Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Plant Cell Physiol ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39330878

RESUMO

Iron availability within the root system of plants fluctuates depending on various soil factors, which directly impacts plant growth. Simultaneously, various environmental stressors, such as high/low temperatures and high light intensity, affect plant photosynthesis in the leaves. However, the combined effects of iron nutrient conditions and abiotic stresses have not yet been clarified. In this study, we analyzed how iron nutrition conditions impact the chilling-induced damage on cucumber leaves (Cucumis sativus L.). When cucumbers were grown under different iron conditions and then exposed to chilling stress, plants grown under a high-iron condition exhibited more severe chilling-induced damage than the control plants. Conversely, plants grown under a low iron condition showed an alleviation of the chilling-induced damages. These differences were observed in a light-dependent manner, indicating that iron intensified the toxicity of reactive oxygen species generated by photosynthetic electron transport. In fact, plants grown under the low iron condition showed less accumulation of malondialdehyde derived from lipid peroxidation after chilling stress. Notably, the plants grown under the high-iron condition displayed a significant accumulation of iron and an increase in lipid peroxidation in the shoot, specifically after light-chilling stress, but not after dark-chilling stress. This indicated that increased root-to-shoot iron translocation, driven by light and low temperature, exacerbated leaf oxidative damage during chilling stress. These findings also highlight the importance of managing iron nutrition in the face of chilling stress and will facilitate crop breeding and cultivation strategies.

2.
Plants (Basel) ; 13(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273913

RESUMO

Rice (Oryza sativa L.) cultivation using direct seeding is susceptible to chilling stress, particularly during seed germination and early seedling growth in the early season of a double cropping system. Alternatively, seed priming with various plant growth-promoting hormones is an effective technique to promote rapid and uniform emergence under chilling stress. Therefore, we evaluated the impact of gibberellin A3 (GA3) and brassinolide (BR) priming on rice seed emergence, examining their proteomic responses under low-temperature conditions. Results indicated that GA3 and BR increased the seed germination rate by 22.67% and 7.33% at 72 h and 35% and 15% at 96 h compared to the control (CK), respectively. Furthermore, proteomic analysis identified 2551, 2614, and 2592 differentially expressed proteins (DEPs) in GA, BR, and CK, respectively. Among them, GA exhibited 84 upregulated and 260 downregulated DEPs, while BR showed 112 upregulated and 102 downregulated DEPs, and CK had 123 upregulated and 81 downregulated DEPs. Notably, under chilling stress, both GA3 and BR are involved in peroxide metabolism, phenylpropanoid biosynthesis, and inositol phosphate metabolism, enhancing antioxidant capacity and providing energy substances for germination. In addition, GA3 triggers the specific regulation of stress responsive protein activation, GTP activation, and ascorbic acid biosynthesis and promotes the stability and integrity of cell membranes, as well as the synthesis of cell walls, providing physical defense for seeds to resist low temperatures. At the same time, BR triggers specific involvement in ribosome synthesis and amino acid synthesis, promoting biosynthetic ability and metabolic regulation to maintain plant life activities under low-temperature stress. Furthermore, the various genes' expression (OsJ_16716, OsPAL1, RINO1) confirmed GA3 and BR involved in peroxide metabolism, phenylpropanoid biosynthesis, and inositol phosphate metabolism, enhancing antioxidant capacity and providing energy substances for germination. This study provides valuable insights into how rice seed embryo responds to and tolerates chilling stress with GA3 seed priming.

3.
BMC Plant Biol ; 24(1): 907, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349999

RESUMO

BACKGROUND: The growth and yield of pepper, a typical temperature-loving vegetable, are limited by low-temperature environments. Using low-temperature sensitive 'Hangjiao No. 4' (Capsicum annuum L.) as experimental material, this study analyzed the changes in plant growth and photosynthesis under different treatments: normal control (NT), low-temperature stress alone (LT), low-temperature stress in strigolactone pretreated plants (SL_LT), and low-temperature stress in strigolactone biosynthesis inhibitor pretreated plants (Tis_LT). RESULTS: SL pretreatment increased the net photosynthetic rate (Pn) and PSII actual photochemical efficiency (φPSII), reducing the inhibition of LT on the growth of pepper by 17.44% (dry weight of shoot). Due to promoting the accumulation of carotenoids, such as lutein, and the de-epoxidation of the xanthophyll cycle [(Z + A)/(Z + A + V)] by strigolactone after long-term low-temperature stress (120 h), non-photochemical quenching (NPQ) of pepper was increased to reduce the excess excitation energy [(1-qP)/NPQ] and the photoinhibition degree (Fv/Fm) of pepper seedlings under long-term low-temperature stress was alleviated. Twelve cDNA libraries were constructed from pepper leaves by transcriptome sequencing. There were 8776 differentially expressed genes (DEGs), including 4473 (51.0%) upregulated and 4303 (49.0%) downregulated genes. Gene ontology pathway annotation showed that based on LT, the DEGs of SL_LT and Tis_LT were significantly enriched in the cellular component, which is mainly related to the photosystem and thylakoids. Further analysis of the porphyrin and chlorophyll biosynthesis, carotenoid biosynthesis, photosynthesis-antenna protein, and photosynthetic metabolic pathways and the Calvin cycle under low-temperature stress highlighted 18, 15, 21, 29, and 31 DEGs for further study, which were almost all highly expressed under SL_LT treatment and moderately expressed under LT treatment, whereas Tis_LT showed low expression. CONCLUSION: The positive regulatory effect of SLs on the low-temperature tolerance of pepper seedlings was confirmed. This study provided new insights for the development of temperature-tolerant pepper lines through breeding programs.


Assuntos
Capsicum , Temperatura Baixa , Lactonas , Fotossíntese , Plântula , Capsicum/fisiologia , Capsicum/genética , Capsicum/efeitos dos fármacos , Lactonas/metabolismo , Plântula/efeitos dos fármacos , Plântula/fisiologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Resposta ao Choque Frio/fisiologia , Resposta ao Choque Frio/efeitos dos fármacos , Clorofila/metabolismo , Estresse Fisiológico , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia
5.
Plant Cell Environ ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148214

RESUMO

Chilling stress is a major environmental factor that significantly reduces crop production. To adapt to chilling stress, plants activate a series of cellular responses and accumulate an array of metabolites, particularly proline. Here, we report that the transcription factor SlWRKY51 increases proline contents in tomato (Solanum lycopersicum) under chilling stress. SlWRKY51 expression is induced under chilling stress. Knockdown or knockout of SlWRKY51 led to chilling-sensitive phenotypes, with lower photosynthetic capacity and more reactive oxygen species (ROS) accumulation than the wild type (WT). The proline contents were significantly reduced in SlWRKY51 knockdown and knockout lines under chilling stress, perhaps explaining the phenotypes of these lines. D-1-pyrroline-5-carboxylate synthetase (P5CS), which catalyses the rate-limiting step of proline biosynthesis, is encoded by two closely related P5CS genes (P5CS1 and P5CS2). We demonstrate that SlWRKY51 directly activates the expression of P5CS1 under chilling stress. In addition, the VQ (a class of plant-specific proteins containing the conserved motif FxxhVQxhTG) family member SlVQ10 physically interacts with SlWRKY51 to enhance its activation of P5CS1. Our study reveals that the chilling-induced transcription factor SlWRKY51 enhances chilling tolerance in tomato by promoting proline accumulation.

6.
Front Plant Sci ; 15: 1451403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39166246

RESUMO

Low temperature is one of the most important environmental factors that inhibits rice growth and grain yield. Transcription factors (TFs) play crucial roles in chilling acclimation by regulating gene expression. However, transcriptional dynamics and key regulators responding to low temperature remain largely unclear in rice. In this study, a transcriptome-based comparative analysis was performed to explore genome-wide gene expression profiles between a chilling-resistant cultivar DC90 and a chilling-susceptible cultivar 9311 at a series of time points under low temperature treatment and recovery condition. A total of 3,590 differentially expressed genes (DEGs) between two cultivars were determined and divided into 12 co-expression modules. Meanwhile, several biological processes participating in the chilling response such as abscisic acid (ABA) responses, water deprivation, protein metabolic processes, and transcription regulator activities were revealed. Through weighted gene co-expression network analysis (WGCNA), 15 hub TFs involved in chilling conditions were identified. Further, we used the gene regulatory network (GRN) to evaluate the top 50 TFs, which might have potential roles responding to chilling stress. Finally, five TFs, including a C-repeat binding factor (OsCBF3), a zinc finger-homeodomain protein (OsZHD8), a tandem zinc finger protein (OsTZF1), carbon starved anther (CSA), and indeterminate gametophyte1 (OsIG1) were identified as crucial candidates responsible for chilling resistance in rice. This study deepens our understanding in the gene regulation networks of chilling stress in rice and offers potential gene resources for breeding climate-resilient crops.

7.
BMC Genomics ; 25(1): 731, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075389

RESUMO

BACKGROUND: Despite its known significance in plant abiotic stress responses, the role of the RAV gene family in the response of Capsicum annuum to chilling stress remains largely unexplored. RESULTS: In this study, we identified and characterized six members of the CaRAV gene subfamily in pepper plants through genome-wide analysis. Subsequently, the CaRAV subfamily was classified into four branches based on homology with Arabidopsis thaliana, each exhibiting relatively conserved domains within the branch. We discovered that light response elements accounted for the majority of CaRAVs, whereas low-temperature response elements were specific to the NGA gene subfamily. After pepper plants were subjected to chilling stress, qRT‒PCR analysis revealed that CaRAV1, CaRAV2 and CaNGA1 were significantly induced in response to chilling stress, indicating that CaRAVs play a role in the response to chilling stress. Using virus-induced gene silencing (VIGS) vectors, we targeted key members of the CaRAV gene family. Under normal growth conditions, the MDA content and SOD enzyme activity of the silenced plants were slightly greater than those of the control plants, and the REC activity was significantly greater than that of the control plants. The levels of MDA and electrolyte leakage were greater in the silenced plants after they were exposed to chilling stress, and the POD and CAT enzyme activities were significantly lower than those in the control, which was particularly evident under repeated chilling stress. In addition, the relative expression of CaPOD and CaCAT was greater in V2 plants upon repeated chilling stress, especially CaCAT was significantly greater in V2 plants than in the other two silenced plants, with 3.29 and 1.10 increases within 12 and 24 h. These findings suggest that CaRAV1 and CaNGA1 positively regulate the response to chilling stress. CONCLUSIONS: Silencing of key members of the CaRAV gene family results in increased susceptibility to chilling damage and reduced antioxidant enzyme activity in plants, particularly under repeated chilling stress. This study provides valuable information for understanding the classification and putative functions of RAV transcription factors in pepper plants.


Assuntos
Capsicum , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas , Estresse Fisiológico , Capsicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Filogenia , Resposta ao Choque Frio/genética , Inativação Gênica
8.
BMC Genomics ; 25(1): 716, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048935

RESUMO

BACKGROUND: Paulownia, an ecologically and economically valuable plant species native to China, is notable for its excellent timber quality and strong adaptability. Among them, Paulownia catalpifolia displays the ability to survive in cold climate, a trait associated with northern China. Yet, the molecular information for its cold-tolerance has not been explored. This study was to investigate the changes in physiological indices and transcript levels of P. catalpifolia following cold exposure, which could provide evidence for revealing whether there were differences in the genetic basis of inducing physiological perturbations between moderate low temperature (MLT) and extreme low temperature (ELT). RESULTS: The detection of physiological indices under diverse degrees of chilling stress showed similar patterns of alteration. Enhanced accumulation of osmoregulatory substances, such as soluble sugar and soluble protein, were more conducive under ELT compared to MLT in P. catalpifolia. Moreover, we observed leaf wilting symptoms distinctly after exposure to ELT for 48 h, while this effect was not obvious after MLT exposure for 48 h. Comparative transcriptomic analysis between MLT and ELT demonstrated 13,688 differentially expressed genes (DEGs), most of them appeared after 12 h and 48 h of treatment. GO and KEGG analyses elucidated prominent enrichment in aromatic-L-amino-acid decarboxylase activity term and carbohydrate metabolism pathways. Therefore, it was speculated that the DEGs involved in the above processes might be related to the difference in the contents of soluble protein and soluble sugar between MLT and ELT. Time series clustering analyses further highlighted several key genes engaged in the 'Glycosyltransferases', 'Galactose metabolism' and 'Starch and sucrose metabolism' pathways as well as the 'tyrosine decarboxylase activity' term. For instance, cellulose synthase-like A (CLSA2/9), raffinose synthase (RafS2), ß-amylase (BAM1) and tyrosine/DOPA decarboxylase (TYDC1/2/5) genes, diverging in their expression trends between MLT and ELT, might significantly affect the soluble sugar and soluble protein abundance within P. catalpifolia. CONCLUSION: Between MLT and ELT treatments, partial overlaps in response pathways of P. catalpifolia were identified, while several genes regulating the accumulation of osmotic adjustment substances had disparate expression patterns. These findings could provide a novel physiological and molecular perspective for P. catalpifolia to adapt to complex low temperature habitats.


Assuntos
Plântula , Transcriptoma , Plântula/genética , Perfilação da Expressão Gênica , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Frio/genética , Cycadopsida/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Heliyon ; 10(11): e31708, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845942

RESUMO

This study aimed to develop and characterize the chitosan bionanoconjugates (BNCs) loaded with zinc (Zn) and salicylic acid (SA) and test their efficacy on wheat seed exposed to chilling stress. BNCs developed were spherical (480 ± 6.0 nm), porous, and positively charged (+25.2 ± 2.4 mV) with regulated nutrient release properties. They possessed complexation efficiency of 78.4 and 58.9 % for Zn, and SA respectively. BET analysis further confirmed a surface area of 12.04 m2/g. Release kinetics substantiated the release rates of Zn and SA, as 0.579 and 0.559 % per hour, along with a half-life of 119.7 and 124.0 h, respectively. BNCs positively affected the germination potential of wheat seeds under chilling stress as observed by significantly (p < 0.05) reduced mean emergence time (18 %), and increased germination rate (22 %), compared to the control. Higher activities of reserve mobilizing enzymes (α-amylase- 6.5 folds, protease -10.2 folds) as well as faster reserve mobilization of starch (64.4 %) and protein (63.5 %) molecules were also observed. The application further led to increased levels of the antioxidant enzymes (SOD and CAT) and reduced oxidative damage (MDA and H2O2). Thus, it is inferred that the developed BNCs could help substantially improve the germination and reserve mobilization potential, thereby increasing the crop yield.

10.
Genes (Basel) ; 15(6)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38927664

RESUMO

Chilling stress is one of the main abiotic factors affecting rice growth and yield. In rice, chlorophyllide a oxygenase encoded by OsCAO1 is responsible for converting chlorophyllide a to chlorophyllide b, playing a crucial role in photosynthesis and thus rice growth. However, little is known about the function of OsCAO1 in chilling stress responses. The presence of the cis-acting element involved in low-temperature responsiveness (LTR) in the OsCAO1 promoter implied that OsCAO1 probably is a cold-responsive gene. The gene expression level of OsCAO1 was usually inhibited by low temperatures during the day and promoted by low temperatures at night. The OsCAO1 knockout mutants generated by the CRISPR-Cas9 technology in rice (Oryza sativa L.) exhibited significantly weakened chilling tolerance at the seedling stage. OsCAO1 dysfunction led to the accumulation of reactive oxygen species and malondialdehyde, an increase in relative electrolyte leakage, and a reduction in antioxidant gene expression under chilling stress. In addition, the functional deficiency of OsCAO1 resulted in more severe damage to chloroplast morphology, such as abnormal grana thylakoid stacking, caused by low temperatures. Moreover, the rice yield was reduced in OsCAO1 knockout mutants. Therefore, the elevated expression of OsCAO1 probably has the potential to increase both rice yield and chilling tolerance simultaneously, providing a strategy to cultivate chilling-tolerant rice varieties with high yields.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Plântula , Oryza/genética , Oryza/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Resposta ao Choque Frio/genética , Técnicas de Inativação de Genes , Espécies Reativas de Oxigênio/metabolismo , Clorofila/metabolismo , Fotossíntese/genética
11.
Front Plant Sci ; 15: 1390993, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872895

RESUMO

Tobacco (Nicotiana tabacum L.) is an important industrial crop, which is sensitive to chilling stress. Tobacco seedlings that have been subjected to chilling stress readily flower early, which seriously affects the yield and quality of their leaves. Currently, there has been progress in elucidating the molecular mechanisms by which tobacco responds to chilling stress. However, little is known about the phosphorylation that is mediated by chilling. In this study, the transcriptome, proteome and phosphoproteome were analyzed to elucidate the mechanisms of the responses of tobacco shoot and root to chilling stress (4 °C for 24 h). A total of 6,113 differentially expressed genes (DEGs), 153 differentially expressed proteins (DEPs) and 345 differential phosphopeptides were identified in the shoot, and the corresponding numbers in the root were 6,394, 212 and 404, respectively. This study showed that the tobacco seedlings to 24 h of chilling stress primarily responded to this phenomenon by altering their levels of phosphopeptide abundance. Kyoto Encyclopedia of Genes and Genomes analyses revealed that starch and sucrose metabolism and endocytosis were the common pathways in the shoot and root at these levels. In addition, the differential phosphopeptide corresponding proteins were also significantly enriched in the pathways of photosynthesis-antenna proteins and carbon fixation in photosynthetic organisms in the shoot and arginine and proline metabolism, peroxisome and RNA transport in the root. These results suggest that phosphoproteins in these pathways play important roles in the response to chilling stress. Moreover, kinases and transcription factors (TFs) that respond to chilling at the levels of phosphorylation are also crucial for resistance to chilling in tobacco seedlings. The phosphorylation or dephosphorylation of kinases, such as CDPKs and RLKs; and TFs, including VIP1-like, ABI5-like protein 2, TCP7-like, WRKY 6-like, MYC2-like and CAMTA7 among others, may play essential roles in the transduction of tobacco chilling signal and the transcriptional regulation of the genes that respond to chilling stress. Taken together, these findings provide new insights into the molecular mechanisms and regulatory networks of the responses of tobacco to chilling stress.

12.
Plant Physiol Biochem ; 213: 108832, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896915

RESUMO

Coronatine, an analog of Jasmonic acid (JA), has been shown to enhance crop tolerance to abiotic stresses, including chilling stress. However, the underlying molecular mechanism remains largely unknown. In this study, we investigated the effect of Coronatine on cotton seedlings under low temperature using transcriptomic and metabolomics analysis. Twelve cDNA libraries from cotton seedlings were constructed, and pairwise comparisons revealed a total of 48,322 differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified the involvement of these unigenes in various metabolic pathways, including Starch and sucrose metabolism, Sesquiterpenoid and triterpenoid biosynthesis, Phenylpropanoid biosynthesis, alpha-Linolenic acid metabolism, ABC transporters, and Plant hormone signal transduction. Additionally, substantial accumulations of jasmonates (JAs), abscisic acid and major cell wall metabolites were observed. Transcriptome analysis revealed differential expression of regulatory genes, and qRT-PCR analysis confirmed the expression patterns of 9 selected genes. Co-expression analysis showed that the JA-responsive genes might form a network module with ABA biosynthesis genes or cell wall biosynthesis genes, suggesting the existence of a COR-JA-cellulose and COR-JA-ABA-cellulose regulatory pathway in cotton seedlings. Collectively, our findings uncover new insights into the molecular basis of coronatine--associated cold tolerance in cotton seedlings.


Assuntos
Aminoácidos , Temperatura Baixa , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Gossypium , Indenos , Oxilipinas , Plântula , Gossypium/genética , Gossypium/metabolismo , Gossypium/efeitos dos fármacos , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Aminoácidos/metabolismo , Indenos/farmacologia , Indenos/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Ciclopentanos/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Perfilação da Expressão Gênica , Transcriptoma , Resposta ao Choque Frio/genética
13.
J Exp Bot ; 75(18): 5790-5804, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-38808657

RESUMO

Chilling stress threatens plant growth and development, particularly affecting membrane fluidity and cellular integrity. Understanding plant membrane responses to chilling stress is important for unraveling the molecular mechanisms of stress tolerance. Whereas core transcriptional responses to chilling stress and stress tolerance are conserved across species, the associated changes in membrane lipids appear to be less conserved, as which lipids are affected by chilling stress varies by species. Here, we investigated changes in gene expression and membrane lipids in response to chilling stress during one 24 h cycle in chilling-tolerant foxtail millet (Setaria italica), and chilling-sensitive sorghum (Sorghum bicolor) and Urochloa (browntop signal grass, Urochloa fusca, lipids only), leveraging their evolutionary relatedness and differing levels of chilling stress tolerance. We show that most chilling-induced lipid changes are conserved across the three species, while we observed distinct, time-specific responses in chilling-tolerant foxtail millet, indicating the presence of a finely orchestrated adaptive mechanism. We detected rhythmicity in lipid responses to chilling stress in the three grasses, which were also present in Arabidopsis thaliana, suggesting the conservation of rhythmic patterns across species and highlighting the importance of accounting for time of day. When integrating lipid datasets with gene expression profiles, we identified potential candidate genes that showed corresponding transcriptional changes in response to chilling stress, providing insights into the differences in regulatory mechanisms between chilling-sensitive sorghum and chilling-tolerant foxtail millet.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Poaceae , Poaceae/genética , Poaceae/fisiologia , Metabolismo dos Lipídeos/genética , Setaria (Planta)/genética , Setaria (Planta)/fisiologia , Sorghum/genética , Sorghum/fisiologia
14.
BMC Genomics ; 25(1): 479, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750515

RESUMO

BACKGROUND: In the context of early sowing of maize as a promising adaptation strategy that could significantly reduce the negative effects of climate change, an in-depth understanding of mechanisms underlying plant response to low-temperature stress is demanded. Although microRNAs (miRNAs) have been recognized as key regulators of plant stress response, research on their role in chilling tolerance of maize during early seedling stages is scarce. Therefore, it is of great significance to explore chilling-responsive miRNAs, reveal their expression patterns and associated target genes, as well as to examine the possible functions of the conserved and novel miRNAs. In this study, the role of miRNAs was examined in 5d-old maize seedlings of one tolerant and one sensitive inbred line exposed to chilling (10/8 °C) stress for 6 h and 24 h, by applying high throughput sequencing. RESULTS: A total of 145 annotated known miRNAs belonging to 30 families and 876 potentially novel miRNAs were identified. Differential expression (DE) analysis between control and stress conditions identified 98 common miRNAs for both genotypes at one time point and eight miRNAs at both time points. Target prediction and enrichment analysis showed that the DE zma-miR396, zma-miR156, zma-miR319, and zma-miR159 miRNAs modulate growth and development. Furthermore, it was found that several other DE miRNAs were involved in abiotic stress response: antioxidative mechanisms (zma-miR398), signal transduction (zma-miR156, zma-miR167, zma-miR169) and regulation of water content (zma-miR164, zma-miR394, zma-miR396). The results underline the zma-miRNAs involvement in the modulation of their target genes expression as an important aspect of the plant's survival strategy and acclimation to chilling stress conditions. CONCLUSIONS: To our understanding, this is the first study on miRNAs in 5-d old seedlings' response to chilling stress, providing data on the role of known and novel miRNAs post-transcriptional regulation of expressed genes and contributing a possible platform for further network and functional analysis.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , MicroRNAs , Plântula , Zea mays , Zea mays/genética , Zea mays/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Plântula/genética , Estresse Fisiológico/genética , Resposta ao Choque Frio/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Perfilação da Expressão Gênica
15.
BMC Plant Biol ; 24(1): 266, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600447

RESUMO

BACKGROUND: Mango (Mangifera indica L.) is grown in Hainan, Guangdong, Yunnan, Sichuan, and Fujian provinces and Guanxi autonomous region of China. However, trees growing in these areas suffer severe cold stress during winter, which affects the yield. To this regard, data on global metabolome and transcriptome profiles of leaves are limited. Here, we used combined metabolome and transcriptome analyses of leaves of three mango cultivars with different cold stress tolerance, i.e. Jinhuang (J)-tolerant, Tainung (T) and Guiremang No. 82 (G)-susceptible, after 24 (LF), 48 (MF) and 72 (HF) hours of cold. RESULTS: A total of 1,323 metabolites belonging to 12 compound classes were detected. Of these, amino acids and derivatives, nucleotides and derivatives, and lipids accumulated in higher quantities after cold stress exposure in the three cultivars. Notably, Jinhuang leaves showed increasing accumulation trends of flavonoids, terpenoids, lignans and coumarins, and alkaloids with exposure time. Among the phytohormones, jasmonic acid and abscisic acid levels decreased, while N6-isopentenyladenine increased with cold stress time. Transcriptome analysis led to the identification of 22,526 differentially expressed genes. Many genes enriched in photosynthesis, antenna proteins, flavonoid, terpenoid (di- and sesquiterpenoids) and alkaloid biosynthesis pathways were upregulated in Jihuang leaves. Moreover, expression changes related to phytohormones, MAPK (including calcium and H2O2), and the ICE-CBF-COR signalling cascade indicate involvement of these pathways in cold stress responses. CONCLUSION: Cold stress tolerance in mango leaves is associated with regulation of primary and secondary metabolite biosynthesis pathways. Jasmonic acid, abscisic acid, and cytokinins are potential regulators of cold stress responses in mango leaves.


Assuntos
Ciclopentanos , Mangifera , Oxilipinas , Transcriptoma , Resposta ao Choque Frio/genética , Mangifera/genética , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Peróxido de Hidrogênio/metabolismo , China , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
16.
Int J Biol Macromol ; 266(Pt 2): 131293, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565368

RESUMO

The major latex proteins/ripening-related proteins are a subfamily of the Bet v 1 protein superfamily and are commonly involved in plant development and responses to various stresses. However, the functions of MLPs in the postharvest cold storage of fruits remain uninvestigated. Herein, we identified 30 MLP genes in the peach (Prunus persica) genome that were clustered into three subgroups. Chromosomal location analysis revealed that the PpMLP genes were unevenly distributed on five of the eight peach chromosomes. Synteny analysis of the MLP genes between peach and seven other plant species (five dicotyledons and two monocotyledons) explored their evolutionary characteristics. Furthermore, the PpMLP promoters contained cis-elements for multiple hormones and stress responses. Gene expression analysis revealed that PpMLPs participated in chilling stress responses. Ectopic expression of PpMLP10 in Arabidopsis improved chilling stress tolerance by decreasing membrane damage and maintaining membrane stability. Additional research confirmed that PpWRKY2 participates in PpMLP10-mediated chilling stress by binding to its promoter. Collectively, these results suggest the role of PpMLP10 in enhancing chilling stress tolerance, which is significant for decreasing chilling injury during the postharvest cold storage of peaches.


Assuntos
Temperatura Baixa , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Prunus persica , Prunus persica/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resposta ao Choque Frio/genética , Regiões Promotoras Genéticas/genética , Arabidopsis/genética , Estresse Fisiológico/genética , Filogenia
17.
Antioxidants (Basel) ; 13(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38539856

RESUMO

Tomato is the vegetable with the largest greenhouse area in China, and low temperature is one of the main factors affecting tomato growth, yield, and quality. Hydrogen sulfide (H2S) plays an important role in regulating plant chilling tolerance, but its downstream cascade reaction and mechanism remain unclear. Mitogen-activated protein kinases (MAPK/MPKs) are closely related to a variety of signaling substances in stress signal transmission. However, whether H2S is related to the MPK cascade pathway in response to low-temperature stress is rarely reported. In this study, NaHS treatment significantly decreased the electrolyte leakage (EL), superoxide anion (O2-) production rate, and hydrogen peroxide (H2O2) content of seedlings at low temperatures. In addition, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were obviously increased; and the photochemical efficiency of PSII (Fv/Fm) was enhanced with treatment with NaHS, indicating that NaHS improved the seedlings' cold tolerance by alleviating the degree of membrane lipid peroxidation and oxidative damage. However, H2S scavenger hypotaurine (HT) treatment showed the opposite effect. We found that H2S content, L-cysteine desulfhydrase (LCD) activity, and mRNA expression were increased by chilling stress but reduced by MPK inhibitor PD98059; PD98059 reversed the alleviating effect of H2S via increasing the EL and H2O2 contents. The expression levels of MPK1-MPK7 at low temperatures showed that SlMPK4 was significantly induced by exogenous NaHS and showed a trend of first increasing and then decreasing, while the expression level of SlMPK4 in HT-treated seedlings was lower than that of the control. After SlMPK4 was silenced by virus-induced gene silencing, the H2S-induced upregulation of C-repeat-Binding Factor (CBF1), inducer of CBF expression 1 (ICE1), respiratory burst oxidase homologs (RBOH1, RBOH2) at low temperatures disappeared, and tomato cold tolerance decreased. In conclusion, H2S improves the cold tolerance of tomato plants by increasing the activity of antioxidant enzymes and reducing reactive oxygen species (ROS) accumulation and membrane lipid peroxidation. MPK4 may act as a downstream signaling molecule in this process.

18.
Plant Biotechnol J ; 22(8): 2157-2172, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38506090

RESUMO

Chilling stress has seriously limited the global production and geographical distribution of rice. However, the molecular mechanisms associated with plant responses to chilling stress are less known. In this study, we revealed a member of ß-ketoacyl-ACP synthase I family (KASI), OsKASI-2 which confers chilling tolerance in rice. OsKASI-2 encodes a chloroplast-localized KASI enzyme mainly expressed in the leaves and anthers of rice and strongly induced by chilling stress. Disruption of OsKASI-2 led to decreased KAS enzymatic activity and the levels of unsaturated fatty acids, which impairs degree of unsaturation of membrane lipids, thus increased sensitivity to chilling stress in rice. However, the overexpression of OsKASI-2 significantly improved the chilling tolerance ability in rice. In addition, OsKASI-2 may regulate ROS metabolism in response to chilling stress. Natural variation of OsKASI-2 might result in difference in chilling tolerance between indica and japonica accessions, and Hap1 of OsKASI-2 confers chilling tolerance in rice. Taken together, we suggest OsKASI-2 is critical for regulating degree of unsaturation of membrane lipids and ROS accumulation for maintenance of membrane structural homeostasis under chilling stress, and provide a potential target gene for improving chilling tolerance of rice.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Lipídeos de Membrana , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Estresse Fisiológico , Espécies Reativas de Oxigênio/metabolismo
19.
Plant Physiol Biochem ; 207: 108392, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301328

RESUMO

Growth-regulating factors (GRFs) play crucial roles in plant growth, development, hormone signaling, and stress response. Despite their significance, the roles of GRFs in ginger remain largely unknown. Herein, 31 ginger ZoGRFs were identified and designated as ZoGRF1-ZoGRF31 according to their phylogenetic relationships. All ZoGRFs were characterized as unstable, hydrophilic proteins, with 29 predicted to be located in the nucleus. Functional cis-elements related to growth and development were enriched in ZoGRF's promoter regions. RNA-seq and RT-qPCR analysis revealed that ZoGRF12, ZoGRF24, and ZoGRF28 were highly induced in various growth and development stages, displaying differential regulation under waterlogging, chilling, drought, and salt stresses, indicating diverse expression patterns of ZoGRFs. Transient expression analysis in Nicotiana benthamiana indicated that overexpressing ZoGRF28 regulated the transcription levels of salicylic acid, jasmonic acid, and pattern-triggered immunity-related genes, increased chlorophyll content and contributed to reduced disease lesions and an increased net photosynthetic rate. This research lays the foundation for further understanding the biological roles of ZoGRFs.


Assuntos
Zingiber officinale , Zingiber officinale/genética , Filogenia , Fotossíntese , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Tree Physiol ; 44(3)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38366388

RESUMO

Low temperatures largely determine the geographic limits of plant species by reducing survival and growth. Inter-specific differences in the geographic distribution of mangrove species have been associated with cold tolerance, with exclusively tropical species being highly cold-sensitive and subtropical species being relatively cold-tolerant. To identify species-specific adaptations to low temperatures, we compared the chilling stress response of two widespread Indo-West Pacific mangrove species from Rhizophoraceae with differing latitudinal range limits-Bruguiera gymnorhiza (L.) Lam. ex Savigny (subtropical range limit) and Rhizophora apiculata Blume (tropical range limit). For both species, we measured the maximum photochemical efficiency of photosystem II (Fv/Fm) as a proxy for the physiological condition of the plants and examined gene expression profiles during chilling at 15 and 5 °C. At 15 °C, B. gymnorhiza maintained a significantly higher Fv/Fm than R. apiculata. However, at 5 °C, both species displayed equivalent Fv/Fm values. Thus, species-specific differences in chilling tolerance were only found at 15 °C, and both species were sensitive to chilling at 5 °C. At 15 °C, B. gymnorhiza downregulated genes related to the light reactions of photosynthesis and upregulated a gene involved in cyclic electron flow regulation, whereas R. apiculata downregulated more RuBisCo-related genes. At 5 °C, both species repressed genes related to CO2 assimilation. The downregulation of genes related to light absorption and upregulation of genes related to cyclic electron flow regulation are photoprotective mechanisms that likely contributed to the greater photosystem II photochemical efficiency of B. gymnorhiza at 15 °C. The results of this study provide evidence that the distributional range limits and potentially the expansion rates of plant species are associated with differences in the regulation of photosynthesis and photoprotective mechanisms under low temperatures.


Assuntos
Rhizophoraceae , Rhizophoraceae/genética , Rhizophoraceae/metabolismo , Complexo de Proteína do Fotossistema II/genética , Temperatura Baixa , Fotossíntese/genética , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA