Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Fluoresc ; 33(3): 923-932, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36527543

RESUMO

Two chromenoquinoline-based fluorescent probes 1a-b have been synthesized and investigated. Photofading behaviors of compounds 1a-b showed that at least 89% absorption remained after 6 h irradiating, meanwhile, many of ions and amino acids had negligible impacts on their fluorescence intensity, which meant they had excellent photostability and selectivity. Probes 1a-b exhibited strong absorption and emission in organic solvents with large fluorescence quantum yields, even in water probe 1a still had a relatively large fluorescence quantum yield (20%). Combined with DFT calculation, the influence of alkylation on optical properties of 1b was elucidated. In addition, the fluorescence intensity of probe 1b with red emission enhanced by 5.4-fold and 5.3-fold after DNA and RNA added, and the fluorescence quantum yield increased from 3% to 17% and 14%, respectively, but the neutral molecule 1a had no response to nucleic acid. Furthermore, confocal microscopy imaging of probes 1a-b showed that 1a targeted lipid droplets while the methylated probe 1b to nucleus in living HeLa cells. The results indicated that the subcellular targeting zone could be changed by alkylation of nitrogen atom on chromenoquinoline-based conveniently, which provided a new idea for designing and synthesizing new subcellular labeled probes.


Assuntos
Corantes Fluorescentes , Ácidos Nucleicos , Humanos , Células HeLa , Corantes Fluorescentes/química , Diagnóstico por Imagem , Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA