Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Semin Hematol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39095226

RESUMO

Chimeric antigen receptor (CAR) T-cell therapies are a standard of care for certain relapsed or refractory B-cell cancers. However, many patients do not respond to CAR T-cell therapy or relapse later, short- and long-term toxicities are common, and current CAR T-cell therapies have limited efficacy for solid cancers. The gene engineering inherent in CAR T-cell manufacture offers an unprecedented opportunity to control cellular characteristics and design products that may overcome these limitations. This review summarises available methods to "tune" CAR T-cells for optimal efficacy and safety. The components of a typical CAR, and the modifications that can influence CAR T-cell function are discussed. Methods of engineering passive, inducible or autonomous control mechanisms into CAR T-cells, allowing selective limitation or enhancement of CAR T-cell activity are reviewed. The impact of manufacturing processes on CAR T-cell function are considered, including methods of limiting CAR T-cell terminal differentiation and exhaustion, and the use of specific T-cell subsets as the CAR T starting material. We discuss the use of multicistronic transgenes and multiplexed gene editing. Finally, we highlight the need for innovative clinical trial designs if we are to make the most of the opportunities offered by CAR T-cell therapies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38995478

RESUMO

NKT cells, unique lymphocytes bridging innate and adaptive immunity, offer significant potential for managing inflammatory disorders like asthma. Activating iNKT induces increasing IFN-γ, TGF-ß, IL-2, and IL-10 potentially suppressing allergic asthma. However, their immunomodulatory effects, including granzyme-perforin-mediated cytotoxicity, and expression of TIM-3 and TRAIL warrant careful consideration and targeted approaches. Although CAR-T cell therapy has achieved remarkable success in treating certain cancers, its limitations necessitate exploring alternative approaches. In this context, CAR-NKT cells emerge as a promising approach for overcoming these challenges, potentially achieving safer and more effective immunotherapies. Strategies involve targeting distinct IgE-receptors and their interactions with CAR-NKT cells, potentially disrupting allergen-mast cell/basophil interactions and preventing inflammatory cytokine release. Additionally, targeting immune checkpoints like PDL-2, inducible ICOS, FASL, CTLA-4, and CD137 or dectin-1 for fungal asthma could further modulate immune responses. Furthermore, artificial intelligence and machine learning hold immense promise for revolutionizing NKT cell-based asthma therapy. AI can optimize CAR-NKT cell functionalities, design personalized treatment strategies, and unlock a future of precise and effective care. This review discusses various approaches to enhancing CAR-NKT cell efficacy and longevity, along with the challenges and opportunities they present in the treatment of allergic asthma.

3.
Biomedicines ; 12(7)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39062195

RESUMO

CD19-targeted CAR-T cell therapy has revolutionized the treatment of relapsed/refractory (r/r) pre-B acute lymphoblastic leukemia (ALL). However, it can be associated with acute toxicities related to immune activation, particularly cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Cytokines released from activated immune cells play a key role in their pathophysiology. This study was a prospective analysis of proinflammatory proteins and cytokines in children treated with tisagenlecleucel. Serial measurements of C-reactive protein, fibrinogen, ferritin, IL-6, IL-8, IL-10, IFNγ, and TNFα were taken before treatment and on consecutive days after infusion. The incidence of CRS was 77.8%, and the incidence of ICANS was 11.1%. No CRS of grade ≥ 3 was observed. All complications occurred within 14 days following infusion. Higher biomarker concentrations were found in children with CRS grade ≥ 2. Their levels were correlated with disease burden and CAR-T cell dose. While cytokine release syndrome was common, most cases were mild, primarily due to low disease burden before lymphodepleting chemotherapy (LDC). ICANS occurred less frequently but exhibited various clinical courses. None of the toxicities were fatal. All of the analyzed biomarkers rose within 14 days after CAR-T infusion, with most reaching their maximum around the third day following the procedure.

4.
Immunother Adv ; 4(1): ltae004, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978751

RESUMO

CD8+ T cells contribute to immune responses by producing cytokines when their T-cell receptors (TCRs) recognise peptide antigens on major-histocompability-complex class I. However, excessive cytokine production can be harmful. For example, cytokine release syndrome is a common toxicity observed in treatments that activate T cells, including chimeric antigen receptor (CAR)-T-cell therapy. While the engagement of costimulatory receptors is well known to enhance cytokine production, we have limited knowledge of their ability to regulate the kinetics of cytokine production by CAR-T cells. Here we compare early (0-12 h) and late (12-20 h) production of IFN-gg, IL-2, and TNF-a production by T cells stimulated via TCR or CARs in the presence or absence ligands for CD2, LFA-1, CD28, CD27, and 4-1BB. For T cells expressing TCRs and 1st-generation CARs, activation by antigen alone was sufficient to stimulate early cytokine production, while co-stimulation by CD2 and 4-1BB was required to maintain late cytokine production. In contrast, T cells expressing 2nd-generation CARs, which have intrinsic costimulatory signalling motifs, produce high levels of cytokines in both early and late periods in the absence of costimulatory receptor ligands. Losing the requirement for costimulation for sustained cytokine production may contribute to the effectiveness and/or toxicity of 2nd-generation CAR-T-cell therapy.

5.
Biomark Res ; 12(1): 66, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020411

RESUMO

Non-Hodgkin lymphomas (NHLs) are heterogeneous and are among the most common hematological malignancies worldwide. Despite the advances in the treatment of patients with NHLs, relapse or resistance to treatment is anticipated in several patients. Therefore, novel therapeutic approaches are needed. Recently, natural killer (NK) cell-based immunotherapy alone or in combination with monoclonal antibodies, chimeric antigen receptors, or bispecific killer engagers have been applied in many investigations for NHL treatment. The functional defects of NK cells and the ability of cancerous cells to escape NK cell-mediated cytotoxicity within the tumor microenvironment of NHLs, as well as the beneficial results from previous studies in the context of NK cell-based immunotherapy in NHLs, direct our attention to this therapeutic strategy. This review aims to summarize clinical studies focusing on the applications of NK cells in the immunotherapy of patients with NHL.

6.
MedComm (2020) ; 5(5): e553, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38737469

RESUMO

The generation of chimeric antigen receptor-modified natural killer (CAR-NK) cells using induced pluripotent stem cells (iPSCs) has emerged as one of the paradigms for manufacturing off-the-shelf universal immunotherapy. However, there are still some challenges in enhancing the potency, safety, and multiple actions of CAR-NK cells. Here, iPSCs were site-specifically integrated at the ribosomal DNA (rDNA) locus with interleukin 24 (IL24) and CD19-specific chimeric antigen receptor (CAR19), and successfully differentiated into iPSC-derived NK (iNK) cells, followed by expansion using magnetic beads in vitro. Compared with the CAR19-iNK cells, IL24 armored CAR19-iNK (CAR19-IL24-iNK) cells showed higher cytotoxic capacity and amplification ability in vitro and inhibited tumor progression more effectively with better survival in a B-cell acute lymphoblastic leukaemia (B-ALL) (Nalm-6 (Luc1))-bearing mouse model. Interestingly, RNA-sequencing analysis showed that IL24 may enhance iNK cell function through nuclear factor kappa B (NFκB) pathway-related genes while exerting a direct effect on tumor cells. This study proved the feasibility and potential of combining IL24 with CAR-iNK cell therapy, suggesting a novel and promising off-the-shelf immunotherapy strategy.

7.
Mol Ther Methods Clin Dev ; 32(2): 101250, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38737799

RESUMO

CAR-T cell therapies have consolidated their position over the last decade as an effective alternative to conventional chemotherapies for the treatment of a number of hematological malignancies. With an exponential increase in the number of commercial therapies and hundreds of phase 1 trials exploring CAR-T cell efficacy in different settings (including autoimmunity and solid tumors), demand for manufacturing capabilities in recent years has considerably increased. In this review, we explore the current landscape of CAR-T cell manufacturing and discuss some of the challenges limiting production capacity worldwide. We describe the latest technical developments in GMP production platform design to facilitate the delivery of a range of increasingly complex CAR-T cell products, and the challenges associated with translation of new scientific developments into clinical products for patients. We explore all aspects of the manufacturing process, namely early development, manufacturing technology, quality control, and the requirements for industrial scaling. Finally, we discuss the challenges faced as a small academic team, responsible for the delivery of a high number of innovative products to patients. We describe our experience in the setup of an effective bench-to-clinic pipeline, with a streamlined workflow, for implementation of a diverse portfolio of phase 1 trials.

8.
Cells ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727261

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy has proven to be a powerful treatment for hematological malignancies. The situation is very different in the case of solid tumors, for which no CAR-T-based therapy has yet been approved. There are many factors contributing to the absence of response in solid tumors to CAR-T cells, such as the immunosuppressive tumor microenvironment (TME), T cell exhaustion, or the lack of suitable antigen targets, which should have a stable and specific expression on tumor cells. Strategies being developed to improve CAR-T-based therapy for solid tumors include the use of new-generation CARs such as TRUCKs or bi-specific CARs, the combination of CAR therapy with chemo- or radiotherapy, the use of checkpoint inhibitors, and the use of oncolytic viruses. Furthermore, despite the scarcity of targets, a growing number of phase I/II clinical trials are exploring new solid-tumor-associated antigens. Most of these antigens are of a protein nature; however, there is a clear potential in identifying carbohydrate-type antigens associated with tumors, or carbohydrate and proteoglycan antigens that emerge because of aberrant glycosylations occurring in the context of tumor transformation.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Microambiente Tumoral/imunologia , Antígenos de Neoplasias/imunologia , Linfócitos T/imunologia , Animais
9.
Front Immunol ; 15: 1378739, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665921

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has transformed cancer immunotherapy. However, significant challenges limit its application beyond B cell-driven malignancies, including limited clinical efficacy, high toxicity, and complex autologous cell product manufacturing. Despite efforts to improve CAR T cell therapy outcomes, there is a growing interest in utilizing alternative immune cells to develop CAR cells. These immune cells offer several advantages, such as major histocompatibility complex (MHC)-independent function, tumor microenvironment (TME) modulation, and increased tissue infiltration capabilities. Currently, CAR products from various T cell subtypes, innate immune cells, hematopoietic progenitor cells, and even exosomes are being explored. These CAR products often show enhanced antitumor efficacy, diminished toxicity, and superior tumor penetration. With these benefits in mind, numerous clinical trials are underway to access the potential of these innovative CAR cells. This review aims to thoroughly examine the advantages, challenges, and existing insights on these new CAR products in cancer treatment.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Imunoterapia Adotiva/métodos , Animais , Microambiente Tumoral/imunologia , Linfócitos T/imunologia
10.
Mol Ther Oncol ; 32(1): 200775, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596311

RESUMO

Chimeric antigen receptor (CAR) T cell therapies targeting B cell-restricted antigens CD19, CD20, or CD22 can produce potent clinical responses for some B cell malignancies, but relapse remains common. Camelid single-domain antibodies (sdAbs or nanobodies) are smaller, simpler, and easier to recombine than single-chain variable fragments (scFvs) used in most CARs, but fewer sdAb-CARs have been reported. Thus, we sought to identify a therapeutically active sdAb-CAR targeting human CD22. Immunization of an adult Llama glama with CD22 protein, sdAb-cDNA library construction, and phage panning yielded >20 sdAbs with diverse epitope and binding properties. Expressing CD22-sdAb-CAR in Jurkat cells drove varying CD22-specific reactivity not correlated with antibody affinity. Changing CD28- to CD8-transmembrane design increased CAR persistence and expression in vitro. CD22-sdAb-CAR candidates showed similar CD22-dependent CAR-T expansion in vitro, although only membrane-proximal epitope targeting CD22-sdAb-CARs activated direct cytolytic killing and extended survival in a lymphoma xenograft model. Based on enhanced survival in blinded xenograft studies, a lead CD22sdCAR-T was selected, achieving comparable complete responses to a benchmark short linker m971-scFv CAR-T in high-dose experiments. Finally, immunohistochemistry and flow cytometry confirm tissue and cellular-level specificity of the lead CD22-sdAb. This presents a complete report on preclinical development of a novel CD22sdCAR therapeutic.

11.
Front Immunol ; 15: 1368275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562943

RESUMO

Autoimmune encephalitis (AE) broadly refers to inflammation of the brain parenchyma mediated by autoimmune mechanisms. In most patients with AE, autoantibodies against neuronal cell surface antigens are produced by B-cells and induce neuronal dysfunction through various mechanisms, ultimately leading to disease progression. In recent years, B-cell targeted therapies, including monoclonal antibody (mAb) therapy and chimeric antigen receptor T-cell (CAR-T) therapy, have been widely used in autoimmune diseases. These therapies decrease autoantibody levels in patients and have shown favorable results. This review summarizes the mechanisms underlying these two B-cell targeted therapies and discusses their clinical applications and therapeutic potential in AE. Our research provides clinicians with more treatment options for AE patients whose conventional treatments are not effective.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Encefalite , Doença de Hashimoto , Humanos , Autoanticorpos , Anticorpos Monoclonais/uso terapêutico , Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico
12.
Mol Ther ; 32(6): 1817-1834, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38627969

RESUMO

Cellular therapies for the treatment of human diseases, such as chimeric antigen receptor (CAR) T and natural killer (NK) cells have shown remarkable clinical efficacy in treating hematological malignancies; however, current methods mainly utilize viral vectors that are limited by their cargo size capacities, high cost, and long timelines for production of clinical reagent. Delivery of genetic cargo via DNA transposon engineering is a more timely and cost-effective approach, yet has been held back by less efficient integration rates. Here, we report the development of a novel hyperactive TcBuster (TcB-M) transposase engineered through structure-guided and in vitro evolution approaches that achieves high-efficiency integration of large, multicistronic CAR-expression cassettes in primary human cells. Our proof-of-principle TcB-M engineering of CAR-NK and CAR-T cells shows low integrated vector copy number, a safe insertion site profile, robust in vitro function, and improves survival in a Burkitt lymphoma xenograft model in vivo. Overall, TcB-M is a versatile, safe, efficient and open-source option for the rapid manufacture and preclinical testing of primary human immune cell therapies through delivery of multicistronic large cargo via transposition.


Assuntos
Linfoma de Burkitt , Vetores Genéticos , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Transposases , Humanos , Transposases/genética , Transposases/metabolismo , Animais , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Linfoma de Burkitt/terapia , Linfoma de Burkitt/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Linhagem Celular Tumoral , Elementos de DNA Transponíveis , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transgenes
13.
Pathog Immun ; 9(1): 1-17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550613

RESUMO

This review focuses on the use of chimeric antigen receptor (CAR)-T cell therapy to treat non-Hodgkin's lymphoma (NHL), a classification of heterogeneous malignant neoplasms of the lymphoid tissue. Despite various conventional and multidrug chemotherapies, the poor prognosis for NHL patients remains and has prompted the utilization of groundbreaking personalized therapies such as CAR-T cells. CAR-T cells are T cells engineered to express a CAR that enables T cells to specifically lyse tumor cells with extracellular expression of a tumor antigen of choice. A CAR is composed of an extracellular antibody fragment or target protein binding domain that is conjugated to activating intracellular signaling motifs common to T cells. In general, CAR-T cell therapies for NHL are designed to recognize cellular markers ubiquitously expressed on B cells such as CD19+, CD20+, and CD22+. Clinical trials using CAR-T cells such as ZUMA-7 and TRANSFORM demonstrated promising results compared to standard of care and ultimately led to FDA approval for the treatment of relapsed/refractory NHL. Despite the success of CAR-T therapy for NHL, challenges include adverse side effects as well as extrinsic and intrinsic mechanisms of tumor resistance that lead to suboptimal outcomes. Overall, CAR-T cell therapies have improved clinical outcomes in NHL patients and generated optimism around their future applications.

14.
MAbs ; 16(1): 2310890, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439551

RESUMO

Biparatopic antibodies (bpAbs) bind distinct, non-overlapping epitopes on an antigen. This unique binding mode enables new mechanisms of action beyond monospecific and bispecific antibodies (bsAbs) that can make bpAbs effective therapeutics for various indications, including oncology and infectious diseases. Biparatopic binding can lead to superior affinity and specificity, promote antagonism, lock target conformation, and result in higher-order target clustering. Such antibody-target complexes can elicit strong agonism, increase immune effector function, or result in rapid target downregulation and lysosomal trafficking. These are not only attractive properties for therapeutic antibodies but are increasingly being explored for other modalities such as antibody-drug conjugates, T-cell engagers and chimeric antigen receptors. Recent advances in bpAb engineering have enabled the construction of ever more sophisticated formats that are starting to show promise in the clinic.


Assuntos
Anticorpos Biespecíficos , Imunoconjugados , Receptores de Antígenos Quiméricos , Anticorpos Biespecíficos/uso terapêutico , Epitopos
15.
Clin Lymphoma Myeloma Leuk ; 24(5): 277-284, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38331676

RESUMO

The treatment landscape for multiple myeloma (MM) has rapidly evolved over the last 2 decades. The development of triplet and quadruplet regimens including proteasome inhibitors (PI), immunomodulatory agents (IMiDs), and anti-CD38 monoclonal antibodies has dramatically extended overall survival. In addition to effective multidrug regimens, autologous stem cell transplant (ASCT) is a cornerstone of management in newly diagnosed multiple myeloma (NDMM). However, despite these combined treatment modalities, curative therapy for MM remains elusive. Recent, novel immunotherapies including chimeric antigen T-cell (CAR-T) therapy have demonstrated deep and durable responses in relapsed and refractory multiple myeloma (RRMM). Currently 2 CAR-T products, ciltacabtagene autoleucel (cilta-cel) and idecabtagene vicleucel (ide-cel), are approved by the FDA for the treatment of RRMM. The success of CAR-T therapy revolutionized the management of RRMM prompting clinical trials studying CAR-T therapy in the first line setting. The ongoing KarMMa-4, CARTITUDE-5, and CARTITUDE-6 clinical trials may establish CAR-T therapy as a first line option potentially supplanting ASCT in the initial treatment of NDMM. In this review, we discuss the current standard of care management of NDMM, trace the evolution of CAR-T clinical trials in RRMM, and survey ongoing clinical trials studying CAR-T therapy in NDMM.


Assuntos
Imunoterapia Adotiva , Mieloma Múltiplo , Transplante Autólogo , Humanos , Mieloma Múltiplo/terapia , Imunoterapia Adotiva/métodos , Transplante Autólogo/métodos , Receptores de Antígenos Quiméricos/uso terapêutico
16.
EMBO J ; 43(1): 132-150, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177315

RESUMO

Understanding cellular decisions due to receptor-ligand interactions at cell-cell interfaces has been hampered by the difficulty of independently varying the surface density of multiple different ligands. Here, we express the synthetic binder protein SpyCatcher, designed to form spontaneous covalent bonds with interactors carrying a Spytag, on the cell surface. Using this, we show that addition of different concentrations and combinations of native Spytag-fused ligands allows for the combinatorial display of ligands on cells within minutes. We use this combinatorial display of cell surface ligands-called CombiCells-to assess T cell antigen sensitivity and the impact of T cell co-stimulation and co-inhibition receptors. We find that the T cell receptor (TCR) displayed greater sensitivity to peptides on major-histocompatibility complexes (pMHC) than synthetic chimeric antigen receptor (CARs) and bi-specific T cell engager (BiTEs) display to their target antigen, CD19. While TCR sensitivity was greatly enhanced by CD2/CD58 interactions, CAR sensitivity was primarily but more modestly enhanced by LFA-1/ICAM-1 interactions. Lastly, we show that PD-1/PD-L1 engagement inhibited T cell activation triggered solely by TCR/pMHC interactions, as well as the amplified activation induced by CD2 and CD28 co-stimulation. The ability to easily produce cells with different concentrations and combinations of ligands should accelerate the study of receptor-ligand interactions at cell-cell interfaces.


Assuntos
Antígenos , Linfócitos T , Ligantes , Receptores de Antígenos de Linfócitos T/metabolismo , Ativação Linfocitária
17.
J Transl Med ; 22(1): 58, 2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221609

RESUMO

BACKGROUND: Chimeric antigen receptor CAR-T cell therapies have ushered in a new era of treatment for specific blood cancers, offering unparalleled efficacy in cases of treatment resistance or relapse. However, the emergence of cytokine release syndrome (CRS) as a side effect poses a challenge to the widespread application of CAR-T cell therapies. Melatonin, a natural hormone produced by the pineal gland known for its antioxidant and anti-inflammatory properties, has been explored for its potential immunomodulatory effects. Despite this, its specific role in mitigating CAR-T cell-induced CRS remains poorly understood. METHODS: In this study, our aim was to investigate the potential of melatonin as an immunomodulatory agent in the context of CD19-targeting CAR-T cell therapy and its impact on associated side effects. Using a mouse model, we evaluated the effects of melatonin on CAR-T cell-induced CRS and overall survival. Additionally, we assessed whether melatonin administration had any detrimental effects on the antitumor efficacy and persistence of CD19 CAR-T cells. RESULTS: Our findings demonstrate that melatonin effectively mitigated the severity of CAR-T cell-induced CRS in the mouse model, leading to improved overall survival outcomes. Remarkably, melatonin administration did not compromise the antitumor effectiveness or persistence of CD19 CAR-T cells, indicating its compatibility with therapeutic goals. These results suggest melatonin's potential as an immunomodulatory compound to alleviate CRS without compromising the therapeutic benefits of CAR-T cell therapy. CONCLUSION: The study's outcomes shed light on melatonin's promise as a valuable addition to the existing treatment protocols for CAR-T cell therapies. By attenuating CAR-T cell-induced CRS while preserving the therapeutic impact of CAR-T cells, melatonin offers a potential strategy for optimizing and refining the safety and efficacy profile of CAR-T cell therapy. This research contributes to the evolving understanding of how to harness immunomodulatory agents to enhance the clinical application of innovative cancer treatments.


Assuntos
Síndrome da Liberação de Citocina , Imunoterapia Adotiva , Melatonina , Antígenos CD19 , Terapia Baseada em Transplante de Células e Tecidos , Síndrome da Liberação de Citocina/terapia , Fatores Imunológicos/farmacologia , Imunoterapia Adotiva/efeitos adversos , Melatonina/farmacologia , Recidiva Local de Neoplasia , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Animais , Camundongos
18.
Recent Pat Anticancer Drug Discov ; 19(5): 557-572, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213150

RESUMO

Chimeric antigen receptor T-cells, known as CAR-T cells, represent a promising breakthrough in the realm of adoptive cell therapy. These T-cells are genetically engineered to carry chimeric antigen receptors that specifically target tumors. They have achieved notable success in the treatment of blood-related cancers, breathing new life into this field of medical research. However, numerous obstacles limit chimeric antigen receptors T-cell therapy's efficacy, such as it cannot survive in the body long. It is prone to fatigue and exhaustion, leading to difficult tumor elimination and repeated recurrence, affecting solid tumors and hematological malignancies. The challenges posed by solid tumors, especially in the context of the complex solid-tumor microenvironment, require specific strategies. This review outlines recent advancements in improving chimeric antigen receptors T-cell therapy by focusing on the chimeric antigen receptors protein, modifying T-cells, and optimizing the interaction between T-cells and other components within the tumor microenvironment. This article aims to provide an extensive summary of the latest discoveries regarding CAR-T cell therapy, encompassing its application across various types of human cancers. Moreover, it will delve into the obstacles that have emerged in recent times, offering insights into the challenges faced by this innovative approach. Finally, it highlights novel therapeutic options in treating hematological and solid malignancies with chimeric antigen receptors T-cell therapies.


Assuntos
Neoplasias Hematológicas , Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Humanos , Imunoterapia Adotiva/métodos , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/imunologia , Microambiente Tumoral/imunologia , Animais , Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
19.
Eur J Haematol ; 112(1): 111-121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37526606

RESUMO

BACKGROUND: Bone marrow (BM) assessment after CAR-T cell immunotherapy infusion is not routinely performed to monitor adverse events such as cytopenias, hemophagocytic lymphohistiocytosis, or infections. Our institution has performed BM biopsies as part of CAR-T cell treatment protocols, encompassing pre- and post-treatment time points and during long-term follow-up. METHODS: We conducted a systematic retrospective review of BM abnormalities observed in samples from 259 patients following CAR-T cell immunotherapy. We correlated BM pathology findings with mortality, relapse/residual disease, and laboratory values. RESULTS: At a median of 35.5 days post-CAR-T infusion, 25.5% showed severe marrow hypocellularity, and 6.2% showed serous atrophy, and peripheral blood cytopenias corroborated these observations. Marrow features associated with reduced disease burden post-CAR-T infusion include increased lymphocytes seen in 16 patients and an increase of macrophages or granulomatous response seen in 25 patients. However, a 100-day landmark analysis also showed increased marrow histiocytes were associated with lower survival (median OS 6.0 vs. 21.4 months, p = .026), as was grade 2-3 marrow reticulin (18 patients) (median OS 12.5 vs. 24.2 months, p = .034). CONCLUSIONS: These data represent the first systematic observations of BM changes in patients receiving CAR-T cell immunotherapy.


Assuntos
Citopenia , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Medula Óssea , Recidiva Local de Neoplasia , Imunoterapia , Imunoterapia Adotiva/efeitos adversos , Terapia Baseada em Transplante de Células e Tecidos , Antígenos CD19
20.
Methods Mol Biol ; 2748: 167-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38070115

RESUMO

Genetic modification of tumor-infiltrating lymphocytes (TILs) or circulating T cells has become an important avenue in cancer therapy. Here we describe a comprehensive method for establishing and expanding TIL cultures and genetically modifying them with a gene of interest (GOI) via retroviral transduction or mRNA transfection. The method includes all the important steps starting with TIL extraction from tumors through to the maintenance of the genetically modified TILs. The protocol includes instructions for retroviral transduction and mRNA transfection of circulating T cells or T-cell lines. The GOIs most commonly introduced into the target cells are chimeric antigen receptors (CARs); genetic adjuvants, such as membrane-bound interleukins; and antitumor T-cell receptors (TCRs).


Assuntos
Linfócitos do Interstício Tumoral , Linfócitos T , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos T/metabolismo , Transfecção , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linhagem Celular , Linfócitos T CD8-Positivos , Imunoterapia Adotiva/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA