sangue , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/agonistasRESUMO
BACKGROUND: To evaluate the glycemic control effects of vhiglitazar (carfloglitazar), a novel peroxisome proliferator-activated receptor pan-agonist, in patients with type 2 diabetes mellitus (T2DM) with metabolic syndrome (MetS) or insulin resistance (IR) using pooled data analysis of two phase III clinical trials. METHODS: Data were collected from two randomized phase III clinical trials in China, comparing chiglitazar to placebo or sitagliptin in T2DM patients. The MetS was defined by the Adult Treatment Panel III MetS criteria, and IR was defined by homeostatic model assessment for insulin resistance (HOMA-IR) ≥4.31 (male) or 4.51 (female). The main end point of this analysis was glycemic control in the different arms within each subgroup. RESULTS: In the MetS subgroup, changes in glycated hemoglobin (HbA1c) from baseline at week 24 in the chiglitazar 32 mg, chiglitazar 48 mg, and sitagliptin 100 mg arms were -1.44%, -1.68%, and -1.37%, respectively; p < .05 was obtained when chiglitazar 48 mg was compared with sitagliptin. In the IR subgroup, the changes in HbA1c were -1.58%, -1.56%, and -1.26% in chiglitazar 32 mg, chiglitazar 48 mg, and sitagliptin 100 mg arms, respectively; p < .05 was obtained when chiglitazar 32 mg was compared with sitaligptin. The two doses of chiglitazar demonstrated a greater reduction in fasting plasma glucose and 2 h postprandial plasma glucose than sitagliptin in the pooled population and in the MetS and IR subgroups. CONCLUSIONS: Chiglitazar shows promising efficacy for glycemic control in patients with T2DM associated with MetS or IR. Further prospective trials are required to validate these findings.
Assuntos
Carbazóis , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome Metabólica , Propionatos , Adulto , Humanos , Masculino , Feminino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Síndrome Metabólica/complicações , Síndrome Metabólica/tratamento farmacológico , Hemoglobinas Glicadas , Glicemia/metabolismo , Controle Glicêmico , Hipoglicemiantes/uso terapêutico , Fosfato de Sitagliptina/uso terapêuticoRESUMO
BACKGROUND: Chiglitazar is an emerging pan-agonist of all peroxisome proliferator activated receptors (PPAR)-α, δ and γ, and has therapeutic potential for type 2 diabetes (T2D). However, to date, no clinical studies or meta-analyses have compared the efficacy and safety of chiglitazar and traditional PPAR-γ agonist thiazolidinediones (TZDs). A meta-analysis concerning this topic is therefore required. AIM: To compare the efficacy and safety of chiglitazar and TZD in patients with T2D. METHODS: PubMed, Medline, Embase, the Cochrane Central Register of Controlled Trials, Reference Citation Analysis and Clinicaltrial.gov websites were searched from August 1994 to March 2022. Randomized controlled trials (RCTs) of chiglitazar or TZD vs placebo in patients with T2D were included. Indirect comparisons and sensitivity analyses were implemented to evaluate multiple efficacy and safety endpoints of interest. RESULTS: We included 93 RCTs that compared TZD with placebo and one that compared chiglitazar with placebo. For efficacy endpoints, the augmented dose of chig-litazar resulted in greater reductions in hemoglobin (Hb)A1c [weighted mean difference (WMD) = -0.15%, 95% confidence interval (CI): -0.27 to -0.04%], triglycerides (WMD = -0.17 mmol/L, 95%CI: -0.24 to -0.11 mmol/L) and alanine aminotransferase (WMD = -5.25 U/L, 95%CI: -8.50 to -1.99 U/L), and a greater increase in homeostasis model assessment-ß (HOMA-ß) (WMD = 17.75, 95%CI: 10.73-24.77) when compared with TZD treatment. For safety endpoints, the risks of hypoglycemia, edema, bone fractures, upper respiratory tract infection, urinary tract infection, and weight gain were all comparable between the augmented dose of chiglitazar and TZD. In patients with baseline HbA1c ≥ 8.5%, body mass index ≥ 30 kg/m2 or diabetes duration < 10 years, the HbA1c reduction and HOMA-ß increase were more conspicuous for the augmented dose of chiglitazar compared with TZD. CONCLUSION: Augmented dose of chiglitazar, a pan-activator of PPARs, may serve as an antidiabetic agent with preferable glycemic and lipid control, better ß-cell function preserving capacity, and does not increase the risk of safety concerns when compared with TZD.
RESUMO
Chiglitazar sodium is a new peroxisome proliferator-activated receptor (PPAR) pan-agonist with independent intellectual property rights in China. It can treat type 2 diabetes mellitus and regulate metabolism by modestly activating PPARα, PPARγ, and PPARδ to improve insulin sensitivity, regulate blood glucose, and promote fatty acid oxidation and utilization. Chiglitazar sodium has a significant insulin-sensitizing effect and is advantageous in reducing fasting and postprandial blood glucose levels, particularly at the 48 mg dose in patients with concomitant high triglycerides in terms of blood glucose and triglyceride level control.
RESUMO
Chiglitazar, a pan agonist of non-thiazolidinedione peroxisome proliferator-activated receptor, has the potential to regulate blood sugar, improve lipid metabolism, and reduce cardiovascular complications. This study aimed to examine the effect of cytochrome P450 (CYP) 3A4 inhibitors/inducers on the in vivo metabolism of chiglitazar and provide a reference for the clinical combination use of chiglitazar. A single-center, open-label, sequential crossover, and self-control study was carried out in 24 healthy subjects to determine the pharmacokinetics of chiglitazar dosed with and without CYP3A4 inhibitors and inducers. The findings showed that the CYP3A4 inhibitor itraconazole had no apparent pharmacokinetic drug interaction with chiglitazar, whereas rifampicin did. When combined with rifampicin after continuous dosing, chiglitazar exposure was not theoretically reduced but increased compared to a single dose of chiglitazar. The possible explanation may be the transporters of bile salt export pump, but this needs to be confirmed. The safety of chiglitazar in single or combination doses was well tolerated. The findings of this study provide a basis for clinical combinations of chiglitazar with CYP3A4 inhibitors or inducers.
Assuntos
Indutores do Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A , Humanos , Indutores do Citocromo P-450 CYP3A/efeitos adversos , Inibidores do Citocromo P-450 CYP3A/farmacologia , Rifampina , Voluntários Saudáveis , População do Leste Asiático , Indutores das Enzimas do Citocromo P-450 , Citocromo P-450 CYP3A/metabolismoRESUMO
Treatment of acute myeloid leukemia (AML) with chemotherapeutic agents fails to eliminate leukemia stem cells (LSC)ï¼and thus patients remain at high risk for relapse. Therefore, the identification of agents that target LSC is an important consideration for the development of new therapies. Enhanced glycolysis in LSC contributes to the aggressiveness of AML, which is difficult to be targeted. In this study, we showed that targeting peroxisome-proliferator-activated receptor α (PPARα), a ligand-activated transcription factor by chiglitazar provided a promising therapeutic approach. We first identified that chiglitazar reduced cell viability and proliferation of the leukemia stem-like cells population in AML. Treatment with chiglitazar blocked the ubiquitination of PPARα and increased its expression, resulting in the inhibition of glucose metabolism and apoptosis of AML cells. Consistent with its anti-leukemia stem-like cells activity in vitro, chiglitazar treatment in vivo resulted in the significant killing of leukemia stem-like cells as demonstrated in AML patient-derived xenograft (PDX) models. Mechanistically, PPARα overexpression inhibited the expression and promoter activity of PGK1 through blocking HIF1-α interaction on the PGK1 promoter. Thus, we concluded that targeting PPARα may serve as a novel approach for enhancing stem and progenitor cells elimination in AML.
Assuntos
Leucemia Mieloide Aguda , PPAR alfa , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fosfoglicerato Quinase/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR alfa/uso terapêutico , Transdução de SinaisRESUMO
Aim: To evaluate the changes in bone mineral density (BMD) and body composition in untreated patients with type 2 diabetes mellitus (T2DM) before and after chiglitazar or sitagliptin treatment. Methods: A total of 81 patients with T2DM were randomly divided to receive chiglitazar or sitagliptin treatment for 24 weeks (54 in the chiglitazar group and 27 in the sitagliptin group). We measured the spine lumbar BMD, hip BMD, fat mass (FM), fat-free mass (FFM), percent body fat (%BF), android FM, gynoid FM and skeleton muscle mass (SMM) using dual-energy X-ray absorptiometry (DEXA) and examined serum adiponectin (ADP) levels at baseline and the end of the study. Results: There were no significant changes in the BMD of the L2-4, femoral neck, trochanter or total hip as well as in the BMC after 24 weeks of treatment with chiglitazar or sitagliptin. After chiglitazar administration, the FM, gynoid FM and gynoid to total FM ratio were higher, while the android to total FM ratio and the android to gynoid FM ratio (AOI) were significantly lower. Sitagliptin intervention did not result in statistically significant differences in total fat loss, but it did cause significant decreases in %BF and AOI as well as increases in the FFM, gynoid to total FM ratio and SMM. The ADP levels had significantly negative associations with AOI in all eligible patients. Conclusion: The chiglitazar had no deleterious effects on BMD and resulted in body fat redistribution in untreated patients with T2DM. Trial Registration: The trial is registered at ClinicalTrials.gov (CT.gov identifier: NCT02173457).
RESUMO
Aims: We evaluated the efficacy and significant changes in the levels of retinol-binding protein 4 (RBP-4) and insulin resistance in patients with type 2 diabetes mellitus (T2DM) treated with chiglitazar versus sitagliptin. Methods: Eighty-one T2DM patients with haemoglobin A1c (HbA1c) level of 7.5%-10.0% were selected. Based on the study criteria, patients were randomly assigned to receive chiglitazar (32 mg), chiglitazar (48 mg), or sitagliptin (100 mg) orally for 24 weeks. Sociodemographic and anthropometric characteristics, lipid profiles, glucose profiles, and serum RBP-4 levels were determined at baseline and at the end of the therapy. Results: After treatment for 24 weeks, significant changes in fasting blood glucose (FBG), fasting insulin (Fins), 2 h-blood glucose (2h-BG), the score values of insulin resistance/insulin secretion/ß cell function (HOMA-IR, HOMA-IS, and HOMA-ß), triglyceride (TG), free fatty acid (FFA), high-density lipoprotein cholesterol (HDL-C), and RBP-4 levels were detected in patients with chiglitazar administration and sitagliptin administration. Changes in RBP-4 levels were positively correlated with changes in HOMA-IR and 2 h-BG in linear regression. Conclusions: Chiglitazar showed a greater improvement in parameters of diabetes than sitagliptin, and changes in serum RBP-4 levels were associated with changes in insulin-sensitizing parameters. Clinical Trial Registration: ClinicalTrials.gov, CT.gov identifier: NCT02173457.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Glicemia/metabolismo , Carbazóis/química , Diabetes Mellitus Tipo 2/complicações , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Propionatos/química , Fosfato de Sitagliptina/uso terapêuticoRESUMO
AIMS: To evaluate glycemic variations, changes in insulin resistance and oxidative stress after chiglitazar or sitagliptin treatment in untreated patients with type 2 diabetes mellitus (T2DM). METHODS: Based on the study inclusion and exclusion criteria, 81 patients with T2DM were randomly divided to receive chiglitazar or sitagliptin treatment for 24 weeks. Continuous glucose monitoring (CGM) systems were conducted for 72 h in eligible patients. We analyzed the following glycemic variation parameters derived from the CGM data and measured the serum levels of hemoglobin A1c (HbA1c), fasting blood glucose (FBG), 2-h postprandial blood glucose (2-h PBG), fasting insulin (Fins) and inflammatory-related indicators at baseline and the end of the study. RESULTS: After treatment for 24 weeks, our data showed a similar reduction in HbA1c between chiglitazar and sitagliptin. The 24-h mean blood glucose (MBG), standard deviation (SD) and mean amplitude of glycemic excursion (MAGE) were significantly decreased, and the time in range (TIR) was increased after chiglitazar and sitagliptin therapy. Chiglitazar administration led to significant improvement in insulin resistance/insulin secretion (HOMA-IR, HOMA-IS), interleukin-6 (IL-6), prostaglandin F2α (PGF-2α), 17-hydroxyprogesterone (17-OHP) and adiponectin (ADP) score values compared with sitagliptin administration. CONCLUSIONS: Chiglitazar therapy effectively reduced glucose variation and showed a larger improvement in insulin resistance and inflammatory parameters than sitagliptin.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Biomarcadores , Glicemia , Automonitorização da Glicemia , Carbazóis , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose , Hemoglobinas Glicadas , Humanos , Hipoglicemiantes/uso terapêutico , Propionatos , Fosfato de Sitagliptina/uso terapêuticoRESUMO
Chiglitazar (Carfloglitazar) is a novel non-thiazolidinedione (TZD) structured peroxisome proliferator-activated receptor (PPAR) pan-agonist that has shown promising effects on glycemic control and lipid regulation in patients with type 2 diabetes in previous clinical studies. This randomized phase 3 trial aimed to compare the efficacy and safety of chiglitazar with placebo in patients with type 2 diabetes with insufficient glycemic control by strict diet and exercise alone. Eligible patients were randomly assigned to receive chiglitazar 32 mg (n = 167), chiglitazar 48 mg (n = 166), or placebo (n = 202) once daily. The primary endpoint was the change in glycosylated hemoglobin A1c (HbA1c) at week 24 with superiority of chiglitazar over placebo. The results showed that both chiglitazar 32 and 48 mg resulted in significant and clinically meaningful reductions in HbA1c, and placebo-adjusted estimated treatment differences at week 24 for chiglitazar 32 and 48 mg were -0.87% (95% confidential interval (CI): -1.10 to -0.65; P < 0.0001) and -1.05% (95% CI: -1.29 to -0.81; P < 0.0001), respectively. Secondary efficacy parameters including glycemic control, insulin sensitivity and triglyceride reduction were also significantly improved in the chiglitazar groups. The overall frequency of adverse events and study discontinuation attributable to adverse events were similar among the groups. Low incidences of mild edema and body weight gain were reported in the chiglitazar dose groups. The results from this phase 3 trial demonstrated that the PPAR pan-agonist chiglitazar possesses an overall good efficacy and safety profile in patients with type 2 diabetes inadequately controlled with lifestyle interventions, thereby providing adequate supporting evidence for using this PPAR pan-agonist as a treatment option for type 2 diabetes.
Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptores Ativados por Proliferador de Peroxissomo/uso terapêutico , Hipoglicemiantes/efeitos adversos , CarbazóisRESUMO
Chiglitazar (Carfloglitazar) is a novel peroxisome proliferator-activated receptor (PPAR) pan-agonist that has shown promising effects on glycemic control and lipid regulation in patients with type 2 diabetes. In this randomized phase 3 trial, we compared the efficacy and safety of chiglitazar with sitagliptin in patients with type 2 diabetes who had insufficient glycemic control despite a strict diet and exercise regimen. Eligible patients were randomized (1:1:1) to receive chiglitazar 32 mg (n = 245), chiglitazar 48 mg (n = 246), or sitagliptin 100 mg (n = 248) once daily for 24 weeks. The primary endpoint was the change in glycosylated hemoglobin A1C (HbA1c) from baseline at week 24 with the non-inferiority of chiglitazar over sitagliptin. Both chiglitazar and sitagliptin significantly reduced HbA1c at week 24 with values of -1.40%, -1.47%, and -1.39% for chiglitazar 32 mg, chiglitazar 48 mg, and sitagliptin 100 mg, respectively. Chiglitazar 32 and 48 mg were both non-inferior to sitagliptin 100 mg, with mean differences of -0.04% (95% confidential interval (CI) -0.22 to 0.15) and -0.08% (95% CI -0.27 to 0.10), respectively. Compared with sitagliptin, greater reduction in fasting and 2-h postprandial plasma glucose and fasting insulin was observed with chiglitazar. Overall adverse event rates were similar between the groups. A small increase in mild edema in the chiglitazar 48 mg group and slight weight gain in both chiglitazar groups were reported. The overall results demonstrated that chiglitazar possesses good efficacy and safety profile in patients with type 2 diabetes inadequately controlled with lifestyle interventions, thereby providing adequate supporting evidence for using this PPAR pan-agonist as a treatment option for type 2 diabetes.
Assuntos
Diabetes Mellitus Tipo 2 , Fosfato de Sitagliptina , Humanos , Fosfato de Sitagliptina/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptores Ativados por Proliferador de Peroxissomo , Hipoglicemiantes/efeitos adversosRESUMO
The effect of age on the pharmacokinetics and safety of chiglitazar was evaluated in patients < 65 and ≥ 65 years with type 2 diabetes mellitus (T2DM). A total of 20 T2DM patients (<65 vs ≥65 years 1:1) completed the study. Patients received multiple doses of 48 mg chiglitazar once daily for 7 days consecutively. After the first dosing, chiglitazar maximum plasma concentration (Cmax ) and area under the plasma concentration-time curve (AUC) in patients ≥ 65 years were similar to those observed in patients < 65 years, with the geometric mean ratio (GMR) for Cmax and AUC being 97.22% and 96.83%, respectively. No significant difference was observed in Cmax (GMR, 97.23%) in the steady state. Compared with the patients < 65 years, a slight increase (8%-13%) of AUC was observed in the patients ≥ 65 years after multiple doses. Chiglitazar was generally well tolerated following multiple doses in both age groups. In conclusion, there were no significant clinical influences on the pharmacokinetic properties and safety profiles of chiglitazar between patients with T2DM < 65 and ≥ 65 years, indicating that in the future it is not required to adjust the dosing regimen by age for T2DM patients ≥ 65 years.
Assuntos
Carbazóis/administração & dosagem , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Propionatos/administração & dosagem , Fatores Etários , Idoso , Área Sob a Curva , Carbazóis/efeitos adversos , Carbazóis/farmacocinética , Feminino , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/farmacocinética , Masculino , Pessoa de Meia-Idade , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Propionatos/efeitos adversos , Propionatos/farmacocinéticaRESUMO
Chiglitazar (CHI) is a potent and selective peroxisome proliferator-activated receptor potentially for the treatment of patients with type 2 diabetes mellitus (T2DM). An open-label, randomized, 3-period crossover and self-controlled study was conducted to investigate drug-drug interaction potential between CHI and metformin hydrochloride (MET). Eligible subjects received a single oral dose of CHI (48 mg), MET (1000 mg), or a combination in each period, followed by serial blood sampling collected for up to 48 hours postdose, and safety was assessed throughout the trial. The area under the plasma concentration-time curves from time 0 to 48 hours (AUC0-48 h ) of CHI was similar following administration alone or with MET (AUC0-48h , 12 540 ng·h/mL [9811-15 269 ng·h/mL] vs 12 130 ng·h/mL [9304-14 956 ng·h/mL]; 90% confidence interval [CI] of its geometric mean ratio [GMR], 89.7%-103.8%), whereas the maximum concentration (Cmax ) of CHI was reduced during coadministration, as its 90%CI of the GMR was slightly outside the acceptance range for bioequivalence (Cmax , 1620 ng/mL [1418-1822 ng/mL] vs 1420 ng/mL [1049-1791 ng/mL], 90%CI GMR, 77.%-94.1%). However, it was not considered clinically meaningful. The MET exposures remained consistent in the absence or presence of CHI (AUC0-48 h , 12 570 ng·h/mL [10681-14 459 ng·h/mL] vs 13 190 [10973-15 407 ng·h/mL); 90%CI of GMR: 99.1%-110.5%; Cmax , 1790 ng/mL [1448-2132 ng/mL] vs 1820 ng/mL [1510-2130 ng/mL]; 90%CI of GMR, 94.2%-110.9%). No moderate to severe adverse events were reported. Our study indicated no clinically significant pharmacokinetic drug-drug interaction between CHI and MET and demonstrated good tolerance in subjects. These results support future application of CHI in combination with MET for treatment of T2DM.