Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
ACS Nano ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137301

RESUMO

Chiral architectures, one of the key structural features of natural systems ranging from the nanoscale to macroscale, are an infinite source of inspiration for functional materials. Researchers have been, and still are, strongly pursuing the goal of constructing such structures with renewable and sustainable building blocks via simple and efficient strategies. With the merits of high sustainability, renewability, and the ability to self-assemble into chiral nematic structures in aqueous suspensions that can be preserved in the solid state, polysaccharide nanocrystals (PNs) including cellulose nanocrystals (CNCs) and chitin nanocrystals (ChNCs) offer opportunities to reach the target. We herein provide a comprehensive review that focuses on the development of CNCs and ChNCs for the use in advanced functional materials. First, the introduction of CNCs and ChNCs, and cellulose- and chitin-formed chiral nematic organizations in the natural world, are given. Then, the self-assembly process of such PNs and the factors influencing this process are comprehensively discussed. After that, we showcased the emerging applications of the self-assembled chiral nematic structures of CNCs and ChNCs. Finally, this review concludes with perspectives on the challenges and opportunities in this field.

2.
Int J Biol Macromol ; 273(Pt 2): 132706, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825294

RESUMO

Benzene, as a common volatile organic compound, represents serious risk to human health and environment even at low level concentration. There is an urgent concern on visualized, sensitive and real time detection of benzene gases. Herein, by doping Fe3+ and graphene quantum dots (GQDs), a cellulose nanocrystal (CNC) chiral nematic film was designed with dual response of photonic colors and fluorescence to benzene gas. The chiral nematic CNC/Fe/GQDs film could respond to benzene gas changes by reversible motion. Moreover, chiral nematic film also displays reversible responsive to humidity changes. The resulting CNC/Fe/GQDs chiral nematic film showed excellent response performance at benzene gas concentrations of 0-250 mg/m3. The maximal reflection wavelength film red shifted from 576 to 625 nm. Furthermore, structural color of CNC/Fe/GQDs chiral nematic film change at 44 %, 54 %, 76 %, 87 %, and 99 % relative humidity. Interestingly, due to the stability of GQDs to water molecules, CNC/Fe/GQDs chiral nematic film exhibit fluorescence response to benzene gas even in high humidity (RH = 99 %) environment. Besides, we further developed a smartphone-based response network system for quantitively determinization and signal transformation. This work provides a promising routine to realize a new benzene gas response regime and promotes the development of real-time benzene gas detection.


Assuntos
Benzeno , Celulose , Nanopartículas , Celulose/química , Benzeno/química , Benzeno/análise , Nanopartículas/química , Pontos Quânticos/química , Grafite/química , Fluorescência , Gases/análise , Gases/química , Cor , Fótons
3.
Macromol Rapid Commun ; : e2400339, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925556

RESUMO

Chirality is ubiquitous in nature, and closely related to biological phenomena. Nature-originated nanomaterials such as cellulose nanocrystals (CNCs) are able to self-assemble into hierarchical chiral nematic CNC films and impart handedness to nano and micro scale. However, the effects of the chiral nematic surfaces on cell adhesion are still unknown. Herein, this work presents evidence that the left-handed self-assembled chiral nematic CNC films (L-CNC) significantly improve the adhesion of L929 fibroblasts compared to randomly arranged isotropic CNC films (I-CNC). The fluidic force microscopy-based single-cell force spectroscopy is introduced to assess the cell adhesion forces on the substrates of L-CNC and I-CNC, respectively. With this method, a maximum adhesion force of 133.2 nN is quantified for mature L929 fibroblasts after culturing for 24 h on L-CNC, whereas the L929 fibroblasts exert a maximum adhesion force of 78.4 nN on I-CNC under the same condition. Moreover, the instant SCFS reveals that the integrin pathways are involved in sensing the chirality of substrate surfaces. Overall, this work offers a starting point for the regulation of cell adhesion via the self-assembled nano and micro architecture of chiral nematic CNC films, with potential practical applications in tissue engineering and regenerative medicine.

4.
Small ; : e2400578, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805746

RESUMO

Passive radiative cooling (PRC) can spontaneously dissipate heat to outer space through atmospheric transparent windows, providing a promising path to meet sustainable development goals. However, achieving simultaneously high transparency, color-customizable, and thermal management of PRC anti ultraviolet (anti-UV) films remains a challenge. Herein, a simple strategy is proposed to utilize liquid crystalline polymer, with high mid-infrared emissive, forming customizable structural color film by molecular self-assembly and polymerization-induced pitch gradient, which guarantees the balance of transparency in visible spectrum and sunlight reflection, rendering anti-UV colored window for thermal management. By performing tests, temperature fall of 5.4 and 7.9 °C are demonstrated at noon with solar intensity of 717 W m-2 and night, respectively. Vivid red-, green-, blue-structured colors, and colorless films are designed and implemented to suppress the solar input and control the effective visible light transmissivity considering the efficiency function of human vision. In addition, temperature rise of 11.1 °C is achieved by applying an alternating current field on the PRC film. This study provides a new perspective on the thermal management and aesthetic functionalities of smart windows and wearables.

5.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732196

RESUMO

The investigation of functional materials derived from sustainable and eco-friendly bioresources has generated significant attention. Herein, nanocomposite films based on chiral nematic cellulose crystals (CNCs) were developed by incorporating xylose and biocompatible ZnO nanoparticles (NPs) via evaporation-induced self-assembly (EISA). The nanocomposite films exhibited iridescent color changes that corresponded to the birefringence phenomenon under polarized light, which was attributed to the formation of cholesteric structures. ZnO nanoparticles were proved to successfully adjust the helical pitches of the chiral arrangements of the CNCs, resulting in tunable optical light with shifted wavelength bands. Furthermore, the nanocomposite films showed fast humidity and ethanol stimuli response properties, exhibiting the potential of stimuli sensors of the CNC-based sustainable materials.


Assuntos
Celulose , Etanol , Umidade , Nanopartículas , Óxido de Zinco , Celulose/química , Óxido de Zinco/química , Etanol/química , Nanopartículas/química , Nanocompostos/química
6.
Polymers (Basel) ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337291

RESUMO

Chiral nematic materials have been attracting attention in fields of advanced functional applications due to their unique iridescent colors and tunable helical structure. A precisely decreased pitch is of importance for construction and applications of chiral nematic materials; however, it remains a huge challenge. Herein, cellulose nanocrystal (CNC) is selected as a constructed matrix for chiral nematic films, and ferric chloride (FeCl3) is used as a modification agent. We investigate the effects of the ferric ion loads on the helical structure and optical characteristics of iridescent film. Subsequently, the influence of ferric ions on the assembly process of CNC liquid crystal and the regulation of the structure color of self-assembled monolayers are discussed. Therefore, the CNC/FeCl3 chiral nematic films showed a blueshifted structural color from orange to blue, which highlights a simple route to achieve the regulation of decreased pitch. Further, we have applied this CNC/FeCl3 chiral nematic film for benzene gas detection. The sensing performance shows that the CNC/FeCl3 chiral nematic film reacts to benzene gas, which can be merged into the nematic layer of the CNC and trigger the iron ions chelated on the CNC, consequently arousing the redshift of the reflected wavelength and the effective colorimetric transition. This CNC/FeCl3 chiral nematic film is anticipated to boost a new gas sensing mechanism for faster and more effective in-situ qualitative investigations.

7.
Small ; 20(30): e2311013, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38372007

RESUMO

The ability to design halide perovskite nanocrystals (PNCs) with circularly polarized luminescence (CPL) offers exceptional potential in photonic technologies. Despite recent inspiring advances, the creation of PNCs with full-color tailorablity, outstanding CPL, and long-term stability remains a substantial challenge. Herein, a robust strategy to craft CPL-active PNCs is reported, exhibiting appealing full-color tunable wavelengths, enhanced CPL, and prolonged stability. In contrast to conventional methodologies, this strategy utilizes chiral nematic mesoporous silica (CNMS) as host to render in situ confined growth of diverse achiral PNCs. By strategically engineering photonic bandgap, adjusting loading amount of PNCs, and manipulating cations/anion compositions of PNCs, robust CPL responses with tunable wavelength and intensity are successfully obtained. The resulting PNCs-CNMS achieves stable CPL emissions with full-color tunability and impressive luminescent dissymmetric factors up to -0.17. Remarkably, silica-based hosts as a protective barrier confer exceptional resistance to humidity, photodegradation, and thermal stability, even up to 95 °C. Furthermore, the ability to achieve reversible CPL switching within PNCs-CNMS is attainable by leveraging the responsiveness of CNMS matrix or dynamic behavior of impregnated PNCs. Additionally, circularly polarized light-emitting diode devices based on PNCs-CNMS can be conveniently fabricated. This research affords a powerful platform for designing functional chiroptical materials.

8.
Carbohydr Polym ; 327: 121646, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171671

RESUMO

Achieving excellent ultraviolet (UV) blocking properties and maintaining high light transmittance are highly challenging. In this study, a facile and green polymer-assisted vacuum filtration strategy was used to prepare cellulose nanocrystal (CNC) one-dimensional photonic crystal (1DPhC) films with excellent UV-blocking performance and good transparency. The polymer-assisted self-assembly behaviors of CNC and the hydrogen bonding interaction between CNC, polyethylene glycol (PEG), and graphene oxide (GO) drive the homogeneous distribution and parallel alignment of GO. The UV absorption of GO and high reflection of UV resulting from the chiral nematic structure of CNCs result in excellent UV-blocking and high visible light transmission. Besides, the strong hydrogen bonding interaction among CNC, PEG, and GO endows the films with obviously increased mechanical properties. The UV-blocking and the transparency of the CNC composite films could reach 98.3 % and 60.5 %, respectively. Besides, the strain at break of the composite film reached 1.72 ± 0.11 %, which was 535.94 % of neat CNC films. The CNC composite films present great potential in the field of UV-blocking glass, sensors, anti-counterfeiting measures, radiation protection, and so on.

9.
ACS Nano ; 18(4): 3627-3635, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38215496

RESUMO

Structural color is a fascinating optical phenomenon arising from intricate light-matter interactions. Biological structural colors from natural polymers are invaluable in biomimetic design and sustainable construction. Here, we report a renewable, abundant, and biodegradable cellulose-derived organic gel that generates stable cholesteric liquid crystal structures with vivid structural colors. We construct the chromatic gel using a 68 wt % hydroxypropyl cellulose (HPC) matrix, incorporating distinct polyethylene glycol (PEG) guest molecules. The PEGs contain peculiar end groups with tailored polarity, allowing for precise positioning on the HPC helical backbone through electrostatic repulsion between the PEG and HPC chains. This preserves the HPC's chiral nematic phase without being disrupted. We demonstrate that the PEGs' polarity tunes the HPC gel's reflective color. Additionally, gels with variable polarities are highly sensitive to temperature, pressure, and stretching, resulting in rapid, continuous, and reversible color changes. These exceptional dynamic traits establish the chiral nematic gel as an outstanding candidate for next-generation applications across displays, wearables, flexible electronics, health monitoring, and multifunctional sensors.

10.
Adv Mater ; 36(18): e2308742, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270293

RESUMO

Integrating optically active components into chiral photonic cellulose to fabricate circularly polarized luminescent materials has transformative potential in disease detection, asymmetric reactions, and anticounterfeiting techniques. However, the lack of cellulose-based left-handed circularly polarized light (L-CPL) emissions hampers the progress of these chiral functionalizations. Here, this work proposes an unprecedented strategy: incorporating a chiral nematic organization of hydroxypropyl cellulose with robust aggregation-induced emission luminogens to generate intense L-CPL emission. By utilizing N,N-dimethylformamide as a good solvent for fluorescent components and cellulose matrices, this work produces a right-handed chiral nematic structure film with a uniform appearance in reflective and fluorescent states. Remarkably, this system integrates a high asymmetric factor (0.51) and an impressive emission quantum yield (55.8%) into one fascinating composite. More meaningfully, this approach is versatile, allowing for the incorporation of luminogen derivatives emitting multicolored L-CPL. These chiral fluorescent films possess exceptional mechanical flexibility (toughness up to 0.9 MJ m-3) and structural stability even under harsh environmental exposures, making them promising for the fabrication of various products. Additionally, these films can be cast on the fabrics to reveal multilevel and durable anticounterfeiting capabilities or used as a chiral light source to induce enantioselective photopolymerization, thereby offering significant potential for diverse practical applications.

11.
Small ; 20(5): e2303778, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752783

RESUMO

Cellulose nanocrystal (CNC) is a renewable resource derived from lignocellulosic materials, known for its optical permeability, biocompatibility, and unique self-assembly properties. Recent years have seen great progresses in cellulose nanocrystal-based chiral photonic materials. However, due to its inherent brittleness, cellulose nanocrystal shows limitations in the fields of flexible materials, optical sensors and food freshness testing. In order to solve the above limitations, attempts have been made to improve the flexibility of cellulose nanocrystal materials without destroying their structural color. Despite these progresses, a systematic review on them is lacking. This review aims to fill this gap by providing an overview of the main strategies and the latest research findings on the flexibilization of cellulose nanocrystal-based chiral nematic film materials (FCNM). Specifically, typical substances and methods used for their preparation are summarized. Moreover, different kinds of cellulose nanocrystal-based composites are compared in terms of flexibility. Finally, potential applications and future challenges of flexible cellulose nanocrystal-based chiral nematic materials are discussed, inspiring further research in this field.

12.
Molecules ; 28(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067509

RESUMO

Micro-sized chiral-nematic liquid crystal (N* LC) polymer particles have attracted considerable interest as versatile reflective colorants with selective circularly polarized light (CPL) properties. However, challenges in achieving the desired size distribution of N* LC particles have led to an incomplete understanding of their reflective characteristics. In this study, we successfully synthesized N* LC particles via dispersion polymerization, enabling precise control over size polydispersity by manipulating the composition of the polymerization solvent. Our investigation revealed that monodisperse N* LC particles displayed distinct reflection bands with high CPL selectivity, while polydisperse particles exhibited broader reflection with lower CPL selectivity. These findings underscore the potential to synthesize N* LC particles with tailored reflective properties using identical monomeric compounds. Furthermore, we demonstrated the production of multifunctional reflective colorants by blending N* LC particles with varying reflection colors. These discoveries hold significant promise for advancing the development of reflective colorants and anti-counterfeiting printing techniques utilizing micro-sized N* LC particles.

13.
Molecules ; 28(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067572

RESUMO

In this study, structural transformations induced by an electric field in the chiral nematic under tangential-conical boundary conditions have been considered. The composition influence of the orienting polymer films on the director tilt angles, the formation of orientational structures in the LC layer, as well as the electro-optical response and relaxation processes have been studied. It has been shown that the poly(tert-butyl methacrylate) concentration change in the orienting polymer mixture allows for smoothly controlling the director tilt angle without fixing its azimuthal orientation rigidly.

14.
J Colloid Interface Sci ; 650(Pt B): 1064-1072, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459730

RESUMO

HYPOTHESIS: The iridescent optical properties of films made of cellulose nanocrystals (CNC) are controlled by the pitch and range of the chiral nematic structures. These are further tuned with the addition of electrolyte. EXPERIMENTS: Electrolyte type, valency and concentration were varied. The bulk CNC suspension properties were investigated by combining rheology, polarised optical photography and microscopy, while the spacing between crystals was determined using SAXS. FINDINGS: The addition of electrolyte to a CNC suspension containing chiral nematic structures first causes the nematic pitch to increase indicating the suspension has a weaker structure. Further increases in electrolyte concentration cause aggregation and complete breakdown of the chiral nematic structures. The univalent species cause larger changes to the chiral nematic structure with the onset and magnitude of structure breakdown occurring at lower ionic strengths compared with the divalent species. Cation size influences the chiral nematic structure with the order of influence being K+ > Na+ ≈ Ca2+ > Mg2+, which corresponds from the largest to smallest cation. This work demonstrates that both ion valency, concentration and species play a significant role in controlling the chiral nematic structures of CNC suspensions and will be a vital step in the development of CNC liquid crystals, optical materials and sensors.

15.
Adv Mater ; 35(49): e2304405, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37505074

RESUMO

Chiral nematic liquid crystals (N*-LCs) can tremendously amplify circularly polarized luminescence (CPL) signals. Doped emissive N*-LCs have been substantially explored. However, their CPL performances still need to be improved, mainly due to the unsatisfying helical twisting power (HTP) of commonly used chiral fluorescent dopants. Chiral fluorescent helical polymers (CFHPs) have outstanding optical activity and CPL performance. The present contribution reports the first success in constructing emissive N*-LCs by doping CFHP into nematic liquid crystals (5CB, N-LCs). The helical assembly structures of N*-LCs effectively amplify the CPL signals of the CFHP. Owing to the high HTP of CFHP, the selective reflection band of N*-LC can be adjusted to fully cover its emission band. A nearly pure CPL with a dissymmetry factor (glum ) up to -1.87 is realized at 9 wt% doping concentration. Taking advantage of the selective reflection mechanism, multi-color CPL-active N*-LCs with high glum are fabricated via further adding achiral fluorophores. Also noticeably, circularly polarized room-temperature phosphorescence with glum up to -1.57 is achieved. Anti-counterfeiting application is demonstrated by exploiting multi-mode optical characteristics of the created N*-LCs. The established strategy for constructing emissive N*-LCs provides a platform for future exploring of CPL-active N*-LCs.

16.
Adv Sci (Weinh) ; 10(27): e2303235, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37505484

RESUMO

The responsive control of energy transfer (ET) plays a key role in the broad applications of lanthanide-doped nanomaterials. Photonic crystals (PCs) are excellent materials for ET regulation. Among the numerous materials that can be used to fabricate PCs, chiral nematic liquid crystals are highly attractive due to their good photoelectric responsiveness and biocompatibility. Here, the mechanisms of ET and the photonic effect of chiral nematic structures on ET are introduced; the regulation methods of chiral nematic structures and the resulting changes in ET of lanthanide-doped nanomaterials are highlighted; and the challenges and promising opportunities for ET in chiral nematic structures are discussed.

17.
Small ; 19(29): e2207932, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37052499

RESUMO

Self-assembly of cellulose nanocrystals (CNCs) is invaluable for the development of sustainable optics and photonics. However, the functional failure of CNC-derived materials in humid or liquid environments inevitably impairs their development in biomedicine, membrane separation, environmental monitoring, and wearable devices. Here, a facile and robust method to fabricate insoluble hydrogels in a self-assembled CNC-polyvinyl alcohol (PVA) system is reported. Due to the reconstruction of inter- or intra-molecular hydrogen bond interactions, thermal dehydration makes an optimized CNC/PVA photonic film form a stable hydrogel network in an aqueous solution rather than dissolve. Notably, the resulting hydrogel exhibits superb mechanical performance (stress up to 3.3 Mpa and tough up to 0.73 MJ m-3 ) and reversible conversion between dry and wet states, enabling it convenient for specific functionalization. Sodium alginate (SA) can be adsorbed into the CNC photonic structure by swelling dry CNC/PVA film in a SA solution. The prepared hydrogel showcases the comprehensive properties of freezing resistance (-20°C), strong adhesion, satisfactory biocompatibility, and highly sensitive and selective Ca2+ sensing. The material could act as a portable wearable patch on the skin for the continuous analysis of calcium trends during different physical exercises, facilitating their development in precision nutrition and health monitoring.


Assuntos
Celulose , Nanopartículas , Celulose/química , Cálcio , Suor , Óptica e Fotônica , Nanopartículas/química , Álcool de Polivinil/química , Hidrogéis/química
18.
Small ; 19(34): e2301947, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093171

RESUMO

The development of long-lived electrochemical energy storage systems based on renewable materials is integral for the transition toward a more sustainable society. Supercapacitors have garnered considerable interest given their impressive cycling performance, low cost, and safety. Here, the first example of a chiral nematic activated carbon aerogel is shown. Specifically, supercapacitor materials are developed based on cellulose, a non-toxic and biodegradable material. The chiral nematic structure of cellulose nanocrystals (CNCs) is harnessed to obtain free-standing hierarchically ordered activated carbon aerogels. To impart multifunctionality, iron- and cobalt-oxide nanoparticles are incorporated within the CNC matrix. The hierarchical structure remains intact even at nanoparticle concentrations of ≈70 wt%. The aerogels are highly porous, with specific surface areas up to 820 m2 g-1 . A maximum magnetization of 17.8 ± 0.1 emu g-1 with superparamagnetic behavior is obtained, providing a base for actuator applications. These materials are employed as symmetric supercapacitors; owing to the concomitant effect of the hierarchically arranged carbon skeleton and KOH activation, a maximum Cp of 294 F g-1 with a capacitance retention of 93% after 2500 cycles at 50 mV s-1 is achieved. The multifunctionality of the composite aerogels opens new possibilities for the use of biomass-derived materials in energy storage and sensing applications.

19.
ACS Nano ; 17(6): 5653-5662, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36897210

RESUMO

Cellulose nanocrystal (CNC)-based chiral nematic structure is widely used in stimulus response and sensing. A popular area of research is enhancing the mechanical characteristics and environmental adaptability of chiral nematic materials. In this paper, a flexible photonic film with self-healing ability (FPFS) was prepared by combining waterborne polyurethane containing dynamic covalent disulfide bonds (SSWPU) with CNC. The results found that the FPFS showed excellent toughness under the action of stretching, bending, twisting, and folding. The FPFS exhibited an amazing self-healing efficiency, which can be self-healed within 2 h at room temperature. Moreover, the FPFS could respond immediately and produce reversible color change when it was soaked in typical solvents. In addition, when ethanol was used as ink to paint on the FPFS, a visible pattern only under polarized light was formed. This study offers fresh perspectives in the areas of self-healing, biological anticounterfeiting, solvent response, and flexible photonic materials.

20.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838845

RESUMO

The charge plays an important role in cellulose nanocrystal (CNC) self-assembly to form liquid crystal structures, which has rarely been systematically explored. In this work, a novel technique combining atomic force microscopy force and atomistic molecular dynamics simulations was addressed for the first time to systematically investigate the differences in the CNC self-assembly caused by external positive and negative charges at the microscopic level, wherein sodium polyacrylate (PAAS) and chitosan oligosaccharides (COS) were used as external positive and negative charge additives, respectively. The results show that although the two additives both make the color of CNC films shift blue and eventually disappear, their regulatory mechanisms are, respectively, related to the extrusion of CNC particles by PAAS and the reduction in CNC surface charge by COS. The two effects both decreased the spacing between CNC particles and further increased the cross angle of CNC stacking arrangement, which finally led to the color variations. Moreover, the disappearance of color was proved to be due to the kinetic arrest of CNC suspensions before forming chiral nematic structure with the addition of PAAS and COS. This work provides an updated theoretical basis for the detailed disclosure of the CNC self-assembly mechanism.


Assuntos
Celulose , Nanopartículas , Celulose/química , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA